The glueing of near polygons

Bart De Bruyn^{*}

Abstract

In [7] a construction is given to derive so-called glued near polygons from spreads of symmetry in generalized quadrangles. We show here that this construction is also applicable to arbitrary near polygons and derive a similar theory as in the case of the generalized quadrangles. We also show that many new near polygons can be derived from a set of points in PG(5,3) discovered by Coxeter ([2]).

1 Basic definitions

A near polygon $\mathcal{A} = (\mathcal{P}, \mathcal{L}, \mathbf{I})$ is a partial linear space with the property that every line L contains a unique point $\pi_L(p)$ nearest to any given point p. Here distances are measured in the collinearity graph Γ . If d is the (finite) diameter of Γ , then the near polygon is called a near 2d-gon. A near 0-gon consists of one point, a near 2-gon is a line, and the class of the near quadrangles coincides with the class of the generalized quadrangles (GQ's, [9]), which were introduced by Tits in [11]. Near polygons themselves were introduced by Shult and Yanushka in [10] because of their relationship with certain systems of lines in Euclidean spaces. For a point p and a line K of \mathcal{A} , let d(p, K) denote the minimal distance between p and a point of K. For two lines K and L of \mathcal{A} , let d(K, L) denote the minimal distance between two points on respectively K and L. There are two possibilities. Either there exist unique points $k \in K$ and $l \in L$ such that d(K, L) = d(k, l), or, for every point $k \in K$ there exists a unique $l \in L$ such that d(K, L) = d(k, l). In the latter case Kand L are called *parallel* ($K \parallel L$). A subspace B of \mathcal{A} is called *geodetically closed*, if

Bull. Belg. Math. Soc. 9 (2002), 621-630

^{*}Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium) Received by the editors September 2001.

Communicated by J. Thas.

¹⁹⁹¹ Mathematics Subject Classification : 05B25, 51E25.

Key words and phrases : near polygon, generalized quadrangle.

every point on a shortest path between two points of B is as well contained in B. If every line of \mathcal{A} is incident with at least three points, and if every two points at distance 2 have at least two common neighbours, then every two points at distance δ are contained in a unique geodetically closed sub near 2δ -gon, see Theorem 4 of [1]. The existence of geodetically closed sub near quadrangles, the so-called quads, was already proven in [10]. The direct product $\mathcal{A} \times \mathcal{B}$ of two near polygons $\mathcal{A} = (\mathcal{P}, \mathcal{L}, I)$ and $\mathcal{B} = (\mathcal{P}', \mathcal{L}', I')$ is the near polygon whose point set is the cartesian product $\mathcal{P} \times \mathcal{P}'$, with two points (x, y) and (x', y') collinear if and only if $(x = x' \text{ and } y \sim y')$ or $(y = y' \text{ and } x \sim x')$.

In [7], it is explained how generalized quadrangles with a so-called spread of symmetry can be used to construct new near 2*d*-gons. The case d = 3 is treated more thoroughly in [6]. In the present paper, we show that the construction can be generalized to all near 2*d*-gons with a spread of symmetry and derive a similar theory as in [3]. Examples of near polygons with a spread of symmetry include the near polygons with a linear representation. We take a closer look to these near polygons in the following section.

2 Linear representations

Let Π_{∞} be a $\operatorname{PG}(n,q)$, $n \geq 0$, which is embedded as a hyperplane in $\Pi = \operatorname{PG}(n+1,q)$, and let \mathcal{K} be a nonempty set of points of Π_{∞} . With every point x of Π_{∞} , we associate an element $i_{\mathcal{K}}(x) \in \mathbb{N} \cup \{+\infty\}$, called the \mathcal{K} -index of x:

- if $x \notin \langle \mathcal{K} \rangle$, then $i_{\mathcal{K}}(x) = +\infty$,
- if $x \in \langle \mathcal{K} \rangle$, then $i_{\mathcal{K}}(x) = m$, where *m* is the smallest integer with the property that there are *m* points of \mathcal{K} generating a subspace containing *x*.

The linear representation $T_n^*(\mathcal{K})$ is the geometry with point set $\Pi \setminus \Pi_{\infty}$, with lines all the affine lines of Π through a point of \mathcal{K} , and with incidence the one derived from Π .

