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Abstract

In this note, we introduce and study the notion of normalized epistasis
of a fitness function over not necessary binary alphabets, as an indicator of
its GA-hardness. Fitness functions with minimal and maximal normalized
epistasis are explicitly described.

Introduction

The classical genetic algorithm (GA) starts from a positive real-valued function f
on Ω = {0, 1}` (the set of all length ` strings s = s`−1 . . . s0), whose maximum (or
minimum) we want to find. It has long been understood (in particular through
examples given in [3, et al]) that linkage between bits may make it hard for the
GA to find the maximum of f . In [5] Rawlins compares this phenomenon to the
analogous situation in genetics, where a gene at some locus in the chromosome may
hide the (phenotypical) effect of another gene at a different locus, cf. [6]. When this
phenomenon occurs, one refers to the first gene as being epistatic to the second one.

Adapting this idea to the framework of GAs, Rawlins thus speaks of minimal
(or zero) epistasis, when every bit is independent of any other one, i.e., if the fitness
function f may be given as

f(s`−1 . . . s0) =
`−1∑
i=0

g(i, si).
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At the other extreme, we have maximal epistasis, if no proper subset of genes is
independent of any other gene, and this situation amounts to f essentially being a
random function.

Any reasonable quantification of the previous ideas should associate to every
fitness function f on Ω a positive real number ε(f) in such a way that ε(f) = 0
corresponds to minimal epistasis. Moreover, since for any fitness function f and
any real number r both f and rf share the same “linked” bits, one should have
ε(rf) = ε(f), thus leading to a notion of normalized epistasis. Extending ideas
due to Davidor [1], normalized epistasis was introduced and studied in [7, 8, 9, 10],
and shown to give useful indications concerning the GA-hardness of certain fitness
functions, due to epistatic phenomena.

As its title indicates, in this note, we aim to study epistasis over not necessarily
binary alphabets. We will not go into motivating the use of these, as this falls outside
of the scope of the present text, instead referring to [2] for example (from which we
also borrowed the term “multary” for alphabets which are not necessarily binary).
Let us just mention that, although binaring encodings are “standard” in the GA
context, sometimes it is much more natural to use a different type of encoding, in
particular when characteristics of data are characterized by arbitrary integers, for
example, or when a quick and intuitive interpretation of the chains representing data
is required.

In the first part of this note, we introduce and study the notion of normalized
epistasis ε∗(f) for a fitness function f acting on strings over a multary alphabet and
derive its main properties. In the second part, we consider the extreme values of
ε∗(f) and relate this to minimal and maximal epistasis.

1 Epistasis

1.1. Throughout this text, we will work over a fixed alphabet A of cardinality n,
which we usually identify with the set of integers {0, . . . , n−1}. The set A` of length
` strings s = s`−1 . . . s0 over A will be denoted by Ω. Let R+ be the set of all positive
real numbers. Fitness functions are maps f : Ω→ R+ (which we want to optimize).
Following ideas due to Davidor [1] in the binary case, the epistasis ε(s) of a string
s in a population P ⊆ Ω may be defined as follows.

Denote by

fP =
1

|P |
∑
s∈P

f(s)

the average fitness of f over P and for any 0 ≤ i ≤ `− 1 and a ∈ A by

fP (i,a) =
1

|P (a, i)|
∑

s∈P (a,i)

f(s)

the average fitness over P (a, i), the sub-population consisting of all strings s`−1 . . . s0 ∈
P with si = a. The excess allele value EP (i, a) is defined to be fP (i,a) − fP and the
excess genic value as EP (s) =

∑`−1
i=0 EP (i, si). The genic value of s ∈ P (the “ex-

pected” fitness value) is finally given by f ′P (s) = EP (s) + fP (s), and the epistasis of
s (with respect to P ) by εP (s) = f(s)− f ′P (s).
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A straightforward calculation shows that this definition may be rewritten as

εP (s) = f(s)−
`−1∑
i=0

1

|P (i, si)|
∑

t∈P (i,si)

f(t) +
`− 1

|P |
∑
t∈P

f(t).

In this note, we will only be working with the full search space Ω, so |P | = n` and
the previous formula simplifies to

ε(s) = εΩ = f(s)−
`−1∑
i=0

1

n`−1

∑
t∈Ω(i,si)

f(t) +
`− 1

n`
∑
t∈Ω

f(t).

In this case, the global epistasis of f is defined to be

ε`(f) =
√∑
s∈Ω

ε2(s).

