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Abstract

We explicitly determine the self-dual centroaffine surfaces of codimension

two with constant affine mean curvature and indefinite affine fundamental

form by giving representation formulas.

1 Introduction

An immersion f of an n-dimensional manifold M into Rn+2 \ {0} is called a cen-
troaffine immersion of codimension two if the position vector f(x) is transversal to
f∗TxM at each point x of M . Properties of such immersions invariant under special
linear transformations were first studied by Walter [5], and later by Nomizu and
Sasaki [3] in a more general and systematic way, particularly from the viewpoint of
its closed connection with projective hypersurface theory.

For a given centroaffine immersions f of codimension two, one of the most fun-
damental results established by them is: if f is non-degenerate, then f uniquely
determines a pseudo-Riemannian metric on M , called the affine fundamental form
of f ; moreover, the affine fundamental form is invariant under the change f 7→ Af
of centroaffine immersions by an element A of SL(n + 2; R).

In [2], the first author considered a certain area-variational problem with respect
to the affine fundamental form and studied its extremals, which he called minimal
centroaffine immersions. Furthermore, he showed that the space of the SL(4; R)-
congruence classes of minimal ISDC immersions R2 → R4 \ {0} is in one-to-one
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correspondence with the space of solutions for a wave equation on R
2. Here, we

refer to ‘self-dual centroaffine immersions with indefinite affine fundamental form’
as ‘ISDC immersions’.

In this paper, our main goal is to give a representation formula for the minimal
ISDC surfaces (Theorem 3.2), which shows that any minimal ISDC surface is locally
represented as the tensor product of two centroaffine curves in R

2\{0}. The Clifford
torus is a typical example of such surfaces. In Section 4, we give a representation
formula for ISDC surfaces with non-zero constant affine mean curvature (Theorem
4.4), which shows that such a surface is also constructed by two centroaffine curves.
We remark that an ISDC surface with non-zero constant affine mean curvature
corresponds to a solution of Liouville’s equation (4.11).

As an appendix, we give the affine mean curvature formula for a non-parametric
centroaffine immersion in Section 5. Section 2 is devoted to basic definitions and
facts on centroaffine immersions.

The authors would like to express their gratitude to the referee for his useful
comments.

2 Preliminaries

In this section, we briefly review geometry of centroaffine immersions of a simply-
connected, oriented, n-dimensional manifold M into Rn+2 \ {0}. For further detail,
we refer the reader to [3].

Let f : M → Rn+2 \ {0} be a centroaffine immersion. We denote by D the
standard flat affine connection of Rn+2, and by Det the standard parallel volume
form on Rn+2. A vector field ξ along f is called a normal vector field if it satisfies
at each point x of M the tangent space Tf(x)R

n+2 is decomposed as

Tf(x)R
n+2 = f∗TxM ⊕ Rξx ⊕ Rf(x), (2.1)

and that the volume form θ defined by

θ(X1, . . . , Xn) := Det(f∗X1, . . . , f∗Xn, ξ, f) (2.2)

for X1, . . . , Xn ∈ Γ(TM) is compatible with the orientation of M .
When we choose a normal vector field ξ, we determine a torsion-free affine con-

nection ∇, two symmetric (0, 2)-tensor fields h and T , a (1, 1)-tensor field S, and
two 1-forms τ and P by

DXf∗Y = f∗∇XY + h(X, Y )ξ + T (X, Y )f,

DXξ = −f∗SX + τ(X)ξ + P (X)f,
(2.3)

according to the decomposition (2.1).
It is easily shown that the conformal class of h does not depend on the choice of ξ.

When h is non-degenerate (resp. definite, indefinite), f is said to be non-degenerate
(resp. definite, indefinite). If f is non-degenerate, there is a normal vector field ξ
satisfying that

τ = 0,

θ = Volh, where Volh is the volume form with respect to h,

trh{(X, Y ) 7→ T (X, Y ) + h(SX, Y )} = 0.

(2.4)
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Moreover, such a ξ is uniquely determined. We call ξ the Blaschke normal vector
field of f . From now on, we always choose the Blaschke normal vector field as a
normal vector field of f . In this case, we call the non-degenerate tensor h the affine
fundamental form of f .

