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Abstract

The author proves, by giving explicit examples, that the Singer invariant of

a locally homogeneous Riemannian manifold can become arbitrarily high. In

a second step it is shown that for each k ∈ N there exist pairs of nonisometric

homogeneous Riemannian manifolds of Singer invariant k which have the same

curvature up to order k.

1 Introduction

Let (M, g) be a locally homogeneous Riemannian manifold and let V = TpM be the
tangent space at a point p which, by local homogeneity, can be chosen arbitrarily.
Furthermore, let so(V ) be the Lie algebra of skew-symmetric endomorphisms of
(V, gp). For k ∈ N0 we define Lie subalgebras g(k) of so(V ) by

g(k) := {P ∈ so(V ) | P ·Rp = P · (∇R)p = . . . = P · (∇kR)p = 0}, k ≥ 0.

Here (∇kR)p is the value at p of the k-th covariant derivative of the curvature tensor
R, and the endomorphism P acts on the tensor algebra of V as a derivation ( see
[1], p.25). By definition, ∇0R = R. We speak of g(k) as the stabiliser of the k-th
covariant derivative of the Riemannian curvature tensor.

Definition 1.1. The Singer invariant kg of a locally homogeneous Riemannian
manifold (M, g) is defined by

kg := min{k ∈ N | g(k) = g(k + 1)}.
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Only for a few examples the Singer invariant has been calculated and it has
been an open question whether the Singer invariant can be higher than 1 ( see [4]).
Presenting a class of Lie groups with left invariant metric with arbitrarily high Singer
invariant will be the first result in our paper.

The second question concerns the equality of curvature, that is, whether there
exist two nonisometric homogeneous manifolds (M, g), (M̃, g̃) and a linear isometry
F : (TpM, gp) −→ (Tp̃M̃, g̃p̃) which preserves the curvature tensor up to a certain
order k. The two problems are related by the following theorem of L. Nicolodi and
F. Tricerri ( see [3]):

Theorem 1.2. Let (M, g) and (M̃, g̃) be two Riemannian manifolds. Suppose that
(M̃, g̃) is locally homogeneous. If for each point p of M there exists an isometry
F : TpM −→ ToM̃ (o ∈ M̃ is supposed fixed) such that

F ∗∇sR̃|o = ∇sR|p

for 0 ≤ s ≤ kg̃ + 1, then (M, g) is locally homogeneous and locally isometric to

(M̃, g̃).

In [2] F. Lastaria discussed families of nonisometric homogeneous manifolds with
Singer invariant 1 which have the same curvature. The author improves the result
by constructing pairs of nonisometric homogeneous manifolds which have the same
curvature up to their ( arbitrarily high) Singer invariant.

In section 2, a class of two-step solvable Lie algebras is introduced and basic
formulas are deduced. For a certain subclass the Singer invariant will be calculated
in section 3. Section 4 discusses the question of curvature equality. Finally, in
section 5, the isometry classes are determined.

Acknowledgements. This article is an abridged version of the author’s Diplo-
marbeit, written under the guidance of Prof W. Ballmann. I would like to thank
Dr D. Schüth and Dr G. Weingart for their encouragements and extremely helpful
discussions.

2 A class of two-step solvable Lie algebras

Let n be the dimension of the real Lie algebra V , {a, X2, . . . , Xn} an orthonormal
basis of left invariant vector fields and V ′ := span{X2, . . . , Xn}. We define the Lie
bracket by

[Xi, Xj] = 0 [a, Xi] = A(Xi) i, j = 2, . . . n,

with A being a linear endomorphism of V ′. Without changing the notation, we
will sometimes consider A as an endomorphism of V by setting A(a) = 0. For the
following discussion, it is helpful to set A = D +S with D being the symmetric and
S the skew-symmetric part of A. In the following, X, Y will always denote elements
of V ′.

