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For quaternion division algebras B, C over a field F (of any characteristic), a
well-known theorem of Albert [1] and Sah [6] states that the following conditions
are equivalent:

(1) B ⊗F C is not a division algebra;
(2) B and C have a common quadratic splitting field;
(3) some quadratic field extension of F can be embedded (over F ) in both B and
C.

In the case where F has characteristic 2, there is a further refinement of this
theorem, due to Draxl, which states that the above conditions are also equivalent
to1:

(4) B and C have a common separable quadratic splitting field;
(5) some quadratic separable field extension of F can be embedded in both B and
C.

Draxl’s original proof in [3] was not easy (for me) to follow. Subsequent proofs
of the equivalence of (1)–(5) using more advanced tools (respectively, algebraic ge-
ometry and the theory of Clifford algebras) appeared in this Bulletin in Tits [7] and
Knus [5]. While teaching a course in the theory of division rings, I stumbled upon a
short and completely elementary proof of Draxl’s part of the above theorems. This
proof is recorded below in order to make Draxl’s result more easily accessible to
non-experts. It has also been known for some time that (4) and (5) are no longer
equivalent to (1)–(3) if the word “separable” is replaced by “inseparable”. This will

1Of course, (4), (5) are also equivalent to (1)–(3) in case char(F ) 6= 2, since all quadratic
extensions of F are separable in that case. But this would hardly qualify as a “refinement”.
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be demonstrated as well by an example that is simpler and easier to verify than the
ones in Baeza [2: p. 134] and Knus [5: pp. 335-336].

Throughout the following, we assume char(F )=2. Recall that, for a∈F and b ∈
F ∗, [a, b)F denotes the F -quaternion algebra generated by i, j with the relations
i2 + i+a = 0, j2 = b, and ij = j(i+1). The following three standard isomorphisms
for quaternion algebras will be useful:

(6) [a, b)F
∼= [a + b, b)F ;

(7) [a, b)F
∼= [a+x2 +x, b)F for any x ∈ F . In particular, [x2 +x, b)F

∼= [ 0, b)F
∼=

M2(F ). (8) [a, b)F
∼= [a, bd)F whenever d = x2 + xy + ay2 6= 0.

Here, (6) follows by considering the generating set {i + j, j}, and (7), (8) follow
similarly by considering the generating sets {i + x, j} and {i, xj + yk} (where
k = ij).

We shall also need the following basic observation on quadratic subfields in a
quaternion algebra B (see, e.g. [4: p. 104]):

(9) A separable field extension F [t]/(t2 + t + a) embeds in B iff B ∼= [a, ∗)F . An
inseparable field extension F [t]/(t2 − b) embeds in B iff B ∼= [∗∗, b)F .

This observation leads us naturally to the notion of linkage. We say that two
quaternion algebras B, C are left-linked if B ∼= [a, x)F and C ∼= [a, y)F for
suitable a ∈ F and x, y ∈ F ∗, and right-linked if B ∼= [z, b)F and C ∼= [w, b)F

for suitable b ∈ F ∗ and z, w ∈ F . ¿From (9), we see that, if B, C are division
algebras, “left-linked” means that they have a common separable quadratic subfield,
and “right-linked” means that they have a common inseparable quadratic subfield.

We shall now prove Draxl’s Theorem. (4) ⇔ (5) being a standard fact on split-
ting fields, our task at hand is only to prove (3) ⇒ (5). In view of the above
interpretations of linkage, this implication will follow as soon as we prove the fol-
lowing

Proposition. If two quaternion algebras B, C are right-linked, then they are left-
linked.

Proof. Write B ∼= [z, b)F and C ∼= [w, b)F , where z, w ∈ F and d ∈ F ∗. Let
x ∈ F be the unique element solving the linear equation z + b (x+ z) = w. We may
assume that x2 + x + z 6= 0 (for otherwise B splits by (7), and hence B ∼= [w, 1)F

is left-linked to C). By (8) and (6),

(10) B ∼= [ z, b(x2 + x + z)
)

F

∼= [ z + b(x2 + x + z), ∗
)

F

∼= [ w + bx2, ∗
)

F
.

If x = 0, this shows that B is left-linked to C. If x 6= 0, then by (8) and (6) again,
C ∼= [w, d)F

∼= [w, bx2)F
∼= [w + bx2, dx2)F , which is left-linked to B by (10). �

Note that the proof of the Proposition is actually algorithmic: it gives an explicit
construction of a left linkage from any given right linkage. We finish by showing,
however, that the converse of the Lemma is not true; that is, left linkage is in
general weaker than right linkage. In the language of algebras, this means that
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it is possible for two quaternion division F -algebras to have a common separable
quadratic extension of F , but no common inseparable quadratic extension.

Example. Over the rational function field F = F2(x, y), consider the quaternion
algebras B = [1, x)F and C = [1, y)F . These are left-linked, both containing the
separable quadratic extension E/F where E = F4(x, y). We claim that B, C
are not right-linked (so they do not contain a common inseparable quadratic field
extension). To see this, assume instead that B ∼= [∗, b)F and C ∼= [∗∗, b)F , for
some b ∈ F ∗. Then, both B and C have a nonscalar element with square b. A
short calculation using the given presentations of B and C leads to the following
equations:

b = h2

1
+ x(f 2

1
+ f1g1 + g2

1
) = h2

2
+ y(f 2

2
+ f2g2 + g2

2
),

where (fi, gi) 6= (0, 0) ∈ F 2. Setting h = h1 + h2, we get

(11) h2 = x(f 2

1
+ f1g1 + g2

1
) + y(f 2

2
+ f2g2 + g2

2
).

After clearing denominators, we may assume that fi, gi ∈ F2[x, y], and with

max {deg(f1), deg(g1), deg(f2), deg(g2)}

chosen as small as possible. Setting y = 0 in (11), we have

h(x, 0)2 = x [f1(x, 0)2 + f1(x, 0) g1(x, 0) + g1(x, 0)2].

Since fi(x, 0) and gi(x, 0) are monic (if nonzero), the RHS has odd degree, while
the LHS has even degree. Thus, we must have f1(x, 0) = g1(x, 0) = 0, so we can
write f1 = yf3 and g1 = yg3. Similarly, f2 = xf4 and g2 = xg4, and hence
h = xyh3. Cancelling xy from (11) gives

(12) xy h2

3
= y(f 2

3
+ f3g3 + g2

3
) + x(f 2

4
+ f4g4 + g2

4
).

Repeating the argument gives f3 = xf5, g3 = xg5, f4 = yf6, g4 = yg6, and now (12)
gives

h2

3
= x(f 2

5
+ f5g5 + g2

5
) + y(f 2

6
+ f6g6 + g2

6
),

which contradicts the minimal choice of {f1, g1, f2, g2} in (11).

Note that B, C here are necessarily division algebras, for, if say B was not
a division algebra, then B ∼= M2(F ) ∼= [ 0, y)F would have been right-linked to
C = [1, y)F .
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