1.2. As in [7, 9, 10], the previous definition may be rewritten in a more elegant
way. Indeed, consider

e =


ε(0 . . . 00)
ε(0 . . . 01)

...
ε((n− 1)(`))

 resp. f =


f(0 . . . 00)
f(0 . . . 01)

...
f((n − 1)(`))

 ,
where (n−1)(`) is the length ` string (n−1) . . . (n−1). We will also use the notation
f0, . . . , fn`−1 for f(0 . . . 00), . . . , f((n − 1)(`−1)), so

f =


f0
...

fn`−1

 .
For any 0 ≤ i, j ≤ n` − 1, let us put

eij =
1

n`
((n− 1)`+ 1− ndij),

where dij is the (n-ary) Hamming distance between i and j, i.e., the number of “bits”
in which the n-ary representations of i and j differ.

Denote by E` the n`-dimensional rational matrix (eij). It is easy to see that we
then have

e = f −E`f .

We thus obtain that the global epistasis of f is given by

ε`(f) = ||e|| = ||f − E`f ||.
1.3. Since for any positive real number r ∈ R and any fitness function f we have

that ε(rf) = rε(f), we obviously cannot use global epistasis directly as a measure
of GA hardness. In order to remedy this, as in [7, 8], we define the normalized
epistasis of the fitness function f as

ε∗`(f) = ε2
`(

f

||f ||) =
ε2
`(f)

||f ||2 =
tf (I` − E`)f

tf f
= cos2(f ,F`f),

where F` = I` − E` is an orthogonal projection (being idempotent and symmetric).
It follows that 0 ≤ ε∗`(f) ≤ 1, for any fitness function f .



654 M. T. Iglesias – C. Vidal – D. Suys – A. Verschoren

1.4. As pointed out in [8, 9, 10], normalized epistasis may be used as an indicator
of GA-hardness. Let us work in the binary case, for a moment and consider the
following generalization of Forrest and Mitchell’s Royal Road functions, cf. [3, 4].
For any positive integers m ≤ n and 0 ≤ i ≤ 2n−m − 1, define length 2n schemata

Hn,m
i = ∗(2mi)1(2m)∗(2n−2m(i+1)),

where for any a ∈ {0, 1, ∗}, we denote by a(p) the length p string a . . . a. Define the
fitness function Rn

m by letting Rn
m(s) = 2mcn,m(s), where for any length 2n string

s, we denote by cn,m(s) the number of schemata Hn,m
i to which s belongs. Clearly,

Rn
0 is linear (it counts the number of 1’s in any length 2n string), whereas for fixed

n, it appears that for increasing m the functions Rn
m have corresponding increasing

normalized epistasis. In particular, Rn
n is the “Dirac function” dn with single peak

2n at 1 . . . 1.
As a typical example, let us work with strings of length 64 (n = 6) and population

size 128. As a measure of GA-hardness, we experimentally calculated the average
number G(f) of generations needed to obtain that :

• at least one member of the population has maximum fitness µ (the string 1(64));

• the average fitness of the population is higher than 0.9× µ;

• standard deviation
average

≤ 0.05.

we then obtained :

f G(f) ε∗`(f)
R6

0 37 0.00
R6

1 61 0.03
R6

2 99 0.35
R6

3 920 0.94
R6

4 > 1500 0.99
R6

5 > 1500 1.00
R6

6 > 1500 1.00

For other values of n and m, the functions Rn
m behave similarly – we refer to [4]

for details, as well as theoretical and experimental results.

2 Eigenvalues and eigenspaces

2.1. Let us fix a positive integer `. With notations as before, consider the integer
matrix G` = n`E`, i.e., G` = (g`ij), with g`ij = (n − 1)` + 1 − ndij for every
0 ≤ i, j ≤ n` − 1. If no ambiguity arises, we just write gij for g`ij .

The following result appears to be very useful :

Lemma. 2.2. For any positive integer `, we have :

G` =


G`−1 + (n− 1)U`−1 G`−1 −U`−1 · · · G`−1 −U`−1

G`−1 −U`−1 G`−1 + (n− 1)U`−1 · · · G`−1 −U`−1
...

...
. . .

...
G`−1 −U`−1 G`−1 −U`−1 · · · G`−1 + (n− 1)U`−1


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where, for any positive integer k, the nk-dimensional matrix Uk is given by

Uk =


1 · · · 1
...

. . .
...

1 · · · 1

 .
Proof. The length ` words over the alphabet A (with |A| = n) may be subdivided
into n subclasses, each of these determined by the “bit” at position `. This subdi-
vision allows us to view the matrix G` as composed of n2 submatrices Gpq, say

G` =


G00 · · · G0,n−1

...
. . .