A straightforward calculation gives the Levi-Civita connection

∇a = S, (2.1)

∇X = DX ∧ a, (2.2)
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the Riemannian curvature tensor

Ra,X = a ∧ (D2 + [D, S])X, (2.3)

RX,Y = DX ∧DY (2.4)

and the Ricci tensor

Ric(a, a) = −tr(D2), (2.5)

Ric(a, X) = 0, (2.6)

Ric(X, Y ) = −〈[D, S]X, Y 〉 − tr(D)〈DX, Y 〉 (2.7)

and hence, in particular:

Ric(X, X) = −2〈SX, DX〉 − tr(D)〈DX, X〉. (2.8)

For the covariant derivative of the curvature we introduce the following notation:
for ` ∈ N0, let

N` := [S, [. . . , [S︸ ︷︷ ︸
` times

, D] . . .]],

and let M be the set of finite sums of finite products of the form N`1 · . . . ·N`m
. We

define the weight of M = N`1 · . . . ·N`m
as the greatest `i and the weight of the sum

of such terms as the greatest weight of the factors.

Proposition 2.1. (i) Let Y1, . . . , Yr ∈ V ′, r ∈ N0, k ∈ N0, c0, . . ., cr ∈ N0

with
∑r

i=0 ci + r = k + 2. The k-th covariant derivative of the curvature
(∇kR)(a, . . . , a︸ ︷︷ ︸

c0

, Y1, a, . . . , a︸ ︷︷ ︸
c1

, Y2, . . . , Yr, a, . . . , a︸ ︷︷ ︸
cr

) is a finite sum of terms of

the form:

±〈M1Yσ(1), Yσ(2)〉 · . . . · 〈M r−1

2

Yσ(r−2), Yσ(r−1)〉a ∧M r+1

2

Yσ(r)

if r is odd and

±〈M1Yσ(1), Yσ(2)〉 · . . . · 〈M r−2

2

Yσ(r−3), Yσ(r−2)〉M r

2
Yσ(r−1) ∧M r+2

2

Yσ(r)

if r is even,

with Mi ∈ M, σ ∈ Σr.
The greatest weight of the Mi is less than or equal to k + 1.

(ii) For each k ≥ 0 and each X ∈ V ′ we get:

(∇k
aR)a,X = a ∧ [S, [. . . , [S,︸ ︷︷ ︸

k times

D2 − [S, D]] . . .]]X

= a ∧ (−Nk+1 + M)X,

with M ∈ M of weight k.

Proof. Induction over k yields the first statement and also the first part of the
second statement. The last part is immediate from the definition of Nk+1 and M.

�
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3 Manifolds with high Singer invariant

We now specialize for the rest of the article on a particular subclass of the Lie
algebras from the previous section. We discuss Lie algebras where the symmetric
part D on V ′ has two different eigenvalues a1 and a2, the first with multiplicity (n−2)
and the other with simple multiplicity. Furthermore, let a1 6= a2, a1 6= 0 6= a2 and
a1 · a2 > 0. Let the dimension n of the Lie algebra be at least 4.

We will assume now, that there exists an orthonormal basis {a, X2, . . . , Xn} as
above so that on V ′ the symmetric part D and the skew-symmetric part S of the
linear map A on the basis {X2, . . . , Xn} of V ′ are of the form

D =




a1

a1 0
. . .

0 a1

a2




, S =




0 b1

−b1 0 b2

−b2 0
. . .

. . .
. . . bn−2

−bn−2 0




.

Lie algebras of this type will be written as (V, D, S).

Theorem 3.1. Let G be the simply connected Lie group with left invariant metric
associated to (V, D, S). The Singer invariant kg of G is as follows:

kg = n− 4 if b1, . . . , bn−2 6= 0,

kg = k if bn−k−3 = 0 and bn−k−2, . . . , bn−2 6= 0, 0 ≤ k ≤ n− 4,

kg = 0 if bn−2 = 0.

Corollary 3.2. The Singer invariant is unbounded.

For the proof, we will first consider the stabilizer of the Ricci tensor. Afterwards,
we will show that - apart from a special case - the stabilizer of the Ricci tensor is
the same as the stabilizer of the Riemannian curvature tensor. In the following we
will calculate the stabilizers of the covariant derivatives of the curvature tensor.

Lemma 3.3. The stabilizer of the Ricci tensor stabRicci ⊂ so(V ) is:
if bn−2 = 0 and (n−2)a2

1 = (n−3)a1a2+a2
2, then stabRicci =so({a}⊥); otherwise

stabRicci =so({a, SXn, Xn}
⊥).