- **Theorem 1 ([8]).** If x and y are 2 different points of $T_n^*(\mathcal{K})$ and if z is the intersection of xy with Π_{∞} then $d(x, y) = i_{\mathcal{K}}(z)$, where $d(\cdot, \cdot)$ denotes the distance in the collinearity graph of $T_n^*(\mathcal{K})$.
 - T^{*}_n(K) is a near polygon if and only if for every point x ∈ K and for every line L of Π_∞ through x, there is a unique point y ∈ L \ {x} with smallest K-index.
- **Theorem 2.** (A) Consider in Π_{∞} two disjoint subspaces π_1 and π_2 of dimensions $n_1 \geq 0$ and $n_2 \geq 0$ respectively, such that $\Pi_{\infty} = \langle \pi_1, \pi_2 \rangle$. Let $\mathcal{K}_i, i \in \{1, 2\}$, be a set of points in π_i and put $\mathcal{K} = \mathcal{K}_1 \cup \mathcal{K}_2$. If $T^*_{n_i}(\mathcal{K}_i), i \in \{1, 2\}$, is a near $2d_i$ -gon, then $T^*_n(\mathcal{K})$ is a near $2(d_1 + d_2)$ -gon isomorphic to the direct product $T^*_{n_1}(\mathcal{K}_1) \times T^*_{n_2}(\mathcal{K}_2)$.
- (B) Consider in Π_{∞} two subspaces π_1 and π_2 of dimensions $n_1 \ge 0$ and $n_2 \ge 0$ respectively, such that $\pi_1 \cap \pi_2 = \{p\}$ and $\Pi_{\infty} = \langle \pi_1, \pi_2 \rangle$. Let $\mathcal{K}_i, i \in \{1, 2\}$, be a set of points in π_i containing p and put $\mathcal{K} = \mathcal{K}_1 \cup \mathcal{K}_2$. If $T^*_{n_i}(\mathcal{K}_i), i \in \{1, 2\}$, is a near $2d_i$ -gon, then $T^*_n(\mathcal{K})$ is a near $2(d_1 + d_2 - 1)$ -gon.

Proof. Part (A) of the theorem was proved in [8]. We now prove part (B). Let L be a line of Π_{∞} containing a point x of $\mathcal{K}_1 \cup \mathcal{K}_2$. We will prove that $L \setminus \{x\}$ contains a unique point with smallest $(\mathcal{K}_1 \cup \mathcal{K}_2)$ -index. We may suppose that $x \in \mathcal{K}_1$ and $L \not\subseteq \pi_1$. For every point y of $L \setminus (\pi_1 \cup \pi_2)$ there exist points $a_1 \in \pi_1$ and $a_2 \in \langle L, \pi_1 \rangle \cap \pi_2$ such that $y \in \langle a_1, a_2 \rangle$ and $i_{\mathcal{K}_1 \cup \mathcal{K}_2}(y) = i_{\mathcal{K}_1}(a_1) + i_{\mathcal{K}_2}(a_2)$. Let b_2 be the unique point of $(\langle L, \pi_1 \rangle \cap \pi_2) \setminus \{p\}$ with smallest \mathcal{K}_2 -index. By (A), $L \setminus \{x\}$ contains a unique point with smallest $(\mathcal{K}_1 \cup \{b_2\})$ -index, and this point is also the unique point of $L \setminus \{x\}$ with smallest $(\mathcal{K}_1 \cup \mathcal{K}_2)$ -index.

A nonempty set of points in PG(n, q) is called *indecomposable* if it cannot be written as $\mathcal{K}_1 \cup \mathcal{K}_2$ with \mathcal{K}_1 and \mathcal{K}_2 as in (A) or (B) of the previous theorem. The following examples of indecomposable sets yield near polygons ([8]):

- (1) the unique point of PG(0,q),
- (2) a hyperoval in $PG(2, 2^h)$,

Successive application of Theorem 2, (B) to the the third example yields an infinite class of new near polygons. Concerning the classification of linear representations of near 2*d*-gons, $d \leq 3$, we have the following result.

Theorem 3 ([8]). Let \mathcal{K} be an indecomposable set of points in PG(n,q), $q \geq 3$, different from (1), (2) and (3). If $T_n^*(\mathcal{K})$ is a near 2d-gon, $d \leq 3$, then d = 3, $n \geq 7$ and $q = 2^h$ with $h \geq 4$.

The case $d \ge 4$ has not yet been treated. The following theorem however suggests a recursive approach.

Theorem 4 ([5]). If \mathcal{K} is a nonempty set of points in $\mathrm{PG}(n,q)$, such that $T_n^*(\mathcal{K})$ is a near polygon, then every geodetically closed sub near 2δ -gon, $\delta \neq 0$, of $T_n^*(\mathcal{K})$ is of the form $T_{n^*}^*(\mathcal{K}^*)$ with $\mathcal{K}^* \subseteq \mathcal{K}$, $\langle \mathcal{K}^* \rangle \cap \mathcal{K} = \mathcal{K}^*$ and $\dim(\langle \mathcal{K}^* \rangle) = n^*$.

3 Spreads of near polygons

Let \mathcal{A} be a near polygon. For two lines K and L of \mathcal{A} with $K \parallel L$ and d(K, L) = 1, we define $\{K, L\}^{\perp}$ as the set of all lines intersecting K and L, and $\{K, L\}^{\perp\perp}$ as the set of all lines meeting every line of $\{K, L\}^{\perp}$. If $\{K, L\}^{\perp}$ and $\{K, L\}^{\perp\perp}$ cover the same points of \mathcal{S} , then the pair $\{K, L\}$ is called *regular*. A spread S of \mathcal{A} is called *admissible* if every two lines of S are parallel. An admissible spread has a nice property with respect to geodetically closed subgeometries.