...
Gn−1,0 · · · Gn−1,n−1

 ,
with Gpq = (g`ij), where i resp. j varies through the elements in A` with p resp. q in
bit-position `.

For any 0 ≤ i, j < n`, denote by d`ij the Hamming distance between the length

` n-ary representations of i and j and by d`−1
ij the Hamming distance between the

length `-1 vectors obtained from the previous ones by eliminating the `-th bit. For
example, since the ternary representation of 23 resp. 19 is 212 resp. 201, we have
d3

23,19 = d2
23,19 = 2. As the ternary representation of 13 is 111, we also have d3

13,19 = 2,
while d2

13,19 = 1.
For every 0 ≤ p ≤ n− 1, we have Gpp = G`−1 + (n− 1)U`−1. Indeed,

Gpp = (g`ij) = ((n− 1)` + 1− nd`ij)
= ((n− 1)(`− 1) + 1− nd`ij + (n− 1))

= ((n− 1)(`− 1) + 1− nd`−1
ij + (n− 1))

= G`−1 + (n− 1)U`−1,

since, in this case, we always have d`ij = d`−1
ij .

Outside of the diagonal, i.e., with 0 ≤ p 6= q ≤ n− 1, we have

Gpq = (g`ij) = ((n− 1)` + 1− nd`ij)
= ((n− 1)(`− 1) + 1− nd`ij + (n− 1))

= ((n− 1)(`− 1) + 1− n(d`−1
ij + 1) + (n − 1))

= G`−1 −U`−1,

since, in this case, we always have d`ij = d`−1
ij + 1. This finishes the proof. �

As a consequence, let us mention :

Corollary. 2.3. For any positive integer `, we have G2
` = n`G`.

Proof. The statement obviously holds true for ` = 0 resp. ` = 1, where G0 = (1)
resp. G1 = nIn (In denoting the n-dimensional identity matrix). The general case
follows from a straightforward induction argument, using the previous result. �
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Note that this result implies that the eigenvalues of G` are 0 and n`. Indeed,
as G` is a symmetric real matrix, its eigenvalues are well known to be real. On the
other hand, if v is an eigenvector of G`, say with eigenvalue λ, i.e., G`v = vλ, then

n`λv = n`G`v = G2
`v = λ2v.

So, λ = 0 or λ = n`, as we claimed.

. From the identity G` = n`G`, it also follows :

Corollary. 2.4. For any positive integer `, the matrix E` is idempotent. In partic-
ular, E` has eigenvalues 0 and 1.

In order to determine the eigenspaces of G` (and E`), let us first calculate its
rank.

Lemma. 2.5. For any positive integer `, we have

rk(G`) = (n− 1)` + 1.

Proof. Let us again argue by induction on `. The assertion holds true for ` = 1. On
the other hand, applying 2.2, elementary row and column operations reduce G` to
the form 

nG`−1 0 · · · 0
0 U`−1 · · · 0
...

...
. . .

...
0 0 · · · U`−1

 .
This yields that

rk(G`) = rk(G`−1) + (n− 1)rk(U`−1)

= ((n− 1)(`− 1) + 1) + (n− 1) = (n− 1)` + 1,

which proves the assertion. �

2.6. Let us denote by V `
0 resp. V `

1 the eigenspace in Rn` corresponding to the eigen-
value 0 resp. n` of G` (or, equivalently, the eigenvalue 0 resp. 1 of E`). Then
Rn` = V `

0 ⊕ V `
1 , and, as V `

0 = Ker(G`) resp. V `
1 = Im(G`), the previous result

yields that
dim(V `

0 ) = n` − (n− 1)`− 1

resp.
dim(V `

1 ) = (n− 1)` + 1.

An explicit orthogonal basis for V `
1 may be constructed as follows. Start from

v0
0 = 1, and suppose we already constructed a subset

{v`−1
0 , . . . ,v`−1

(n−1)(`−1)} ⊆ Rn
`−1

.

We construct a new subset

{v`0, . . . ,v`(n−1)`} ⊆ Rn
`
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where

v`k =


v`−1
k
...

v`−1
k


for all 0 ≤ k ≤ (n − 1)(` − 1) and where v`(n−1)(`−1)+1,v

`
(n−1)(`−1)+2, . . . ,v

`
(n−1)` are

given by 

e`−1

−e`−1

0`−1

0`−1
...

0`−1


,



e`−1

e`−1

−2e`−1

0`−1
...