Proof. Since

Ric(X, Y ) = −〈[D, S]X, Y 〉 − tr(D)〈DX, Y 〉

= −((n− 2)a1 + a2)a1〈X, Y 〉 X, Y ∈ {X2, . . . , Xn−2},

Ric(a, X) = 0 X ∈ {X2, . . . , Xn}

and Ric(Xi, Xn) = Ric(Xi, Xn−1) = 0, i ≤ n− 2,

the Ricci eigenvalues are easily calculated. Using the assumptions on a1 and a2, we
get:

Case 1: If bn−2 = 0 and (n− 2)a2
1 6= (n− 3)a1a2 + a2

2, then the Ricci tensor has
three different eigenvalues and one easily attains stabRicci = so({a, Xn}

⊥).
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Case 2: If bn−2 = 0 and (n − 2)a2
1 = (n − 3)a1a2 + a2

2, then only the eigenvalue
of a is different from the others and we have stabRicci = so({a}⊥).

Case 3: If bn−2 6= 0, then the Ricci tensor has four different eigenvalues and
simple calculations give stabRicci = so({a, Xn−1, Xn}

⊥). The condition a1 · a2 > 0
is used to prove, that −(n− 2)a2

1 − a2
2 is a simple eigenvalue.

Finally, SXn = bn−2Xn−1 yields the lemma. �

Proposition 3.4. The stabilizer of the Riemannian curvature is

g(0) = so({a, SXn, Xn}
⊥).

Proof. Obviously we have: g(0) ⊂ stabRicci. So we only have to show:
(i) if P ∈ so ({a, SXn, Xn}

⊥), then P ∈ g(0), and
(ii) if stabRicci = so({a}⊥) and P ∈ so({a}⊥)\ so({a, Xn}

⊥), then
P /∈ g(0).

For P ∈ so({a, SXn, Xn}
⊥) we calculate [P, D] = 0, [P, D2] = 0 and [P, [D, S]] = 0.

For the first claim we compute:

(PR)(a, X) = [P, Ra,X ]−RPa,X − Ra,PX

= a ∧ P[D2 + [D, S]](X)− a ∧ [D2, [D, S]]P(X)

= a ∧ [P, D2 + [D, S]](X)

= 0;

(PR)(X, Y ) = [P, RX,Y ]− RPX,Y −RX,PY

= PDX ∧DY + DX ∧ PDY

−DPX ∧DY −DX ∧DPY

= [P, D]X ∧DY + DX ∧ [P, D]Y

= 0.

For the second claim, let P ∈ so({a}⊥)\ so({a, Xn}
⊥). Then there exists a Y ∈ V ′

with Y⊥Xn and Y⊥PXn (recall that n ≥ 4, so dim V ′ ≥ 3). We have PY⊥Xn,
thus PDY = a1PY = DPY and also [P, D]Y = 0. Finally, 0 6= PXn ∈ V ′ and

(PR)(Xn, Y ) = [P, D]Xn ∧DY + DXn ∧ [P, D]Y

= (a2PXn −DPXn) ∧DY

= (a2 − a1)PXn ∧ a1Y 6= 0.

This is exactly what we wanted to show. �

The following proposition simplifies the calculation of the stabilizers of the k-th
covariant derivatives of the curvature tensor.

Proposition 3.5. Let P ∈ so(V ). Then P ∈ g(k + 1) if and only if P ∈ g(k) and
[P,∇X ]−∇PX ∈ g(k) for all X ∈ V .

Proof. Let P ∈ g(k) and X ∈ V . Then we have:

(P(∇k+1R))(X, . ) = P((∇k+1R)(X, . ))− (∇k+1R)(PX, . )− (∇k+1R)(X,P(. ))

= P ◦ (∇X(∇kR))− (∇X(∇kR)) ◦ P −∇PX(∇kR)

= P(∇X(∇kR))−∇PX(∇kR)

= ([P,∇X ]−∇PX)(∇kR),
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where in the last equation we use P ∈ g(k). �

Lemma 3.6. Let P ∈ g(0). Then

[P,∇X ]−∇PX = 0 for all X ∈ V ′,

[P,∇a]−∇Pa = [P, S].

In particular, we have for P ∈ g(k) with proposition 3.5:

P ∈ g(k + 1) ⇐⇒ [P, S] ∈ g(k).