Theorem 5. Let S be an admissible spread of a near polygon \mathcal{A} , let $L \in S$, and let H be a geodetically closed subgeometry of \mathcal{A} through L. Then every line of S which meets H is completely contained in H.

Proof. Suppose there is a line M of S which meets H in exactly one point m, and let $l \in L$ such that d(l, m) = d(m, L) + 1. The unique point of M at distance d(m, L) from l is then on a geodetically closed path from l to m, a contradiction.

An admissible spread S of \mathcal{A} is called *regular* if $\{K, L\}$ is regular and $\{K, L\}^{\perp \perp} \subseteq S$ for all $K, L \in S$ with d(K, L) = 1. A spread S of \mathcal{A} is a *spread of symmetry* if for every $K \in S$ and every $k_1, k_2 \in K$, there exists an automorphism of \mathcal{A} fixing each line of S and mapping k_1 to k_2 .

Theorem 6. Every spread of symmetry is a regular spread.

Proof. Let S be a spread of symmetry of \mathcal{A} . For every two lines $K, L \in S$, the distance d(k, L) is independent of the chosen point $k \in K$. Hence, K and L are parallel. Suppose now that d(K, L) = 1, and let M be a line meeting K and L. If G denotes the full group of automorphisms fixing each line of S, then $\{K, L\}^{\perp} = \{M^g | g \in G\}$ and $\{K, L\}^{\perp \perp} = \{m^G | m \in M\}$ is a subset of S, proving that S is regular.

We now consider two cases.

(A) If \mathcal{A} is the direct product of a line L with a near polygon $\mathcal{B} = (\mathcal{P}, \mathcal{L}, I)$, then $S = \{L_x | x \in \mathcal{P}\}$ with $L_x := \{(y, x) | y \in L\}$ is a spread of \mathcal{A} . Every spread obtained this way is called *trivial*. Clearly, every trivial spread is a spread of symmetry.

(B) Let Π_{∞} be a $\operatorname{PG}(n,q)$ which is embedded as a hyperplane in $\Pi = \operatorname{PG}(n+1,q)$, and let \mathcal{K} be a nonempty set of points of Π_{∞} such that $T_n^*(\mathcal{K})$ is a near polygon. For every point x of \mathcal{K} , the set of all affine lines through x determines a spread S_x of $T_n^*(\mathcal{K})$.

Theorem 7. The spread S_x is a spread of symmetry.

Proof. The points of $T_n^*(\mathcal{K})$ are the points of $\operatorname{AG}(n+1,q)$. Let $K \in S_x$ and $k_1, k_2 \in K$. There exists then a unique translation T of $\operatorname{AG}(n+1,q)$ mapping k_1 to k_2 . Clearly T defines an isomorphism of $T_n^*(\mathcal{K})$ which fixes each line of S_x .

Theorem 8. If $q \ge 3$, then the spreads S_x , $x \in \mathcal{K}$, are the only regular spreads of $T_n^*(\mathcal{K})$.

Proof. By Theorems 6 and 7, every spread $S_x, x \in \mathcal{K}$, is regular. Conversely, suppose that S is a regular spread. We prove that every two lines K and L of S determine the same point at infinity. If d(K, L) = 1, then the lines K and L are contained in a quad Q. By Theorem 4 the points of Q are the points of $\alpha \setminus \Pi_{\infty}$ where α is a two- or threedimensional subspace. If $\dim(\alpha) = 2$, then $|\alpha \cap \mathcal{K}| = 2$, Q is a grid, and K and L determine the same point at infinity. If $\dim(\alpha) = 3$, then $\alpha \cap \mathcal{K}$ is a hyperoval and the result follows from Theorem 3.3.4 of [9]. If d(K, L) = k > 1, then there exist lines $M_0, \ldots, M_k \in S$ such that $M_0 = K$, $M_k = L$ and $d(M_{i-1}, M_i) = 1$ for every $i \in \{1, \ldots, k\}$. Since $M_{i-1} \cap \Pi_{\infty} = M_i \cap \Pi_{\infty}$ for every $i \in \{1, \ldots, k\}$, K and L determine the same point at infinity.

4 Two groups related to an admissible spread

Let S be an admissible spread of a near 2d-gon $\mathcal{A} = (\mathcal{P}, \mathcal{L}, \mathbf{I})$. The full group of automorphisms of \mathcal{A} fixing each line of S is denoted by G_S . For every two lines K and L of S, one can define the projection P_L^K from the point set of K to the point set of L: $p_L^K(x)$ denotes the unique point on L nearest to $x \in K$. For a line $K \in S$, we call $\prod_S(K) = \langle P_K^M \circ P_M^L \circ P_L^K | L, M \in S \rangle$ the group of projectivities of K with respect to S.

