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Abstract

Let Γ be an infinite Abelian group with the following property: the image

of every embedding of Γ into a locally compact group is either discrete or

precompact. We show that either Γ ∼= Z × F or Γ ∼= Cp∞ × F , where F is a

finite group and Cp∞ is the group of roots of unity, whose degrees are powers

of a prime p.

1 Introduction

In 1940 A.Weil established an interesting property of the group of integers which
was used to produce the structural theory of locally compact Abelian groups: the
image of every embedding of Z into a locally compact group is either discrete or
precompact (see § 26, Lemma 2 in [7] or Ch II , § 2, Lemma 1 in [1]). This property
lead us to provide the following definition.

Definition 1.1. We say that a discrete group Γ has Z-property if the image of
every embedding of Γ into a locally compact group is either discrete or precompact.

Equivalently, Γ has Z-property if it cannot be embedded densely into a contin-
uous (i.e. non-discrete) locally compact non-compact group (here, all topological
groups are assumed to be Hausdorff).
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Remark 1.2. A similar definition can be given for locally compact groups. A
locally compact group H has Z-property if the image of every continuous embedding
of H into a locally compact group is either closed or precompact. In the case of
a discrete group H we clearly get the previous definition. For example, R is a
continuous locally compact group with Z-property (see Ch II, § 2, Lemma 1 in [1]).

It is evident that every finite group F and Z×F have Z-property. A. Ol’̌shanskii
group constructed in Theorem 31.5 [6] is a non-trivial example of a countable group
with Z-property. There exists no continuous (i.e. non-discrete) topology on this
group compatible with the group structure. Hence this group cannot be densely
embedded into a continuous topological (and locally compact, in particular) group
at all. Let us consider another example of a group with Z-property. For a prime p
denote by Cp∞ the quasicyclic group {z ∈ T| zpn

= 1 for some n}.

Proposition 1.3. Cp∞ has Z-property.

Proof. Let φ : Cp∞ → G be a dense embedding of Cp∞ into a locally compact group.
Then G is Abelian. Hence there is an open subgroup G1 ⊂ G which is topologically
isomorphic to Rn ×K, where K is a compact group (see Theorem 24.30 in [4]). Let
Γ1 = φ−1(G1). Then φ(Γ1) is a dense subgroup of G1. If Γ1 is finite then G1 is finite
and open. Therefore G is discrete. Assume now that Γ1 is infinite. Then Γ1 = Cp∞

(see §7 in [5]). Since φ(Cp∞) = G and G1 is open, G1 = G. Hence φ is a dense
embedding of Cp∞ into Rn ×K. Since the elements of Cp∞ have finite order, n=0,
i.e. φ(Cp∞) is precompact. �

Remark 1.4.It would be interesting to prove this proposition without using the
structural theory of locally compact Abelian groups.

2 Main Theorem

The following theorem is the main result of the paper. It provides a complete
description of the Abelian groups with Z-property.

Theorem 2.1. Let Γ be an infinite Abelian group, then: Γ has the Z-property if

and only if Γ is isomorphic to either Z× F or Cp∞ × F , where F is a finite Abelian

group.

Let us first mention the following well known lemma:

Lemma 2.2. Every infinite Abelian group can be densely embedded into a con-

tinuous compact group.

Proof. See Section 26.11 in [4]. �

In order to prove the main theorem, we will need the following easy facts:
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Lemma 2.3. Let Γ = Γ1 × Γ2, where Γ1,Γ2 are infinite Abelian groups. Then Γ
does not have Z-property.

Proof. According to Lemma 2.2, there are compact group K and a dense embedding
φ : Γ1 → K. We define a map ψ : Γ → K× Γ2 by setting ψ(γ1, γ2) = (φ(γ1), γ2).
Then ψ is a dense embedding of Γ into K × Γ2 which image is continuous and
non-compact. �

Lemma 2.4. Let F be a finite group. Then Γ has Z - property iff Γ × F has

Z-property.

Proof. Clear from the definition. �

Lemma 2.5. Let K be a compact group, H a topological group, G = K×H, and

Γ ⊂ G. Let us denote by πH the canonical projection onto H.

i) If H is continuous and πH(Γ) is dense in H then Γ is non-discrete.
ii) IfH is infinite and πH(Γ) = H then the closure of Γ is non-compact. Moreover

if (ker πH) ∩ Γ is an infinite group then the closure of Γ is continuous.