0`−1


, . . . ,



e`−1

e`−1
...

e`−1

e`−1

−(n− 1)e`−1


,

with

e`−1 =


1
...
1

 resp. 0`−1 =


0
...
0


within Rn`−1

.
As an example, if n = 3 and ` = 1, then

v1
0 =

 1
1
1

 ,v1
1 =

 1
−1

0

 ,v1
2 =

 1
1
−2


so, for n = 3 and ` = 2, we obtain

v2
0 =



1
1
1
1
1
1
1
1
1


,v2

1 =



1
−1

0
1
−1

0
1
−1

0


,v2

2 =



1
1
−2

1
1
−2

1
1
−2


,v2

3 =



1
1
1
−1
−1
−1

0
0
0


,v2

4 =



1
1
1
1
1
1
−2
−2
−2


.

We may now prove :

Proposition. 2.7. With the previous notations, for every positive integer `, the set

{v`0, . . . ,v`(n−1)`}

is an orthogonal basis for V `
1 .

Proof. For ` = 0, the statement is obvious. Suppose the assertion holds true for
strings of length 0, . . . , `−1 and let us prove it for strings of length `. In this case, if
0 ≤ k 6= k′ ≤ (n− 1)(`− 1), then the induction hypothesis implies that tv`kv

`
k′ = 0.

On the other hand, if

0 ≤ k ≤ (n− 1)(`− 1) < k′ ≤ (n− 1)`,
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then

tv`kv
`
k′ = (tv`−1

k , . . . , tv`−1
k )



e`−1
...

e`−1

−ie`−1

0`−1
...

0`−1


= itv`−1

k e`−1 − itv`−1
k e`−1 = 0.

Finally, if (n− 1)(`− 1) + 1 ≤ k 6= k′ ≤ (n − 1)`, then

tv`kv
`
k′ = (te`−1, . . . ,

te`−1,−ite`−1,
t0`−1, . . . ,

t0`−1)



e`−1
...

e`−1

−je`−1

0`−1
...

0`−1


= 0.

Since the vectors v`0, . . . ,v
`
(n−1)` are obviously linearly independent, it thus suffices

to verify that they belong to V `
1 , as we have seen that dim(V `

1 ) = (n− 1)` + 1.

Let us again argue by induction on `. For ` = 0, the statement is obvious, so let
us assume it to hold true for length 0, . . . , `− 1 and prove it for length `. First, if
0 ≤ k ≤ (n− 1)(`− 1), then

G`v
`
k =


G`−1 + (n− 1)U`−1 · · · G`−1 −U`−1

...
. . .

...
G`−1 −U`−1 · · · G`−1 + (n− 1)U`−1




v`−1
k
...

v`−1
k



=


nG`−1v

`−1
k

...
nG`−1v

`−1
k

 = n.n`−1


v`−1
k
...

v`−1
k

 = n`v`k.
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On the other hand, if k = (n − 1)(`− 1) + i with 1 ≤ i ≤ n− 1, then

G`v
`
k =


G`−1 + (n− 1)U`−1 · · · G`−1 −U`−1

...
. . .

...
G`−1 −U`−1 · · · G`−1 + (n− 1)U`−1





e`−1
...

e`−1

−ie`−1

0`−1
...

0`−1



= n



U`−1e`−1
...

U`−1e`−1

−iU`−1e`−1

0`−1
...

0`−1


= n.n`−1



e`−1
...

e`−1

−ie`−1

0`−1
...

0`−1


= n`v`k.

This finishes the proof. �

2.8. We have already pointed out above, that 0 ≤ ε∗`(f) ≤ 1. ¿From the previous
remarks, it is now clear that ε∗`(f) = 0 resp. ε∗`(f) = 1 exactly when f ∈ V `

1 resp.
f ∈ V `

0 . As an example, if n = 3 and ` = 2, then it thus follows that f ∈ V `
1 if and

only if it belongs to the vector space generated by the vectors

1
1
1
1
1
1
1
1
1


,



1
−1

0
1
−1

0
1
−1

0


,



1
1
−2

1
1
−2

1
1
−2


,



1
1
1
−1
−1
−1

0
0
0


,



1
1
1
1
1
1
−2
−2
−2


.

This is easily seen to be equivalent to

f01 + f02 + f10 + f12 + f20 + f21 = 2(f00 + f11 + f22).

3 Minimal epistasis

It is clear that the minimal resp. maximal values of ε∗`(f) correspond to the maximal
resp. minimal values of

γ`(f) = tfG`f ,

with ||f || = 1. In particular, 0 ≤ γ`(f) ≤ n`.
In the next sections, we will take a closer look at these extreme values and

connect them to Rawlins’ notion of minimal and maximal epistasis.
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3.1. Let us first point out that the theoretical minimal value ε∗`(f) = 0 (or, equiv-
alently, the maximal value γ`(f) = n`) may actually be reached. Indeed, if ` = 1,
then dim(V 1

1 ) = n, so V 1
1 = Rn, and any f ∈ Rn with ||f || = 1 satisfies

γ1(f) = tfG`f = (f0 . . . fn−1)


n · · · 0
...