Theorem 9. (a) The group $\Pi_S(K)$ is trivial if and only if S is trivial.

(b) If $\Pi_S(K)$ is not the trivial group, then for all $x_1, x_2 \in K$, there exists an element of $\Pi_S(K)$ mapping x_1 to x_2 .

Proof.

- (a) Suppose that $\Pi_S(K)$ is trivial. For every point $x \in K$, the set $\Delta_x := \{y \in \mathcal{P} | d(y, x) = d(y, K)\}$ is a subspace of \mathcal{A} , i.e. a set of points of \mathcal{A} intersecting each line in either the empty set, a singleton or the whole line. If x, y and z are points such that $x \in K, y \in \Delta_x, d(y, z) = 1$ and $yz \notin S$, then there exists an element of $\Pi_S(K)$ mapping x to the unique point of K nearest to z, proving that $z \in \Delta_x$. Hence, for every point $y \in \mathcal{P} \setminus \Delta_x$, there exists a unique point $P_x(y) \in \Delta_x$ collinear with y. If $y_1, y_2 \in \mathcal{P} \setminus \Delta_x$ such that $d(y_1, y_2) = 1$ and $y_1y_2 \notin S$, then also $P_x(y_1)$ and $P_x(y_2)$ are collinear. Hence all subspaces $\Delta_x, x \in K$, are isomorphic, and the result follows immediately.
- (b) Let $x \in K$ and $\theta \in \Pi_S(K)$ such that $x^{\theta} \neq x$. It is sufficient to prove that the orbit of x under $\Pi_S(K)$ is equal to K. So, let \tilde{x} be an arbitrary point of K. There exists a path $x = x_0, x_1, \ldots, x_k = x^{\theta}$ in \mathcal{A} such that $d(x_i, x_{i+1}) = 1$ and $x_i x_{i+1} \notin S$ for all $i \in \{0, \ldots, k-1\}$. Take now the smallest i such that x is not the unique point of K nearest to x_i , and let y be the unique point of $x_{i-1}x_i$ nearest to \tilde{x} . Since $x_{i-1}x_i$ and K are parallel, \tilde{x} is the unique point of K nearest to y. If L and M are the elements of S through x_{i-1} and y, respectively, then $P_K^M \circ P_M^L \circ P_K^K$ maps x to \tilde{x} , proving the result.

Remark. If $\theta \in G_S$ fixes a point $x \in K$, then θ also fixes every point of $x^{\Pi_S(K)}$. Hence, if S is nontrivial, then only the trivial element of G_S has fixpoints.

The relation between the groups G_S and $\Pi_S(K)$ is the same as the one of Theorem 5.3 in [3].

Theorem 10. If $\theta \in G_S$ then θ induces a permutation $\overline{\theta}$ on the point set of K that commutes with each element of $\Pi_S(K)$. Conversely, if a permutation ϕ on the point set of K commutes with each element of $\Pi_S(K)$, then $\phi = \overline{\theta}$ for some $\theta \in G_S$.

Just as in Section 5 of [3], this implies the following result.

Theorem 11. If K is a line of a nontrivial admissible spread S of a near polygon, then the following statements are equivalent:

- (1) S is a spread of symmetry,
- (2) $\Pi_S(K)$ acts regularly on the set of points of K,
- (3) G_S acts regularly on the set of points of K.

We also have the following result.

Theorem 12. If $\Pi_S(K)$ is commutative, then S is a spread of symmetry.

Proof. We may suppose that $\Pi_S(K)$ is not trivial. Since $\Pi_S(K)$ is commutative, every element of $\Pi_S(K)$ can be extended to an element of G_S (Theorem 10). Since $\Pi_S(K)$ acts transitively on the set of points of K (Theorem 9), S is a spread of symmetry.

We now consider the case when the near polygon has a linear representation. So, let Π_{∞} be a PG(n, q) which is embedded as a hyperplane in $\Pi = \text{PG}(n + 1, q)$ and let \mathcal{K} be a nonempty set of points of Π_{∞} such that $T_n^*(\mathcal{K})$ is a near polygon. For every point $\langle \bar{x} \rangle \in \mathcal{K}$, the set of all affine lines through $\langle \bar{x} \rangle$ determines a spread $S_{\langle \bar{x} \rangle}$ of $T_n^*(\mathcal{K})$. Let $K_1 = \langle \bar{x}, \bar{a} \rangle$ be a fixed line of $S_{\langle \bar{x} \rangle}$.

- **Theorem 13.** (a) The group $\Pi_{S_{\langle \bar{x} \rangle}}(K_1)$ is either trivial or isomorphic to the additive group of the finite field GF(q).
 - (b) If $\Pi_{S_{\langle \bar{x} \rangle}}(K_1)$ is the trivial group, or equivalently, if $S_{\langle \bar{x} \rangle}$ is a trivial spread, then $\langle \mathcal{K} \setminus \{ \langle \bar{x} \rangle \} \rangle$ is a hyperplane of Π_{∞} which does not contain $\langle \bar{x} \rangle$.