For an element A of SL(n+2; R), both D and Det are invariant under a transfor-
mation v 7→ Av of Rn+2. Hence, Af is also a non-degenerate centroaffine immersion
and its Blaschke normal vector field is Aξ; moreover, f and Af induce the same set
of the geometric quantities ∇, h, T , S and P . Conversely, if two non-degenerate
centroaffine immersions f1, f2 induce completely the same quantities, f1 and f2 are
congruent, that is, there exists an element A of SL(n+ 2; R) such that f2 = Af1.

For later use, we recall the equations of Gauss, of Codazzi, and of Ricci for a
centroaffine immersion f : M → R

n+2 \ {0}: let ∇, h, T , S and P be the objects
determined by (2.3). Then they satisfy

R(X, Y )Z = h(Y, Z)SX − h(X,Z)SY − T (Y, Z)X + T (X,Z)Y, (2.5)

(∇Xh)(Y, Z) = (∇Y h)(X,Z), (2.6)

(∇XT )(Y, Z) + h(Y, Z)P (X) = (∇Y T )(X,Z) + h(X,Z)P (Y ), (2.7)

(∇XS)Y + P (X)Y = (∇Y S)X + P (Y )X, (2.8)

h(X,SY ) = h(Y, SX), (2.9)

T (X,SY )− T (Y, SX) = dP (X, Y ), (2.10)

trh{(Y, Z) 7→ (∇Xh)(Y, Z)} = 0, (2.11)

trh{(X, Y ) 7→ T (X, Y ) + h(SX, Y )} = 0, (2.12)

where R denotes the curvature tensor field of the induced connection ∇.
Conversely, if a torsion-free affine connection ∇ and tensor fields h, T , S, P are

given on M , and if they satisfy the relations (2.5)–(2.12), then we can construct a
non-degenerate centroaffine immersion f of M into R

n+2 \{0} with Blaschke normal
vector field ξ such that decomposition (2.3) of DXf∗Y and DXξ holds.

Let Rn+2 denote the dual space of Rn+2 endowed with the volume form induced
by Det. For a given centroaffine immersion f : M → R

n+2 \ {0}, we define the dual
map f ∗ : M → Rn+2 \ {0} by

f ∗(x)(f∗X) = 0, f ∗(x)(ξ(x)) = 1, and f ∗(x)(f(x)) = 0, (2.13)

for each x ∈ M and X ∈ TxM .

Definition 2.1. A centroaffine immersion f : M → Rn+2\{0} is said to be self-dual
if there exists a volume-preserving linear map L : Rn+2 → Rn+2 such that f ∗ = Lf .

Fact 2.2 ([3]). For a centroaffine immersion f : M → Rn+2 \ {0}, the following
three conditions are mutually equivalent:

(1) f is self-dual;

(2) the image of f is contained in a non-degenerate quadratic cone;

(3) ∇h = 0.
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Definition 2.3. For a non-degenerate centroaffine immersion f : M → R
n+2 \ {0},

the affine mean curvature H is defined to be (1/n) trS. A non-degenerate cen-
troaffine immersion f is said to be minimal if the affine mean curvature H vanishes
everywhere.

We abbreviate the phrase ‘self-dual centroaffine immersion with indefinite affine
fundamental form’ to ‘ISDC immersion’.

Example 2.4 ([2]). The Clifford torus fC : R2 → R4 \ {0} and a quadric fQ1
:

R2 → R4 \ {0} defined below are minimal ISDC immersions.

fC(u1, u2) =











cos u1 cos u2

cos u1 sin u2

sin u1 cos u2

sin u1 sin u2











, fQ1
(u1, u2) =











1
u2

u1

u1u2











, (u1, u2) ∈ R
2.

They have the same induced connection and affine fundamental form

∇∂i = 0 and h = 2du1du2. (2.14)

Example 2.5. The immersion fQ2
: R2 → R4 \ {0} defined by

fQ2
(u1, u2) =

1√
2











1 + (u1)2 + (u2)2

1− (u1)2 − (u2)2

2u1

2u2











, (u1, u2) ∈ R
2,

is a minimal self-dual centroaffine surface with flat induced affine connection and
definite affine fundamental form h = 2(du1du1 + du2du2).

Remark 2.6. Nomizu and Sasaki [3] proved that the image of a centroaffine immer-
sion lies in an affine hyperplane which does not contain the origin if T determined
by (2.3) vanishes identically. In this case, a minimal centroaffine surface is reduced
to a minimal affine surface (or, one may say, an affine maximal surface) in R3.