Proof. i) Notice that if Γ is closed, then πH(Γ) is closed.
ii) Clear. �

Proof of the main theorem. The ”only if” part is clear. Now, for the ”if” part, con-
sider the minimal divisible extension Λ of Γ (see §23 in [5]). We first consider the
case when Γ is non-periodic. Then Λ can be expanded as Λ ∼= (

⊕
i∈I

Qi) ⊕ P , where

Qi = Q, I 6= ∅ (because Γ is non-periodic) and P is the direct sum of a
family of copies of Cp∞ for some primes p ( see §23 in [5]). Since Q and Cp∞ are
subgroups in R and T respectively, Λ is embedded into a group A ∼= (

⊕
i∈I

Ri) × K,

where Ri = R and K =
∏

s∈S

Ts ,Ts = T. Let πj : A→ R be the projection onto

the j-th component of
⊕
i∈I

Ri. Since every subgroup of R is either dense or discrete,

there are two possibilities:
1) πj0(Γ) is dense in R for some j0 ∈ I;
2) πj(Γ) is discrete in R for every j ∈ I.
Let us consider the case 1). We embed Λ into

G = (
∏

i∈I\{j0}

Ti)× R×K,

by considering homomorphisms qi : Ri → T such that qi|Qi
is injective, ∀i 6= j0.

Since K is compact, G is a locally compact non-compact group. Let B stand for
the closure of the image of Γ in G. Then B is non-compact. By Lemma 2.5 part i),
B is continuous. Hence Γ does not have Z-property.

In the case 2) we fix some index j0 ∈ I. Since Λ is a minimal divisible extension
of Γ (which implies that πj0(Γ) 6= {e}), and πj0(Γ) is a discrete subgroup in R,
πj0(Γ) ∼= Z. Hence Γ ∼= Z × (ker πj0 ∩ Γ). Since Γ has Z-property, we deduce
from Lemma 2.3 that (ker πj0) ∩ Γ is finite.
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Now let Γ be periodic. It follows from Theorem A3 in [4] and Lemma 2.3 that
without loss of generality we may assume Γ to be p-primary. Let Λ be a minimal
divisible extension of Γ. Then Λ ∼=

⊕
i∈I

Pi, where Pi = Cp∞, i ∈ I (see §23 in [5]).

Now let us denote by πj the projection onto the j-th component of Λ. There exists
two possibilities again:

i) πj0(Γ) is an infinite group for some j0 ∈ I;
ii) πj(Γ) is a finite group for every j ∈ I.
Let us consider the case i). We deduce that πj0(Γ) = Cp∞ from the properties of

Cp∞. If (ker πj0)∩Γ is infinite then |I| ≥ 2 and Λ can be densely embedded into G =
(

∏

i∈I\{j0}
Ti) × Cp∞ by considering the identity embeddings from Pi into T, ∀i 6= j0.

However this contradicts to Lemma 2.5, part ii). Thus (ker πj0) ∩ Γ is finite. Denote
it by F . Then Γ / F ∼= Cp∞. If Γ does not contain nontrivial direct summands,
then Γ ∼= Cp∞ (see Corollary 27.4 and Theorem 3.1 in [2]). Let Γ1 ⊂ Γ be a
nontrivial infinite direct summand. Then πj0(Γ1) = πj0(Γ) = Cp∞ and Γ = Γ1

⊕
L1,

where L1 is finite (see Lemma 2.3) and Γ1 has Z-property (see Lemma 2.4). We set
F1 = Γ1 ∩ F . Then Γ1/F1

∼= Cp∞ and |F1| < |F |. If Γ1 does not contain nontrivial
direct summands, then Γ ∼= Cp∞ × L1. In the opposite case we proceed with the
above constructions. Finally we conclude that either Γ ∼= Cp∞ ×Lk × . . .×L1 after
some steps or Fn = Γn ∩ F = {e} for some n ≤ |F |, i.e. Γn

∼= Cp∞ and Γ ∼= Γn × F .
Let us consider the case ii). Then Γ is a subgroup of a direct sum of cyclic

groups, hence it can be expanded into a direct sum of finite cyclic groups (see §24 in
[5]). As Γ is infinite, this contradicts to Lemma 2.3. Now the theorem is completely
proved. �

Corollary 2.7. A discrete Abelian group with Z-property is finite or countable.

Remark 2.8. There exist uncountable noncommutative discrete groups with Z-
property. The permutation group of a countable set S(N) is an example of such a
group. This group cannot be densely embedded into a continuous locally compact
group (see [3]).

Corollary 2.9. Let K be an infinite compact Abelian group. Suppose that

K does not admit continuous embedding of any continuous non-compact locally

compact group. Then K is topologically isomorphic either to T × F or to Zp ×F ,

where F is a finite Abelian group, Zp is the group of integer p-adic numbers.

Proof. Since T and Zp are the duals to Z and Cp∞ respectively, we use Pontryagin
duality functor to deduce the statement of this corollary from Ch II, §1, Corollary 6
in [1]. �
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