Proof.

- (a) Let $K_2, K_3 \in S_{\langle \bar{x} \rangle}$ such that $K_1 \neq K_2 \neq K_3 \neq K_4 := K_1$. The plane $\langle K_i, K_{i+1} \rangle$, $i \in \{1, 2, 3\}$, intersects Π_{∞} in a line $\langle \bar{x}, \bar{u}_i \rangle$. We may suppose that $\langle \bar{u}_i \rangle$ is the unique point of $\langle \bar{x}, \bar{u}_i \rangle \setminus \{\langle \bar{x} \rangle\}$ with smallest index. Let $\lambda_1, \lambda_2, \lambda_3 \in GF(q)$ such that $\langle \bar{a} + \lambda_1 \bar{u}_1 + \ldots + \lambda_i \bar{u}_i \rangle \in K_{i+1}$ for all $i \in \{1, 2, 3\}$. If $\Phi := p_{K_1}^{K_3} \circ p_{K_2}^{K_2}$, then Φ maps the point $\langle \bar{a} + \delta \bar{x} \rangle$ of K_1 to the point $\langle \bar{a} + \delta \bar{x} + \lambda_1 \bar{u}_1 + \lambda_2 \bar{u}_2 + \lambda_3 \bar{u}_3 \rangle$ of K_1 . Hence there exists a $\mu \in GF(q)$ such that $\lambda_1 \bar{u}_1 + \lambda_2 \bar{u}_2 + \lambda_3 \bar{u}_3 = \mu \bar{x}$, and $\Phi(\langle \bar{a} + \delta \bar{x} \rangle) = \langle \bar{a} + (\delta + \mu) \bar{x} \rangle$ for all $\delta \in GF(q)$. As a consequence $\Pi_{S_{\langle \bar{x} \rangle}}(K_1)$ is a subgroup of the additive group of GF(q). If $\Pi_{S_{\langle \bar{x} \rangle}}(K_1)$ is not the trivial group, then, by (b) of Theorem 9, $\Pi_{S_{\langle \bar{x} \rangle}}(K_1)$ is isomorphic to the additive group of the finite field GF(q).
- (b) Suppose that $\Pi_{S_{\langle \bar{x} \rangle}}(K_1)$ is trivial. Let L_1 , L_2 and L_3 be three different coplanar lines of Π_{∞} through $\langle \bar{x} \rangle$. Let $\langle \bar{u}_i \rangle$, $i \in \{1, 2, 3\}$, be the unique point of $L_i \setminus \{\langle \bar{x} \rangle\}$ with smallest index. Choose now $\lambda_1, \lambda_2, \lambda_3, \mu \in \operatorname{GF}(q)$ such that $\lambda_1 \bar{u}_1 + \lambda_2 \bar{u}_2 + \lambda_3 \bar{u}_3 = \mu \bar{x}$. Put $K_2 = \langle \bar{x}, \bar{a} + \lambda_1 \bar{u}_1 \rangle$ and $K_3 = \langle \bar{x}, \bar{a} + \lambda_1 \bar{u}_1 + \lambda_2 \bar{u}_2 \rangle$, then $\Phi := p_{K_1}^{K_3} \circ p_{K_2}^{K_2}$ maps $\langle \bar{a} + \delta \bar{x} \rangle$ to $\langle \bar{a} + (\delta + \mu) \bar{x} \rangle$ for all $\delta \in \operatorname{GF}(q)$. Since $\Pi_S(K_1)$ is trivial, $\mu = 0$ and $\langle \bar{u}_1 \rangle$, $\langle \bar{u}_2 \rangle$ and $\langle \bar{u}_3 \rangle$ are collinear. Hence the set of all points $\langle \bar{r} \rangle \neq \langle \bar{x} \rangle$ of Π_{∞} with the property that $\langle \bar{r} \rangle$ is the unique point of $\langle \bar{r}, \bar{x} \rangle \setminus \{\langle \bar{x} \rangle\}$ with smallest index, is a hyperplane Δ of Π_{∞} . Clearly $\mathcal{K} \setminus \{\langle \bar{x} \rangle\} \subseteq \Delta$ and hence $\langle \mathcal{K} \setminus \{\langle \bar{x} \rangle\} \subseteq \Delta$. Since $T_n^*(\mathcal{K})$ is connected, it follows by Theorem 1 that $\langle \mathcal{K} \rangle = \Pi_{\infty}$. This implies that $\langle \mathcal{K} \setminus \{\langle \bar{x} \rangle\} = \Delta$.