3 Representation Formula

for Minimal Self-Dual Centroaffine Surfaces

Throughout Sections 3 and 4, we discuss problems locally and always identify two
centroaffine immersions M → R4 \ {0} if they are congruent.

Lemma 3.1. For an indefinite centroaffine surface f : M → R4 \ {0}, we choose
local asymptotic coordinates u1, u2 on M such that h = 2ρdu1du2. Then we have

∇∂1
∂2 = ∇∂2

∂1 = 0, (3.1)

h(∇∂1
∂1, ∂2) = ∂1ρ, h(∂1,∇∂2

∂2) = ∂2ρ, (3.2)

T (∂1, ∂2) + ρH = 0, (3.3)

h(∂1, S∂2) = h(∂2, S∂1) = ρH. (3.4)



Self-dual Centroaffine Surfaces of Codimension Two 577

Moreover, if f is minimal and self-dual, then we can choose local asymptotic
coordinates such that ρ = 1, and in these coordinates we have

∇∂1 = ∇∂2 = 0, (3.5)

T = τ1(u
1)du1du1 + τ2(u

2)du2du2, (3.6)

S = −τ1(u1)du1 ⊗ ∂2 − τ2(u
2)du2 ⊗ ∂1, (3.7)

P = 0, (3.8)

where τi, i = 1, 2, are functions in one variable.

Proof . By equation (2.11), we obtain

(∇∂i
h)(∂1, ∂2) =

ρ

2
trh{(Y, Z) 7→ (∇∂i

h)(Y, Z)} = 0, i = 1, 2. (3.9)

Using (2.6), we have

h(∇∂1
∂2, ∂1) = h(∇∂2

∂1, ∂1)

= −1

2
(∇∂2

h)(∂1, ∂1) = −1

2
(∇∂1

h)(∂1, ∂2) = 0,

h(∇∂1
∂2, ∂2) = −1

2
(∇∂1

h)(∂2, ∂2) = −1

2
(∇∂2

h)(∂1, ∂2) = 0.

Then we have (3.1). Moreover, we have (3.2) because

∂1ρ = ∂1h(∂1, ∂2) = h(∇∂1
∂1, ∂2),

∂2ρ = ∂2h(∂1, ∂2) = h(∂1,∇∂2
∂2).

Since

H =
1

2
trS =

1

2ρ
{h(∂1, S∂2) + h(∂2, S∂1)},

we obtain Equation (3.4) by virtue of (2.9). Equation (3.3) follows from (3.4) and
(2.9).

Now we assume that f is minimal and self-dual. By the self-duality, we have

h(∇∂i
∂i, ∂i) = −1

2
(∇∂i

h)(∂i, ∂i) = 0, i = 1, 2. (3.10)

Hence ∇∂2
∂2 = ρ−1∂2ρ · ∂2 = ∂2 log |ρ| · ∂2 and

R(∂1, ∂2)∂2 = ∇∂1
∇∂2

∂2 = ∂1∂2 log |ρ| · ∂2.

Using (2.5), (3.3) and (3.4) with H = 0, we obtain

∂1∂2 log |ρ| = 1

ρ
h(∂1, R(∂1, ∂2)∂2) = −h(∂1, S∂2) + T (∂1, ∂2) = 0.

Hence there exist two functions φ(t) and ψ(t) in one variable such that ρ(u1, u2) =

φ(u1)ψ(u2). Setting ũ1 =
∫ u1

φ(t)dt and ũ2 =
∫ u2

ψ(t)dt, we have h = 2dũ1dũ2. Thus
we may assume ρ = 1. Equations (3.1), (3.2) and (3.10) imply ∇∂1 = ∇∂2 = 0, that
is, ∇ is a flat affine connection with affine coordinates u1, u2.
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From (2.5), we see that

0 = h(∂1, R(∂1, ∂2)∂1) = h(∂1, S∂1) + T (∂1, ∂1).

On the other hand, by (3.3) and (2.7) we have

∂2T (∂1, ∂1) = (∇∂2
T )(∂1, ∂1) = P (∂1),

and by (3.4) and (2.8) we have

∂2h(∂1, S∂1) = h(∂1, (∇∂2
S)∂1) = P (∂1).