Proof. Let P ∈ g(0). Then:

[P,∇X ]−∇PX = [P, DX ∧ a]−DPX ∧ a

= [P, D]X ∧ a

= 0,

[P,∇a]−∇Pa = [P, S].

�

Straightforward inductions yield the following two lemmas.

Lemma 3.7. For each k ∈ {1, 2, . . . , n− 2} we have:

SkXn = bn−k−1 . . . bn−2Xn−k + terms in Xn−k+1, . . . , Xn.

Lemma 3.8. If bn−k−1, . . . bn−2 6= 0, then we have for k ∈ {1, 2, . . . , n− 2}:

span{SkXn, . . . , SXn, Xn} = span{Xn−k, . . . , Xn−1, Xn}.

Proposition 3.9. The stabilizer of the k-th covariant derivative of the curvature
tensor is

g(k) = so({a, Sk+1Xn, . . . , SXn, Xn}
⊥).

Proof. By induction.

For k = 0 the claim is proved by proposition 3.4.

Step of induction k −→ k + 1: Using lemma 3.6, we have to show that the
following statements for P ∈ so({Sk+1Xn, . . . , Xn}

⊥) are equivalent:

(i) PSk+2Xn = 0,
(ii) [P, S] ∈ so({Sk+1Xn, . . . , Xn}

⊥).

But this is an immediate consequence of

[P, S]SiXn = PSi+1Xn − SPSiXn for each i ∈ {0, 1, . . . , k + 1}.

�
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If we have PSk+2Xn = 0 for all P ∈ g(k), proposition 3.9 gives g(k) = g(k +1).

Proof of theorem 3.1. Proposition 3.9 gives:

g(0) = so({a, SXn, Xn}
⊥),

g(1) = so({a, S2Xn, SXn, Xn}
⊥),

...

g(n− 4) = so({a, Sn−3Xn, . . . , Xn}
⊥).

Case (1): There exists a k, with bn−k−2, . . . , bn−2 6= 0, bn−k−3 = 0 and 0 ≤ k ≤ n−4.
Lemma 3.7 gives for P ∈ g(k):

PSk+2Xn = bn−k−3 . . . bn−2PXn−k−2 + P(terms inXn−k−1, . . . , Xn−2).

By lemma 3.8 and the assumption P ∈ g(k) the last term vanishes and the first also,
since bn−k−3 = 0. This yields g(k) = g(k + 1). Since bn−k−2 6= 0, we get with the
same argument g(k − 1) 6= g(k), which shows that the Singer invariant is kg = k.

Case (2): Let b1, . . . , bn−2 6= 0. Then lemma 3.8 shows:

g(n− 4) = so({a, Sn−3(Xn), . . . , Xn}
⊥)

= so({a, X3, . . . , Xn}
⊥)

= so(span{X2}) = 0.

As above, one shows g(n− 5) 6= g(n− 4), so the Singer invariant is kg = n− 4.
Case (3): Let bn−2 = 0. We have SkXn = 0 for all k ≥ 0, so g(0) = g(1). Hence,

the Singer invariant is kg = 0. �

4 Equality of curvature

Let (V, D, S) and (V, D̃, S̃) be metric Lie algebras of our special class with coefficients
a1, a2, b1, . . . , bn−2 and ã1, ã2, b̃1, . . . , b̃n−2.

Theorem 4.1. If a1 = ã1, a2 = ã2 and |bn−k−2| = |b̃n−k−2|, . . ., |bn−2| = |b̃n−2|, then
we have ∇sR = ∇̃sR̃ for all 0 ≤ s ≤ k. In particular, (V, D, S) and (V, D̃, S̃) have
the same curvature up to order k.

Proposition 2.1 shows that the k-th covariant derivative of the curvature tensor
depends only on some Mi ∈ M with weight at most k + 1, i.e., some iterative
commutators of S with [S, D].

Let Sym(V ′) be the space of symmetric endomorphisms of V ′. We define for
r ∈ {3, . . . , n}:

Ur := {Q ∈ Sym(V ′) | Q(X2) = . . . = Q(Xr−1) = 0}.
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Lemma 4.2. Let Q ∈ Ur.
(i) We have [S, Q] ∈ Ur−1.
(ii) If the entries of the matrix representation of Q depend only on a1, a2,

br−1, . . . , bn−2, then those of [S, Q] depend at most on a1, a2, br−2, . . . , bn−2.