5 Glued near polygons

5.1 Construction

Let X denote a set with order $|X| \ge 2$. For every $i \in \{1, 2\}$, consider the following objects:

- (a) a near polygon \mathcal{A}_i ,
- (b) an admissible spread $S_i = \{L_1^{(i)}, \ldots, L_{\alpha_i}^{(i)}\}$ of \mathcal{A}_i ,
- (c) a bijection $\theta_i : X \to L_1^{(i)}$.

The line $L_1^{(i)}$, $i \in \{1, 2\}$, is called the *base line* of S_i . For all $i \in \{1, 2\}$ and all $j, k \in \{1, \ldots, \alpha_i\}$, let $p_{j,k}^{(i)}$ denote the projection from the line $L_j^{(i)}$ to the line $L_k^{(i)}$. We put $\Phi_{j,k}^{(i)} := p_{k,1}^{(i)} \circ p_{j,k}^{(i)} \circ p_{1,j}^{(i)}$. Consider the following graph Γ with vertex set $X \times S_1 \times S_2$. Two vertices $(x, L_{i_1}^{(1)}, L_{j_1}^{(2)})$ and $(y, L_{i_2}^{(1)}, L_{j_2}^{(2)})$ are adjacent if and only if exactly one of the following three conditions is satisfied:

- (a) $L_{i_1}^{(1)} = L_{i_2}^{(1)}, L_{j_1}^{(2)} = L_{j_2}^{(2)}$ and $x \neq y$,
- (b) $L_{j_1}^{(2)} = L_{j_2}^{(2)}$, $d(L_{i_1}^{(1)}, L_{i_2}^{(1)}) = 1$ and $\Phi_{i_1, i_2}^{(1)} \circ \theta_1(x) = \theta_1(y)$,

(c)
$$L_{i_1}^{(1)} = L_{i_2}^{(1)}, d(L_{j_1}^{(2)}, L_{j_2}^{(2)}) = 1 \text{ and } \Phi_{j_1, j_2}^{(2)} \circ \theta_2(x) = \theta_2(y).$$

The diameter of Γ equals $d_1 + d_2 - 1$ if \mathcal{A}_i is a near $2d_i$ -gon, $i \in \{1, 2\}$. Similarly as in Lemma 1 of [7], one can prove that every two adjacent vertices of Γ are contained in a unique maximal clique. Considering these maximal cliques as lines, we obtain a partial linear space \mathcal{A} . If \mathcal{A} is a near polygon, then it is called a *glued near polygon*. This precisely happens when the condition in the following theorem is satisfied. The proof is similar as the one of Theorem 1 in [7].

Theorem 14. The partial linear space \mathcal{A} is a glued near hexagon if and only if $[\theta_1^{-1}\Pi_{S_1}(L_1^{(1)})\theta_1, \theta_2^{-1}\Pi_{S_2}(L_1^{(2)})\theta_2]$ is the trivial group.

This condition is always satisfied if S_1 or S_2 is trivial. If S_1 is trivial, then $\mathcal{A}_1 \simeq L \times \mathcal{B}$ with L a line and \mathcal{B} a near $2(d_1 - 1)$ -gon. In that case $\mathcal{A} \simeq \mathcal{B} \times \mathcal{A}_2$.

Suppose now that S_1 and S_2 are not trivial and that the condition in the previous theorem is satisfied. By Theorem 10 every element of $\theta_2 \theta_1^{-1} \prod_{S_1} (L_1^{(1)}) \theta_1 \theta_2^{-1}$ extends to an automorphism of \mathcal{A}_2 fixing each line of S_2 . By Theorem 9, S_2 is a spread of symmetry of \mathcal{A}_2 . Similarly, S_1 is a spread of symmetry of \mathcal{A}_1 . Summarizing we have the following result.

Theorem 15. If \mathcal{A} is a near polygon and if S_1 and S_2 are not trivial, then S_1 and S_2 are spreads of symmetry in the respective near polygons.

In the construction of \mathcal{A} the lines $L_1^{(1)}$ and $L_1^{(2)}$ of the spreads S_1 and S_2 seem to play a special role. If \mathcal{A} is a near polygon, then \mathcal{A} can be obtained starting with two arbitrary base lines (one in each spread). The maps θ_i , $i \in \{1, 2\}$, needed to obtain \mathcal{A} will then depend on the chosen base lines.

5.2 Spreads of symmetry in glued near polygons

We use the same notations as in Section 5.1. Suppose that \mathcal{A} is a glued near polygon. For every $(i, j) \in \{1, \ldots, \alpha_1\} \times \{1, \ldots, \alpha_2\}, L_{i,j} := \{(x, L_i^{(1)}, L_j^{(2)}) | x \in X\}$ is a line of \mathcal{A} . Clearly $T = \{L_{i,j} | 1 \le i \le \alpha_1, 1 \le j \le \alpha_2\}$ is a spread of \mathcal{A} .