Therefore, P (∂1) = 0 and τ1 = T (∂1, ∂1) = −h(∂1, S∂1) is independent of u2. In the
same way, we can prove P (∂2) = 0 and τ2 = T (∂2, ∂2) = −h(∂2, S∂2) is independent
of u1, thereby completing the proof. �

A curve γ : I → R2 \ {0} is called a centroaffine curve if γ, γ ′ are linearly inde-
pendent, and a centroaffine curve is said to be centroaffine arclength parametrized
if the areal velocity (1/2) Det(γ, γ ′) is constant. In this case, γ ′′ is proportional to γ
because

0 = (Det(γ, γ′))
′
= Det(γ, γ′′).

In the remainder, we will always assume that on a centroaffine curve a centroaffine
arclength parameter is chosen.

For two centroaffine curves γi : Ii → R2, i = 1, 2, we define their tensor product
γ1 ⊗ γ2 : I1 × I2 → R2 ⊗R R2 by

(γ1 ⊗ γ2) (u1, u2) = γ1(u
1)⊗ γ2(u

2), (u1, u2) ∈ I1 × I2.

By identifying (x1, x2)⊗ (y1, y2) ∈ R2 ⊗R R2 with (x1y1, x1y2, x2y1, x2y2) ∈ R4, the
map γ1 ⊗ γ2 is regarded as a centroaffine surface in R4 \ {0}. Now we prove the
following:

Theorem 3.2. For two centroaffine curves γi : Ii → R2 \ {0}, i = 1, 2, the cen-
troaffine surface f = γ1 ⊗ γ2 : I1 × I2 → R4 \ {0} is a minimal ISDC surface.
Conversely, any minimal ISDC surface is locally represented in this form.

Proof . Setting γ′′i = κiγ, i = 1, 2, we have

∂1∂1f(u1, u2) = κ1(u
1)f(u1, u2),

∂2∂2f(u1, u2) = κ2(u
2)f(u1, u2).

Hence we have

∇∂1
∂1 = ∇∂2

∂2 = 0, (3.11)

h(∂1, ∂1) = h(∂2, ∂2) = 0. (3.12)

Thus u1, u2 are asymptotic coordinates. By (3.1) in Lemma 3.1 and (3.11), we see
that ∇ is a flat affine connection with affine coordinates u1, u2. Moreover, from (3.9)
we have ρ = h(∂1, ∂2) is a non-zero constant. Hence ∇h = 0 and the surface f is
self-dual.



Self-dual Centroaffine Surfaces of Codimension Two 579

Since ∇ is flat, equation (2.5) with (3.3) and (3.4) implies that

0 = h(∂1, R(∂1, ∂2)∂2) = −ρ2H + T (∂1, ∂2)ρ = −2ρ2H.

Therefore f is a minimal ISDC surface.
We shall prove the converse. Let f be a minimal ISDC surface. By Lemma 3.1,

we may choose local coordinates u1, u2 satisfying h = 2du1du2 and equations (3.5)–
(3.8). Let u0 = (u1

0, u
2
0) be a point of M . Changing f by an element of SL(4; R) if

necessary, we may assume that

x(u0) = (0, 0, 0, 1), ∂1x(u0) = (1, 0, 0, 0), ∂2x(u0) = (0, 1, 0, 0).

Since ∂1∂1f = τ1(u
1)f , the curve t 7→ x(t, u2

0) lies in a plane spanned by x(u0) and
∂1x(u0). Hence there exists a curve γ1 = (γ1

1 , γ
2
1) of R

2 such that

x(t, u2
0) = (γ1

1(t), 0, 0, γ
2
1(t)).

In the same way, we have another plane curve γ2 = (γ1
2 , γ

2
2) such that

x(u1
0, t) = (0, γ1

2(t), 0, γ
2
2(t)).

Since γ′′i = τiγi, we have (Det(γi, γ
′

i))
′ = 0. Then γi, i = 1, 2 are centroaffine curves.

It is easily verified that the centroaffine surfaces f and γ1⊗γ2 have same centroaffine
invariants ∇, h, T , S and P . Therefore f is congruent to γ1 ⊗ γ2. �

Example 3.3. The Clifford torus fC and the quadric fQ1
in Example 2.4 are given

by tensor products of two centroaffine curves as follows:

fC(u1, u2) = (cos u1, sin u1)⊗ (cos u2, sin u2),

fQ1
(u1, u2) = (1, u1)⊗ (1, u2).

Next, we shall consider definite centroaffine surfaces. The following lemma can
be obtained in a similar way to Lemma 3.1.

Lemma 3.4. For a definite centroaffine surface f : M → R
4 \ {0}, we choose local

conformal coordinates u1, u2 for h such that h = 2ρdzdz̄, where z = u1 +
√
−1u2.