. . .
...

0 · · · n




f0
...

fn−1

 = n
n−1∑
i=0

f2
i = n.

In the general case, i.e., when ` > 1, we will need the following result :

Lemma. 3.2. For any positive integer `, we have∑
i,j

g`ij = n2`.

Proof. Let us apply induction on `. For ` = 1, we have G1 = nIn, so the result is
obviously correct. Assume it holds true for length 1, . . . , ` − 1 and let us prove it
for length `. To realize this, it suffices to apply 2.2, which easily yields that∑

i,j

g`ij = n2
∑
i,j

g`−1
ij = n2.n2(`−1) = n2`.

This proves our assertion. �

3.3. Consider the vector

f ′ =



e`−1

0`−1
...

0`−1

e`−1


and put f = f ′/||f ′||, then we claim that ε∗`(f) = 0 (which proves that minimal
normalized epistasis may always be realized). Indeed,

γ`(f) = tfG`f =
1

||f ′||2
tf ′G`f

′

=
1

2n`−1
tf ′


G`−1 + (n− 1)U`−1 · · · G`−1 −U`−1

...
. . .

...
G`−1 −U`−1 · · · G`−1 + (n− 1)U`−1

 f ′

= 2
1

2n`−1
te`−1(2G`−1 + (n − 2)U`−1)e`−1

=
1

n`−1
(2
∑
i,j

g`−1
ij + (n− 2)

∑
i,j

u`−1
ij )

=
1

n`−1
(2n2(`−1) + (n− 2)n2(`−1)) = n`.

3.4. It has been proved in [9], that, over a binary alphabet, a fitness function f has
ε∗(f) = 0 if and only if f has minimal epistasis in the sense of [5], i.e., if f may be
written in the form

f(s`−1 . . . s0) =
`−1∑
i=0

g(i, si).
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In order to extend this result to a cardinality n alphabet, let us define for any 0 ≤
i ≤ `− 1 and 1 ≤ j ≤ n− 1 the map

h`ij : Ω→ R : s = s`−1 . . . s0 7→
{

1 if si = j
0 if si 6= j

.

Denote by h`ij the corresponding vector in Rn` . Clearly, for any 0 ≤ i ≤ ` − 2, we
have

h`ij =


h`−1
ij
...

h`−1
ij


whereas,

h``−1,1 =



0`−1

e`−1

0`−1

0`−1
...

0`−1


,h``−1,2 =



0`−1

0`−1

e`−1

0`−1
...

0`−1


, . . . ,h``−1,`−1 =



0`−1

0`−1
...

0`−1

0`−1

e`−1


∈ Rn` .

Lemma. 3.5. The set

{e`,h`ij; 0 ≤ i ≤ `− 1, 1 ≤ j ≤ n− 1}

is linearly independent.

Proof. Suppose that

`−1∑
i=0

αi1h
`
i1 + . . . +

`−1∑
i=0

αi,n−1h
`
i,n−1 + βe` = 0`,

and denote by g the corresponding real-valued function

`−1∑
i=1

αi1h
`
i1 + . . .+

`−1∑
i=1

αi,n−1h
`
i,n−1 + βe`

on Ω. We then clearly have β = g(0) = 0. On the other hand, for every 1 ≤ j ≤ n−1
and 0 ≤ i ≤ `− 1, we have

0 = g(jni) =
`−1∑
k=0

αkjh
`
kj(jn

i) + β = αij.

This proves the assertion. �

Since a reasoning similar to that in 2.7 shows that the vectors h`ij and e` belong
to V `

1 , it thus follows that they actually form a basis for V `
1 .

We are now ready to prove :
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Theorem. 3.6. For any fitness function f on Ω, the following assertions are equiv-
alent :

1. f has minimal epistasis, i.e., f =
∑`−1
i=0 gi for some fitness functions gi, which

only depend on the i-th bit;

2. ε∗(f) = 0.

Proof. Clearly, if f has minimal epistasis, i.e., if f =
∑`−1
i=0 gi, where gi only depends

upon the i-th bit, then f ∈ V `
1 , hence ε∗(f) = 0. Indeed, it suffices to verify this for

each of the gi. Now, if we let aij denote the common value of all gi(s) with i-th bit
equal to j (with 1 ≤ j ≤ n− 1), then

gi =
n−1∑
j=1

aijh
`
ij + ai0(e` − h`i1 − . . .− h`i,n−1),

so gi ∈< h`ij, e` >= V `
1 .