Theorem 16. The spread T is a spread of symmetry if and only if the following two conditions are satisfied:

- (a) S_1 and S_2 are spreads of symmetry,
- (b) if S_1 and S_2 are not trivial, then $\theta_1^{-1}\Pi_{S_1}(L_1^{(1)})\theta_1$ and $\theta_2^{-1}\Pi_{S_2}(L_1^{(2)})\theta_2$ are equal. Hence, by Theorem 14, both groups are commutative.

Proof. Consider the line $L_{1,1}$ of T. One calculates that $\Pi_T(L_{1,1})$ is generated by $\theta_1^{-1}\Pi_{S_1}(L_1^{(1)})\theta_1$ and $\theta_2^{-1}\Pi_{S_2}(L_1^{(2)})\theta_2$. The theorem follows then from Theorem 11.

5.3 Glued near polygons with a linear representation

Part (B) of Theorem 2 can be improved as follows.

Theorem 17. Let Π_{∞} be a PG(n,q) which is embedded as a hyperplane in $\Pi = PG(n+1,q)$. Consider in Π_{∞} two subspaces π_1 and π_2 of dimensions $n_1 \ge 0$ and $n_2 \ge 0$ respectively, such that $\pi_1 \cap \pi_2 = \{p\}$ and $\Pi_{\infty} = \langle \pi_1, \pi_2 \rangle$. If \mathcal{K}_i , $i \in \{1, 2\}$, is a set of points of π_i containing p such that $T^*_{n_i}(\mathcal{K}_i)$ is a near polygon, then $T^*_n(\mathcal{K}_1 \cup \mathcal{K}_2)$ is a glued near polygon.

Proof.

- (a) Let *a* be a fixed point of $\Pi \setminus \Pi_{\infty}$. For each $i \in \{1, 2\}$, let \mathcal{A}_i be the near polygon $T_{n_i}^*(\mathcal{K}_i)$ determined by the embedding $\pi_i \subseteq \langle a, \pi_i \rangle$, let S_i be the spread of \mathcal{A}_i determined by the point *p* at infinity, let $L_1^{(i)}$ be the line X := pa, and let θ_i be the identical permutation of *X*. By Theorems 13 and 14, the associated incidence structure \mathcal{A} is a glued near polygon.
- (b) We prove that for every $\alpha \in \Pi \setminus \Pi_{\infty}$, there exists a unique $\tilde{\alpha} \in \langle a, \pi_1 \rangle$ such that $d(\alpha, \gamma) = d(\alpha, \tilde{\alpha}) + d(\tilde{\alpha}, \gamma)$ for every $\gamma \in \langle a, \pi_1 \rangle$. We may suppose that $\alpha \notin \langle a, \pi_1 \rangle$. The unique point $\bar{\alpha}$ of $(\langle a, \alpha, \pi_1 \rangle \cap \pi_2) \setminus \{p\}$ with smallest $(\mathcal{K}_1 \cup \mathcal{K}_2)$ index is also the unique point of $(\langle a, \alpha, \pi_1 \rangle \cap \Pi_{\infty}) \setminus \pi_1$ with smallest $(\mathcal{K}_1 \cup \mathcal{K}_2)$ index, proving that $\{\tilde{\alpha}\} := \alpha \bar{\alpha} \cap \langle a, \pi_1 \rangle$ is the unique point of $\langle a, \pi_1 \rangle$ nearest to α . For every other point $\gamma \neq \tilde{\alpha}$ of $\langle a, \pi_1 \rangle$, the points $\tilde{\alpha}\gamma \cap \Pi_{\infty}, \alpha\gamma \cap \Pi_{\infty}$ and $\bar{\alpha}$ are on the same line, implying that $i_{\mathcal{K}_1 \cup \mathcal{K}_2}(\alpha\gamma \cap \Pi_{\infty}) = i_{\mathcal{K}_1 \cup \mathcal{K}_2}(\bar{\alpha}) + i_{\mathcal{K}_1 \cup \mathcal{K}_2}(\tilde{\alpha}\gamma \cap \Pi_{\infty})$ or $d(\alpha, \gamma) = d(\alpha, \tilde{\alpha}) + d(\tilde{\alpha}, \gamma)$.
- (c) For every point x of $T_n^*(\mathcal{K}_1 \cup \mathcal{K}_2)$, let $\phi_0(x)$ denote the unique point of pa nearest to x, and let $\phi_i(x) = \langle x, \pi_{3-i} \rangle \cap \langle a, \pi_i \rangle$, $i \in \{1, 2\}$. We now prove that the bijection $\theta : x \mapsto (\phi_0(x), \phi_1(x), \phi_2(x))$ is actually an isomorphism between $T_n^*(\mathcal{K}_1 \cup \mathcal{K}_2)$ and \mathcal{A} . Since both geometries have order $(q-1, |\mathcal{K}_1 \cup \mathcal{K}_2| - 1)$, it suffices to prove that θ preserves adjacency. So, let x_1 and x_2 be two different