Then we have

∇∂z
∂z̄ = ∇∂z̄

∂z = 0, (3.13)

h(∇∂z
∂z, ∂z̄) = ∂zρ, h(∂z,∇∂z̄

∂z̄) = ∂z̄ρ, (3.14)

T (∂z, ∂z̄) + ρH = 0, (3.15)

h(∂z, S∂z̄) = h(∂z̄ , S∂z) = ρH. (3.16)

Moreover, if f is minimal and self-dual, then we can choose local conformal
coordinates such that ρ = 1, and in these coordinates we have

∇∂z = ∇∂z̄ = 0, (3.17)

T = τ(z)dzdz + τ(z)dz̄dz̄, (3.18)

S = −τ(z)dz ⊗ ∂z̄ − τ(z)dz̄ ⊗ ∂z, (3.19)

P = 0, (3.20)

where τ is a holomorphic function.



580 H. Furuhata – T. Kurose

A holomorphic map Λ from a domain U ⊂ C to C
2 \ {0} is called a holomorphic

centroaffine curve if det(Λ,Λ′) is constant. In this case, there exists a holomorphic
function κ such that Λ′′ = κΛ.

For a given holomorphic centroaffine curve Λ : U → C2 \ {0}, we consider a map
U 3 z 7→ Λ(z)⊗Λ(z) ∈ C2⊗C C2. By identifying (x1, x2)⊗ (y1, y2) ∈ C2⊗C C2 with
the element

1

2

(

x1y1 + x2y2, x1y1 − x2y2, x1y2 + x2y1,
√
−1(x1y2 − x2y1)

)

of C4, the image of the map above lies in R4 ⊂ C4. Thus we regard the map Λ⊗ Λ
as a surface of R4 \ {0}.
Theorem 3.5. For a holomorphic centroaffine curve Λ : M → C2 \ {0}, the cen-
troaffine surface f = Λ ⊗ Λ : M → R4 \ {0} is a definite minimal self-dual cen-
troaffine surface. Conversely, any definite minimal self-dual centroaffine surface is
locally represented in this form.

Proof . By virtue of Lemma 3.4, we can verify that Λ⊗ Λ is minimal and self-dual
in a similar way to the proof of Theorem 3.2.

To prove the converse, let f : M → R4 be an arbitrary definite minimal self-dual
centroaffine surface. As in Lemma 3.4, we choose local coordinates u1, u2 on M
satisfying h = 2dzdz̄ and (3.17)–(3.20). Then the structure equation of the surface
f is given by

∂z∂zf = τf, ∂z∂z̄f = ξ, ∂z̄∂z̄f = τ̄ f,

∂zξ = −τ∂z̄f, ∂z̄ξ = −τ̄ ∂zf.
(3.21)

Let z0 be a point of M . Changing f by a suitable element of SL(4; R), we may
assume that

f(z0) =
1√
2
(1, 1, 0, 0), ∂zf(z0) =

1√
2

(

0, 0, 1,−
√
−1

)

,

ξ(z0) =
1√
2
(1,−1, 0, 0).

(3.22)

Let λ = f 1 + f 2 and µ = ξ1 + ξ2. We shall prove that the complex function ∂zλ/λ
is holomorphic. Using (3.21), we have

∂z̄

(

∂zλ

λ

)

=
µ

λ
− ∂z̄λ∂zλ

λ2

= 0 at z0 by (3.22),

and

∂z

{

λ2∂z̄

(

∂zλ

λ

)}

= 0.

Hence ∂z̄(∂zλ/λ) is identically zero. Now we define holomorphic functions Λi, i =
1, 2, around z0 by

Λ1(z) = 21/4 exp
∫ z

z0

∂zλ(w)

λ(w)
dw,

Λ2(z) =
√

2Λ1(z)
∫ z

z0

1

(Λ1(w))2
dw.
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Then Λ = (Λ1,Λ2) is a holomorphic curve in C
2\{0} satisfying Λ′′ = τΛ. Hence Λ is

a holomorphic centroaffine curve. It is easily verified that f and Λ⊗Λ is congruent
around z0. �

Example 3.6. We define a holomorphic centroaffine curve Λ by Λ(z) = 21/4(1, z), z ∈
C. Then the minimal self-dual centroaffine surface given by Λ ⊗ Λ is the quadric
fQ2

in Example 2.5.