Conversely, if f ∈ V `
1 , then

f =
∑
i,j

αijh
`
ij + βe` =

`−1∑
i=0

(
n−1∑
j=1

αijh
`
ij) + βe` =

`−1∑
i=0

gi,

where

g0 = (α01 + β)h`01 + β(e` − h`01) +
n−1∑
j=2

α02h
`
02

and

gi =
n−1∑
j=1

αijh
`
ij with 1 ≤ i ≤ `− 1.

�

4 Maximal epistasis

4.1. In this section, we will analyze the maximal value of ε∗`(f). We have already
pointed out that ε∗`(f) ≤ 1. Moreover, for any f ∈ V `

0 this maximum value is actually
reached. However, in the present context, one has to impose the extra restriction
that all coordinates of f be positive, as f should correspond to a (positively valued!)
fitness function on Ω. It appears that under this condition, the maximal value that
ε∗`(f) may reach is 1− 1

n`−1 . Equivalently : the minimal value of γ`(f) with ||f || = 1
is n.

The main purpose of this section is proving this result. In the next one, we give
a precise description of those fitness functions which realize this maximum value.

4.2. Let us first point out that the extreme value γ`(n) = n may actually be reached.
Indeed, consider the vector f ∈ Rn` , given by

tf = (α, 0, . . . , 0, α, 0, . . . , 0, α),
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where α =
√
n/n appears as in

`−1
n−1

-th coordinate, for 0 ≤ i ≤ n − 1. Obviously

||f || = 1. Moreover, with m = n`−1
n−1

, we have

γ`(f) = tfG`f

= α2((g00 + g0m + . . . + g0,n`−1) + (gm0 + . . .+ gm,n`−1)

+ . . . + (gn`−1,0 + . . . + gn`−1,n`−1))

=
1

n
((g00 + gmm + . . .+ gn`−1,n`−1) + 2(g0m + . . . + g(n−2)m,m))

=
1

n
(ng00 + 2

∑
i<j

gim,jm).

Since each of the gim,jm has the same value (n− 1)` + 1− n`, it thus easily follows
that γl(f) = n, as claimed.

Theorem. 4.3. For any positive integer ` and any positive valued fitness function
f with ||f || = 1, we have

ε∗`(f) ≤ 1− 1

n`−1
.

Proof. As the matrix G` is symmetric, we may find an orthogonal matrix S which
diagonalizes it, i.e., with the property that tSG`S = D is a diagonal matrix, whose
diagonal entries are then, of course, the eigenvalues of G` (taking into account
multiplicities). We may thus assume

D =

(
n`I(n−1)`+1 0

0 0

)
.

Put g = Sf . Then, obviously, γ`(f) = n`
∑(n−1)`
i=0 g2

i . The columns of the matrix S
consist of (normalized) eigenvectors of G`. In particular, its first (n−1)`+1 columns
may be chosen to be the normalizations of the vectors v`0, . . . ,v

`
(n−1)` constructed

before. So, let us consider the orthonormal basis

{w`
0, . . . ,w

`
(n−1)(`−1), z

`
1, . . . , z

`
n−1}

of V `
1 , where w`

k = n−`/2v`k for 0 ≤ k ≤ (n − 1)(` − 1) and where z`i = (i2 +
i)−1/2n(1−`)/2v`(n−1)(`−1)+i for 1 ≤ i ≤ n− 1.

We then obtain :

γ`(f) = γ`(f0, . . . , fn`−1)

= n`
(n−1)(`−1)∑

k=0

(tw`
kf)

2 + n`
n−1∑
i=1

(tz`if)
2

= n`(n−`/2)2
(n−1)(`−1)∑

k=0

(tv`kf)
2 + n`(n(1−`)/2)2

n−1∑
i=1

1

i(i+ 1)
(tv`(n−1)(`−1)+if)

2.

By construction, we thus obtain that γ`(f0, . . . , fn`−1) is equal to

γ`−1(f0 + fn`−1 + . . .+ f(n−1)n`−1 , . . . , fn`−1−1 + . . .+ fn`−1)
+n(1

2
((f0 + . . . fn`−1)− (fn`−1 + . . . f2n`−1−1))

2

+ 1
2.3

((f0 + . . . + fn`−1−1) + (fn`−1 + . . .+ f2n`−1−1)− 2(f2n`−1 + . . .+ f3n`−1−1))
2

+ . . .
+ 1
n(n−1)

((f0 + . . . + fn`−1−1) + . . .− (n− 1)(f(n−1)n`−1 + . . .+ fn`−1))
2).
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Let us write

f̂ =


f0 + fn`−1 + . . .+ f(n−1)n`−1

...
fn`−1−1 + . . . + fn`−1

 ∈ Rn`−1

.