Proof. The first claim follows from direct computation. For the second assertion,
let i ∈ {r − 1, . . . , n}. Then

[S, Q](Xi) = SQ(Xi)−QS(Xi)

= S(terms in a1, a2, br−1, . . . , bn−2, Xr, . . . , Xn)

−bi−2Q(Xi−1) + bi−1Q(Xi+1).

In all terms the smallest index i of the bi is r − 2, which gives the claim. �

Lemma 4.3. (i) The entries of the matrix representation of N0 = D depend
only on a1 and a2.

(ii) Let k ∈ {1, . . . , n − 2}. Then Nk ∈ Un−k, and the entries of the matrix
representation depend at most on a1, a2, bn−k−1, . . . , bn−2.

Proof. The first claim is trivial and the second follows by induction using lemma
4.2. �

Lemma 4.4. Let (V, D, S) and (V, D̃, S̃) be two metric Lie algebras of our special
class. If a1 = ã1, a2 = ã2 and |bi| = |b̃i| for i = 1, . . . , n − 2, then (V, D, S) and
(V, D̃, S̃) are isomorphic as metric Lie algebras.

Proof. We construct an orthogonal transformation ϕ of V with ϕ−1Dϕ = D̃
and ϕ−1Sϕ = S̃. Let σ̄i be given by σ̄ibi = b̃i, for i = 1, . . . , n − 2. We now define
recursively:

σn = 1 and

σi−1 = σiσ̄i−2, i = n, . . . , 3.

Let ϕ ∈ O(V ) be given by ϕ(a) = a and ϕ(Xi) = σiXi for i = 2, . . . , n. It is now a
straightforward computation to show the claim. �

Proof of theorem 4.1. Using lemma 4.4, we can assume that we have for the
coefficients bn−k−2 = b̃n−k−2, . . . , bn−2 = b̃n−2. Further, by lemma 4.3, the entries
of Nr depend only on a1, a2, bn−r−1, . . . bn−2. The assumptions of the theorem yield
therefore Nr = Ñr, 0 ≤ r ≤ k + 1. Finally, the k-th covariant derivative of the
curvature tensor is, by proposition, 2.1 completely determined by some Mi ∈ M
with weight at most k + 1, i.e., by N0, . . . , Nk+1. Hence, the covariant derivatives of
the curvature are the same up to order k. �
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5 Isometry classes

As above, let (V, D, S) and (V, D̃, S̃) be metric Lie algebras of our special class with
coefficients a1, a2, b1, . . . , bn−2 and ã1, ã2, b̃1, . . . , b̃n−2.

Theorem 5.1. Let k be the Singer invariant of (V, D, S) and furthermore, let
a1 = ã1, a2 = ã2 and bn−2 6= 0. The simply connected Lie groups G, G̃ associated to
(V, D, S) and (V, D̃, S̃) are isometric if and only if

|bn−k−3| = |b̃n−k−3|, . . . , |bn−2| = |b̃n−2|.

We will prove this theorem below.

Lemma 5.2. Let k be the Singer invariant of (V, D, S) and furthermore, let a1 = ã1,
a2 = ã2, |bn−k−3| = |b̃n−k−3|, . . . , |bn−2| = |b̃n−2|. Then the simply connected Lie
groups associated to the Lie algebras are isometric.

Proof. By theorem 4.1, the Lie algebras have the same curvature up to order
k + 1 and hence, by theorem 1.2, they are locally isometric. Finally, they are both
simply connected, thus isometric. �

Lemma 5.3. Let (V, D, S) as above. Then:

(i) 〈(∇r
aR)a,Xn−r−1

a, Xn〉 = −〈Nr+1Xn−r−1, Xn〉

= bn−r−2 · . . . · bn−2(a1 − a2), for all r ∈ {0, . . . , n− 3};

(ii) 〈(∇r
aR)a,Xn−r−1

a, Xn−1〉 = −〈Nr+1Xn−r−1, Xn−1〉 = 0,

for all r ∈ {1, . . . , n− 3};

(iii) (∇r
aR)a,Xi

a = 0 for all r ≥ 1, i ≤ n− r − 2.