4 Self-Dual Centroaffine Surfaces

with Non-Zero Constant Affine Mean Curvature

In this section, we consider self-dual centroaffine surfaces with constant affine mean
curvature H 6= 0. Since such a surface lies in a quadratic cone, it can be locally
written as a graph on a quadric fQ1

or fQ2
(see Examples 2.4 and 2.5). For this

reason we first study graphs on a given centroaffine immersion generally.

Lemma 4.1. Let f : M → Rn+2 \ {0} be a centroaffine immersion of an n-
dimensional manifold M . Suppose that we change f to f̃ = eωf , where ω is a
function on M . Then the affine fundamental form h and the affine mean curvature
H change as follows:

h̃(X, Y ) = e2ωh(X, Y ), (4.1)

H̃ = e−2ω
{

H − n− 2

2n
h(dω, dω)− 1

n
trh∇dω

}

. (4.2)

Proof . Let ξ and ξ̃ be the Blaschke normal vector fields of f and f̃ , respectively.
We choose a positive function ρ, a function a and a vector field U on M so that

ξ̃ = ρ−1(ξ + af + f∗U). (4.3)

By the definition of f̃ , we have

f̃∗X = eω
(

dω(X)f + f∗X
)

and

DX f̃∗Y = f∗
{

eω(∇XY + dω(X)Y + dω(Y )X)
}

+ eωh(X, Y )ξ (4.4)

+ eω(T (X, Y ) + dω(X)dω(Y ) +XY ω)f.

On the other hand, from (4.3) we have

DX f̃∗Y = f̃∗∇̃XY + h̃(X, Y )ξ̃ + T̃ (X, Y )f̃ (4.5)

= f∗(e
ω∇̃XY + ρ−1h̃(X, Y )U) + ρ−1h̃(X, Y )ξ

+
{

eω
(

T̃ (X, Y ) + dω(∇̃XY )
)

+ aρ−1h̃(X, Y )
}

f.
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Comparing (4.4) and (4.5), we get

∇̃XY + (ρeω)−1h̃(X, Y )U = ∇XY + dω(X)Y + dω(Y )X, (4.6)

h̃(X, Y ) = ρeωh(X, Y ), (4.7)

T̃ (X, Y ) + dω(∇̃XY ) + a(ρeω)−1h̃(X, Y )

= T (X, Y ) + dω(X)dω(Y ) +XY ω.
(4.8)

A similar calculation on DX ξ̃ shows that

ρeωS̃X = SX − aX −∇XU + d log ρ(X)U, (4.9)

0 = −d log ρ(X) + h(X,U). (4.10)

By the equation (4.7) and the second condition of (2.4), we have
√

∣

∣

∣det
(

h(ei, ej)
)∣

∣

∣ = (ρeω)−n/2
√

∣

∣

∣det
(

h̃(ei, ej)
)∣

∣

∣

= (ρeω)−n/2 Det(f̃∗e1, . . . , f̃∗en, ξ̃, f̃)

=
(

ρ−1eω
)(n+2)/2

Det(f∗e1, . . . , f∗en, ξ, f).

This implies that ρ = eω. Hence we obtain (4.1) from (4.7) and U = gradh ω from
(4.10). Moreover, we have

h̃(S̃X, Y ) = h(e2ωS̃X, Y )

= dω(X)dω(Y ) + h(SX, Y )− ah(X, Y )− h(∇XU, Y )

= dω(X)dω(Y ) + h(SX, Y )− ah(X, Y ) + (∇Xh)(U, Y )

−XY ω + dω(∇XY ),

and

T̃ (X, Y ) + h̃(S̃X, Y ) = T (X, Y ) + h(SX, Y )

+ h(X, Y )h(dω, dω)− 2ah(X, Y ) + (∇Xh)(Y, U).

By (2.6) and (2.11), we have

trh{(X, Y ) 7→ (∇Xh)(U, Y )} = trh{(X, Y ) 7→ (∇Uh)(X, Y )} = 0.

Hence, from (2.12) we obtain

0 = trh̃{(X, Y ) 7→ T̃ (X, Y ) + h̃(S̃X, Y )}
= n

(

h(dω, dω)− 2a
)

.