Then

||f̂ ||2 = (f0 + . . . + f(n−1)n`−1)2 + . . .+ (fn`−1−1 + . . . + fn`−1)
2

= f2
0 + . . .+ f2

n`−1 + 2(f0fn`−1 + . . .+ fn`−1−1fn`−1) = a2,

for some a ≥ 1.

Let f ′ = 1
a
f̂ , then ||f ′|| = 1 and

γ`−1(f
′) = γ`−1(

1

a
f̂ ) =

1

a2
γ`−1(f̂).

Let us now assume that for some positive integer `, we have γ`(f) < n, for some
fitness function f with ||f || = 1. Then

γ`−1(f̂) ≤ γ`−1(f̂) +
n−1∑
i=1

n

i(i+ 1)
((f0 + . . . + fn`−1−1) + . . .

−(i− 1)(f(i−1)n`−1 + . . .+ fin`−1−1))
2

= γ`(f) < n.

It follows that we thus also have

γ`−1(f
′) =

1

a2
γ`−1(f̂) <

n

a2
≤ n.

Iterating this process, we would thus find some fitness function f with ||f || = 1, and
γ1(f) < n. However, this is impossible, as γ1 is easily seen to have constant value n
on normalized fitness functions. This contradiction proves our assertion. �

5 Maximal epistasis revisited

We have already pointed out in the previous section that the minimal value γ`(f) =
n, corresponding to maximal normalized epistasis, may actually be reached. The
main purpose of the present section is to solve the problem of completely describing
the class of all fitness functions f for which γ`(f) = n.

5.1. Fix a positive integer ` ≥ 2 and consider mutually distinct indices 0 ≤
i0, . . . , in−1 ≤ n`−1 − 1, with the property that

1.
∑n−1
r=0 ir = n

2
(n`−1 − 1);

2. d(ir, is) = `− 1 for any 0 ≤ r 6= s ≤ n− 1.
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For each such family of indices i0, . . . , in−1, we define

q`i0...in−1
=

√
n

n


ei0
...

ein−1

 ∈ Rn` ,
where {e0, . . . , en`−1−1} is the canonical basis of Rn`−1

.
For example, if n = ` = 2, then we necessarily have {i0, i1} = {0, 1} as suitable

indices, and this corresponds to

q2
0,1 =

√
2

2


1
0
0
1

 ,q2
1,0 =

√
2

2


0
1
1
0

 .

In general, still with n = 2, suitable indices are given by couples 0 ≤ i0, i1 ≤ 2`−1−1,
with i0 + i1 = 2`−1 − 1 (which automatically implies that d(i0, i1) = `− 1), and this
yields vectors of the form

q`k,2`−1−k =

√
2

2



0
...
0
1
0
...
0
1
0
...
0



∈ R2`

with entry
√

2
2

at positions k and 2` − k − 1.
As another example, with n = 3 and ` = 2, we necessarily have {i0, i1, i2} =

{0, 1, 2} with, e.g.,

q2
012 =

√
3

3



1
0
0
0
1
0
0
0
1


,q2

102 =

√
3

3



0
1
0
1
0
0
0
0
1


.

One should view the corresponding fitness functions q`i0...in−1
as having n “peaks”,

lying as far apart as possible. Note also that suitable sets of indices i0, . . . , in−1 may
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always be found. For example, putting

ir = r
n`−1 − 1

n− 1

(with 0 ≤ r ≤ n− 1) obviously does the trick.

Let us now prove the following result, which completely answers the question
mentioned at the beginning of this section :

Theorem. 5.2. For any ` ≥ 2 and any positive f ∈ Rn` with ||f || = 1, the following
assertions are equivalent :

1. ε∗(f) = 1− 1
n`−1 ;

2. f = q`i0...in−1
for suitable indices 0 ≤ i0, . . . , in−1 ≤ n`−1 − 1.

Proof. Let us start by proving that the second assertion implies the first one. For
any choice of suitable indices i0, . . . , in−1 we have

γ`(f) = tfG`f = (

√
n

n
)2(tei0 . . .

tein−1)G`


ei0
...

ein−1



=
1

n
(tei0 . . .

tein−1)


g0,i0 + g0,n`−1+i1 + . . .+ g0,(n−1)n`−1+in−1

...
gn`−1,i0 + . . . + gn`−1,(n−1)n`−1+in−1


=

1

n
{(gi0,i0 + . . . + gi0,(n−1)n`−1+in−1

) + . . .