Proof.
(i) Using proposition 2.1 (ii) we have only to show that 〈MXn−r−1, Xn〉 = 0

for each M ∈ M with weight at most r. For r = 0 this is immediate and
for r ≥ 1 it can be concluded by using lemma 4.3 (ii). Considering the same
lemma, the second equation is proved by induction on r.

(ii) and (iii) are proved with similar arguments.
�

Let r ∈ N0 and define F r := span{a, Sr+1Xn, . . . , SXn, Xn} ⊂ V .

Lemma 5.4. Let a1 = ã1 and a2 = ã2, r ∈ N0, and let further ϕ : V −→ V be an
orthogonal map with ϕ∗∇̃sR̃ = ∇sR for all s ∈ {0, . . . , r}. Then we have:

(i) ϕ(a) = ±a, ϕ(V ′) = V ′;
(ii) ϕ(F s) = F̃ s for all s ∈ {0, . . . , r} with s ≤ n− 4.

Proof.
(i) The map ϕ preserves curvature, hence the Ricci tensor and also its eigenspa-

ces. Since a is an eigenvector for a simple eigenvalue, this together with ϕ
being a linear isometry gives the claim.
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(ii) Let s ∈ {0, . . . , r}. The assumption ϕ∗∇̃sR̃ = ∇sR implies that
ϕ−1◦ g̃· (s) ◦ ϕ = g(s). By proposition 3.9 we get for P ∈ so(V ):

P(F̃ s) = 0 ⇐⇒ P(ϕ(F s)) = 0.

Since s ≤ n − 4, we have dimF s, dimF̃ s ≤ s + 3 ≤ n − 1 and hence
dimF s = dimF̃ s. If this dimension is at most n − 2, we immediately get
ϕ(F s) = F̃ s. In the case dimFn−4 = dimF̃n−4 = n− 1 = s + 3, one has to
argue more carefully. Distinguishing the cases n = 4 and n > 4 and using
the Ricci eigenvalues and lemma 5.3 yields the claim.

�

Lemma 5.5. Let a1 = ã1, a2 = ã2, bn−2 6= 0. Furthermore, let ϕ ∈ O(V ) with
ϕ∗R̃ = R. Then we have:

(i) ϕ(span{Xn−1, Xn}) = span{Xn−1, Xn};
(ii) |bn−2| = |b̃n−2|.

Proof. By lemma 5.4 (ii) and bn−2 6= 0 we get F 0 = F̃0 = span{a, Xn−1, Xn}.
Furthermore, by lemma 5.4 (i) we have ϕ(a) = ±a, which yields the claim
ϕ(span{Xn−1, Xn}) = span{Xn−1, Xn}.

The second statement follows by looking at the restriction of the determinant of
Ric to the space End(span{Xn−1, Xn}). �

Lemma 5.6. Let (V, D, S), (V, D̃, S̃) be two metric Lie algebras with the same
Singer invariant k ≥ 1. Let a1 = ã1, a2 = ã2 and bn−2 6= 0. Furthermore, let
r ∈ {1, . . . , k}, and let ϕ : V −→ V be an orthogonal map, which preserves the
curvature up to order r. Then

(i) ϕ(Xn−s−1) = ±Xn−s−1 for all s ∈ {1, . . . , r};
(ii) ϕ(Xn) = ±Xn, ϕ(Xn−1) = ±Xn−1, ϕ(a) = ±a;
(iii) |bn−s−2| = |b̃n−s−2| for all s ∈ {0, . . . , r}.

Proof.
(i) By k ≥ 1 and theorem 3.1, we have bn−k−2, . . . , bn−2 6= 0 and in particu-

lar, since r ≤ k, also bn−r−2, . . . , bn−2 6= 0. Similarly for b̃i. By lemma 3.8
and the definition of F s, F̃ s, we get F s = F̃ s = span{a, Xn−s−1, . . . , Xn} for
each s ∈ {0, . . . , r}. By lemma 5.4, ϕ preserves the subspaces
span{Xn−s−1, . . . , Xn} for each s ∈ {0, . . . , r}. Together with lemma 5.5
this implies ϕ(Xn−s−1) = ±Xn−s−1 for each s ∈ {1, . . . , r}.