Consequently, we have

H̃ =
1

n
trh̃{(X, Y ) 7→ h̃(S̃X, Y )}

=
1

n
e−2ω trh̃{(X, Y ) 7→ h̃(S̃X, Y )}

= e−2ω
{

H − n− 2

2n
h(dω, dω)− 1

n
trh∇dω

}

,

thereby completing the proof. �
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Remark 4.2. When M is a compact 2-dimensional manifold, Lemma 4.1 implies
that I =

∫

M H Volh is invariant by the change f 7→ eωf . Then I is a projective
invariant of the immersion π ◦ f : M → RP 3, where π : R4 \ {0} → RP 3 is the
natural projection. It can be easily checked that I = (1/2)

∫

M K Volh−(1/16)A,
where K is the Gaussian curvature of h, and A is the area of M measured by the
projective volume element (cf. [1, p. 174]). Hence, when h is positive definite,
I ≤ 2π and the equality holds if and only if f is self-dual.

Let f : M → R4 \ {0} be a self-dual centroaffine surface with affine mean
curvature H. From Lemma 4.1, we see that if f = eωfQ1

, then

H = −e−2ω∂1∂2ω; (4.11)

and that if f = eωfQ2
, then

H = −e−2ω∂z∂z̄ω. (4.12)

Hence, H is non-zero constant if and only if ω is a solution of Liouville’s equation.
For details on Liouville’s equation we refer the reader to [4], and we note only the
following fact:

Fact 4.3. Assume that H is a non-zero constant. Then,

(1) a function ω satisfies (4.11) if and only if there exist two functions µ and ν in
one variable such that

ω(u1, u2) = −µ(u1)− ν(u2)

− log

{

α
∫ u1

e−2µ(t)dt+ β
∫ u2

e−2ν(t)dt+ A

}

, (4.13)

where α, β, A ∈ R, αβ = −H;

(2) a (complex) function ω satisfies (4.12) if and only if there exits two holomor-
phic functions h and k in z = u1 +

√
−1u2 such that

ω(u1, u2) = −h(z)− k(z)

− log

{

α
∫ z

e−2h(w)dw + β

(

∫ z

e−2k(w)dw

)

+ A

}

, (4.14)

where α, β, A ∈ C, αβ = −H.

As an application of this fact, we shall show that any ISDC surface can be
constructed by two centroaffine curves:

Theorem 4.4. For given two non-zero constants α, β and two centroaffine curves
γ1, γ2 with Det(γ1, γ

′

1) = Det(γ2, γ
′

2) = 1, the surface

f(u1, u2) =
1

αγ2
1(u

1)γ1
2(u

2) + βγ1
1(u

1)γ2
2(u

2)
fQ1

(u1, u2)

is an ISDC surface with affine mean curvature H = −αβ. Conversely, any ISDC
surface with non-zero constant affine mean curvature is locally represented in this
form.
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Proof . By a direct calculation we can verify that

ω(u1, u2) = − log
{

αγ2
1(u

1)γ1
2(u

2) + βγ1
1(u

1)γ2
2(u

2)
}

(4.15)

satisfies Liouville’s equation (4.11) with H = −αβ. Conversely, we suppose that ω
is a solution of (4.11) given by (4.13). Then, setting

γ1
1(t) = eµ(t), γ2

1(t) = eµ(t)
(
∫ t

e−2µ(t) + A1

)

,

γ1
2(t) = eν(t), γ2

2(t) = eν(t)
(
∫ t

e−2ν(t) + A2

)

,

where A1, A2 are arbitrary constants satisfying A1+A2 = A, we have two centroaffine
curve γi = (γ1

i , γ
2
i ), i = 1, 2, with Det(γi, γ

′

i) = 1. It is easily checked that (4.15)
holds. �

In a similar fashion, any (complex) solution for Liouville’s equation of elliptic
type (4.12) can be obtained by two holomorphic centroaffine curves:

Proposition 4.5. For given two non-zero constants α, β and two holomorphic cen-
troaffine curves Λ1,Λ2 with det(Λ1,Λ

′

1) = det(Λ2,Λ
′

2) = 1, the function

ω(z) = − log
{

αΛ2
1(z)Λ

1
2(z) + βΛ1

1(z)Λ
2
2(z)

}

satisfies Liouville’s equation (4.12) with H = −αβ. Conversely, any solution of
(4.12) with non-zero constant H is given in this way.

However, in order to construct definite self-dual centroaffine surfaces, we need
to find real solutions of (4.12), and hence our result is still partial.