adjacent points in $T_n^*(\mathcal{K}_1 \cup \mathcal{K}_2)$. If p is on the line x_1x_2 , then $\phi_1(x_1) = \phi_1(x_2)$ and $\phi_2(x_1) = \phi_2(x_2)$, proving that $\theta(x_1)$ and $\theta(x_2)$ are collinear. Suppose therefore that the line x_1x_2 meets Π_∞ in a point $u \in \mathcal{K}_1 \setminus \mathcal{K}_2$. We have $\phi_2(x_1) = \phi_2(x_2)$ and $d(\phi_1(x_1), \phi_1(x_2)) = 1$ since the plane $\langle \phi_1(x_1), \phi_1(x_2) \rangle$ meets π_1 in the line pu. From $1 + d(x_2, \tilde{x}_2) \ge d(x_1, \tilde{x}_2) = d(x_1, \tilde{x}_1) + d(\tilde{x}_1, \tilde{x}_2)$ and $1 + d(x_1, \tilde{x}_1) \ge d(x_2, \tilde{x}_2) + d(\tilde{x}_1, \tilde{x}_2)$, it follows $d(\tilde{x}_1, \tilde{x}_2) \le 1$. Since $\tilde{x}_1 \in$ $\phi_1(x_1)$ and $\tilde{x}_2 \in \phi_1(x_2)$, $d(\tilde{x}_1, \tilde{x}_2) = 1$, or equivalently " $\Phi_{i_1, i_2}^{(1)} \circ \theta_1(x) = \theta_1(y)$ " with the notations of Section 5.1.

Theorem 18. Every glued near polygon with a linear representation is obtained as described in Theorem 17.

Proof. Let \mathcal{A} be a glued near polygon arising in the way as described in Section 5.1 from near polygons \mathcal{A}_i , spreads S_i and bijections θ_i , i = 1, 2. Suppose also that $\mathcal{A} \simeq T_n^*(\mathcal{K})$ where \mathcal{K} is a set of points in $\Pi_{\infty} = \operatorname{PG}(n, q)$. Let K_i , $i \in \{1, 2\}$, denote a fixed line of S_i . All the points of \mathcal{A} with K_i , $i \in \{1, 2\}$, as (i + 1)-th coordinate determines a geodetically closed sub near polygon $\mathcal{B}_{3-i} \simeq \mathcal{A}_{3-i}$. By Theorem 4, there exists a subspace π_i of Π_{∞} such that $\mathcal{K}_i = \pi_i \cap \mathcal{K}$ and $\mathcal{B}_i \simeq T_{n_i}(\mathcal{K}_i)$ with $n_i = \dim(\pi_i)$. Since \mathcal{B}_1 and \mathcal{B}_2 intersect in a line L, $\pi_1 \cap \pi_2$ is a point of \mathcal{K} . Every line through a point $x \in L$ is contained in either \mathcal{B}_1 or \mathcal{B}_2 , proving that $\mathcal{K} = \mathcal{K}_1 \cup \mathcal{K}_2$. By Theorem 1, $\langle \mathcal{K} \rangle = \Pi_{\infty}$ and hence also $\langle \pi_1, \pi_2 \rangle = \Pi_{\infty}$.

References

- A. E. Brouwer and H. A. Wilbrink. The structure of near polygons with quads. Geom. Dedicata, 14:145–176, 1983.
- [2] H. S. M. Coxeter. Twelve points in PG(5,3) with 95040 self-transformations. Proc. Roy. Soc. London Ser. A, 247:279–293, 1958.
- [3] B. De Bruyn. Generalized quadrangles with a spread of symmetry. *European J. Combin.*, 20:759–771, 1999.
- [4] B. De Bruyn. On near hexagons and spreads of generalized quadrangles. J. Alg. Combin., 11:211–226, 2000.
- [5] B. De Bruyn. On near polygons and the Coxeter-cap in PG(5,3). J. Geom., 68:23-33, 2000.
- [6] B. De Bruyn. On the number of nonisomorphic glued near hexagons. Bull. Belg. Math. Soc. Simon Stevin, 7:493–510, 2000.
- [7] B. De Bruyn. Glued near polygons. European. J. Combin., 22: 973–981, 2001.
- [8] B. De Bruyn and F. De Clerck. On linear representations of near hexagons. European J. Combin., 20:45–60, 1999.
- [9] S. E. Payne and J. A. Thas. *Finite Generalized Quadrangles*, volume 110 of *Research Notes in Mathematics*. Pitman, Boston, 1984.

- [10] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata, 9:1–72, 1980.
- [11] J. Tits. Sur la trialité et certains groupes qui s'en déduisent. Inst. Hautes Etudes Sci. Publ. Math., 2:14–60, 1959.

Department of Pure Mathematics and Computer Algebra University of Ghent Galglaan 2 B-9000 Gent e-mail: bdb@cage.rug.ac.be