(ii) By lemma 5.4 (i) and lemma 5.5 (i), we know that ϕ(a) = ±a and
ϕ(span{Xn−1, Xn}) = span{Xn−1, Xn}. By (i) we know ϕ(Xn−2) = ±Xn−2.
Using lemma 5.3 and comparing the terms of 〈(∇̃aR̃)a,ϕ(Xn−1)a, Xn−2〉 and
〈(∇aR)a,Xn−1

a, Xn−2〉, we finally get ϕ(Xn−1)⊥Xn, which gives the claim.
(iii) Using lemma 5.3 and (i), (ii) above, the statement follows by induction over

s.
�

Corollary 5.7. Let (V, D, S) and (V, D̃, S̃) be two metric Lie algebras with a1 = ã1,
a2 = ã2, bn−2 6= 0 and the same Singer invariant k ∈ {0, . . . , n− 4}. Let further be
r ∈ {0, . . . , k + 1}. If both Lie algebras have the same curvature up to order r, then
|bn−r−2| = |b̃n−r−2|, . . . , |bn−2| = |b̃n−2|.
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Proof. Lemma 5.5 (ii) gives the claim in the case of r = 0 and also for k = 0
and r = 1 ( since b̃n−2 6= 0, theorem 3.1 together with k = 0 gives bn−3 = b̃n−3 = 0).
In the case of k ≥ 1 and r ≤ k, the claim follows from lemma 5.6 (iii). In the case
k ≥ 1 and r = k + 1, it remains to show |bn−k−3| = |b̃n−k−3|. For k < n − 4 we
have by theorem 3.1 that bn−k−3 = b̃n−k−3 = 0. This leaves us with k = n − 4 and
r = n − 3. By lemma 5.6, we have ϕ(Xi) = ±Xi for all i ≤ n − (n − 4) − 1 = 3
and ϕ(a) = ±a, and hence ϕ(X2) = ±X2. The claim |b1| = |b̃1| can be proven by
comparing 〈(∇̃n−3

a R̃)a,Xn
a, X2〉 and 〈(∇n−3

a R)a,Xn
a, X2〉. �

Proof of theorem 5.1.
Lemma 5.2 shows one direction. For the other, observe that the Singer invariant

is obviously invariant under isometries of manifolds, hence the Singer invariant of
(V, D̃, S̃) is also k. Further, an isometry preserves the curvature tensor and all
covariant derivatives of the curvature tensor. So we can apply corollary 5.7 in the
particular case r := k + 1 and this yields the claim. �

It is straightforward to see that the simply connected Lie groups of two Lie
algebras (V, D, S) and (V, D̃, S̃) with a1 = ã1, a2 = ã2 and bn−2 = 0 are isomorphic
if and only if b̃n−2 = 0.

Theorem 5.8. Let k ∈ N0 be arbitrary. There exist pairs of locally non-isometric
homogeneous manifolds with Singer invariant k, which have the same curvature up
to order k.

Proof. Let n := k + 4. Choose a1 = ã1, a2 = ã2 with a1 6= a2, a1a2 > 0 and
b1, . . . , bn−2 6= 0, b̃1, . . . , b̃n−2 6= 0 with |b2| = |b̃2|, . . . , |bn−2| = |b̃n−2|, but |b1| 6= |b̃1|.
This defines Lie algebras (V, D, S) and (V, D̃, S̃). By theorem 3.1, they have Singer
invariant k and the associated simply connected Lie groups are by theorem 5.1 non-
isometric. Since both Lie groups are simply connected, they are also not locally
isometric. Finally, theorem 4.1 shows that they have the same curvature up to
order k = n− 2− 2 = n− 4. �

Remark 5.9. Let (V, D, S), (V, D̃, S̃) be two metric Lie algebras with Singer in-
variant 0 < k < n − 4 and a1 = ã1, a2 = ã2. If the associated simply connected Lie
groups are non-isometric, they have at most the same curvature up to order k − 1.

Proof. Since 0 < k < n− 4, theorem 3.1 implies bn−2, b̃n−2 6= 0 and bn−k−3 = 0,
b̃n−k−3 = 0, that is bn−k−3 = b̃n−k−3. If the two Lie algebras had the same curvature
up to order k, corollary 5.6 would imply |bn−k−2| = |b̃n−k−2|, . . . , |, bn−2| = |bn−2|;
hence by theorem 5.1, the simply connected Lie groups would be isomorphic, con-
tradicting the assumption. �
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