Theorem 4.6. For given two non-zero constants α, β and a holomorphic cen-
troaffine curve Λ = (Λ1,Λ2) with det(Λ,Λ′) = 1, the surface

f(u1, u2) =
1

α
∣

∣

∣Λ1(z)
∣

∣

∣

2
+ β

∣

∣

∣Λ2(z)
∣

∣

∣

2fQ2
(u1, u2), z = u1 +

√
−1u2

is a definite self-dual centroaffine surface with affine mean curvature H = αβ.

5 Affine Mean Curvature of Centroaffine Surfaces

of Non-parametric Type

In this section, we describe the affine mean curvature of a centroaffine surface of
non-parametric type.

Theorem 5.1. Let f : M → R4 \ {0} be a centroaffine immersion given as f(u) :=
t(u1, u2, ϕ(u), ψ(u)). The affine mean curvature of f is given by

H = −1

4
| detθ0 h0|1/4

{

| detθ0 h0|1/44h0| detθ0 h0|−1/4 + trh0 T 0 − trS0
}

(5.1)
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with

θ0 := (ψ −
2
∑

l=1

ul∂lψ)du1 ∧ du2,

h0
ij :=

(ψ −
2
∑

l=1

ul∂lψ)∂i∂jϕ− (ϕ−
2
∑

l=1

ul∂lϕ)∂i∂jψ

ψ −
2
∑

l=1

ul∂lψ

,

T 0
ij := (ψ −

2
∑

l=1

ul∂lψ)−1∂i∂jψ,

S0 := 0,

(5.2)

where 4h0 denotes the Laplacian for h0, and detθ0 h0 = det
(

h0(ei, ej)
)

for a basis

(e1, e2) of TuM with θ0(e1, e2) = 1.

Proof . Step 1. We put ξ0 = t(0, 0, 1, 0) and may assume thatM ⊂ {u ∈ R
2| det Ω(u) >

0} where

Ω(u) := [f∗∂1, f∗∂2, ξ0, f ] (u)

=











1 0 0 u1

0 1 0 u2

∂1ϕ ∂2ϕ 1 ϕ
∂1ψ ∂2ψ 0 ψ











(u) ∈ GL(4; R).

Let ∇0, h0, T 0, S0, τ 0, P 0 and θ0 be the geometric quantities defined as in (2.3) and
(2.2) with respect to ξ0. Because ξ0 is constant, S0, τ 0 and P 0 vanish identically.
We calculate (5.2) as

θ0 (∂1, ∂2) = det Ω,












Γ01
ij

Γ02
ij

h0
ij

T 0
ij













= Ω−1











0
0

∂i∂jϕ
∂i∂jψ











,

where ∇0
∂i
∂j =

2
∑

k=1

Γ0k
ij∂k.

Step 2. We choose a positive function ρ, a function a and a vector field U on M
so that

ξ = ρ−1(ξ0 + af + f∗U)

is the Blaschke normal vector field of f . Then we have

ρ = | detθ0 h0|−1/4,

U = gradh0 log ρ,

a =
1

4
(trh0 T 0 + trS0 − ρ−14h0ρ).

(5.3)
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To prove it, we remark that (4.6) and (4.9) hold in this case with ω = 1 (see also
[3]). We get the first equation of (5.3) from θ = ρ−1θ0, the second equation of (4.6)
and the third condition of (2.4), and the second equation of (5.3) from the second
equation of (4.9). The third equation of (5.3) is obtained as follows. From (4.6) and
(4.9), we have

T (X, Y ) + h(SX, Y )

= T 0(X, Y ) + h0(S0X, Y )− 2ah0(X, Y )− h0(∇XU, Y ),

which implies

0 = trh{(X, Y ) 7→ T (X, Y ) + h(SX, Y )}
= ρ−1

(

trh0 T 0 + trS0 − 4a− div∇ U
)

.

Noting ∇Volh = 0, we calculate

a =
1

4

(

trh0 T 0 + trS0 − div∇ gradh0 log ρ
)

=
1

4

(

trh0 T 0 + trS0 − div∇ gradh ρ
)

=
1

4

(

trh0 T 0 + trS0 −4hρ
)

.

Since dimM = 2, we obtain the third equation of (5.3).
By (5.3), we obtain that

trS = − trh T

= −1

ρ

(

trh0 T 0 − 2a
)

= − 1

2ρ

(

trh0 T 0 − trS0 + ρ−14h0ρ
)

,

which implies (5.1). �
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