. . .+ (g(n−1)n`−1+in−1,i0 + . . .+ g(n−1)n`−1+in−1,(n−1)n`−1+in−1
)}

=
1

n
{ng00 + 2((gi0,n`−1+i1 + . . .+ gi0,(n−1)n`−1+in−1

) + . . .

. . .+ (g(n−2)n`−1+in−2,(n−1)n`−1+in−1
))}

=
1

n
{n((n− 1)`+ 1) + 2{(n− 1)((n − 1)` + 1)

−n(di0,n`−1+1 + . . .+ di0,(n−1)n`−1+in−1
) + (n− 2)((n− 1)` + 1)

−n(dn`−1+i1,2n`−1+i2 + . . .+ dn`−1+i1,(n−1)n`−1+in−1
) + . . .

+ . . .+ 1((n − 1)` + 1) − nd(n−2)n`−1+in−2,(n−1)n`−1+in−1
}}

=
1

n
{((n− 1)` + 1)n2 − 2n(di0 ,n`−1+1 + . . . + d(n−2)n`−1+in−2,(n−1)n`−1+in−1

)}

= n((n− 1)`+ 1) − 2

(
n
2

)
` = n,

which proves our claim.
To prove the converse, we will use induction on `. Consider a fitness function

f whose corresponding vector f ∈ Rn` is normalized and has the property that
γ`(f) = n. With notations as before, this means that

n = γ`(f0, . . . , fn`−1)

= γ`−1(f̂ ) + n{1
2
((f0 + . . .+ fn`−1−1)− (fn`−1 + . . . + f2n`−1−1))

2 + . . .

+
1

n(n − 1)
((f0 + . . . + fn`−1−1) + . . .− (n− 1)(f(n−1)n`−1 + . . .+ fn`−1))

2},
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hence
γ`−1(f̂) ≤ γ`(f).

Moreover,

γ`−1(f
′) =

1

||f̂ ||2
γ`−1(f̂) ≤ 1

||f̂ ||2
γ`(f) ≤ n

||f̂||2
≤ n,

so we necessarily have γ`−1(f
′) = n, in view of the obtained lower bound on the value

of γ`, and, of course, this yields ||f̂ || = 1. We thus obtain f̂ = f ′ and γ`−1(f̂) = n,
whence the following identities :

f0 + . . .+ fn`−1−1 = fn`−1 + . . .+ f2n`−1−1

= . . .

= f(n−1)n`−1 + . . .+ fn`−1.

On the other hand, as ||f̂ || = ||f || = 1, we also have :

f0fn`−1 = . . . = f0f(n−1)n`−1 = . . . = f(n−2)n`−1f(n−1)n`−1 = 0
...

fifn`−1+i = . . . = fif(n−1)n`−1+i = . . . = f(n−2)n`−1+if(n−1)n`−1+i = 0
...

fn`−1−1f2n`−1−1 = . . . = fn`−1−1fn`−1 = . . . = f(n−1)n`−1−1fn`−1 = 0

In particular, if ` = 2 and γ2(f0, . . . , fn2−1) = n = γ1(f̂), then the previous equations
reduce to :

f0 + . . .+ fn−1 = fn + . . . + f2n−1

= . . .

= f(n−1)n + . . . + fn2−1

and
f0fn = . . . = f(n−2)nf(n−1)n = 0

...
fn−1f2n−1 = . . . = f(n−1)n−1fn2−1 = 0

Solving this system of equations easily yields that

f =

√
n

n


eσ(0)

...
eσ(n−1)

 = q2
σ(0)...σ(n−1) ∈ Rn

2

,

where σ is a permutation of {0, . . . , n− 1} and {e0, . . . , en−1} is the canonical basis
of Rn. Of course, if 0 ≤ r 6= s ≤ n− 1, then σ(r) 6= σ(s) and

n−1∑
r=0

σ(r) =
n−1∑
r=0

r =
n

2
(n− 1),

so the indices σ(0), . . . , σ(r − 1) satisfy the necessary requirements.
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Let us now assume our assertion to hold true for strings of length 2, 3, . . . , `− 1
and let us prove it for length `. Consider a normalized fitness function over strings
of length ` and suppose that γ`(f) = n. Then, by induction,

f̂ = f ′ = q`−1
i0...in−1

∈ Rn`−1

,

for indices 0 ≤ i0, . . . , in−1 ≤ n`−2−1, with the property that d(ir, is) = `−1 for r 6= s
and that

∑n−1
r=0 ir = n

2
(n`−2− 1). ¿From the very definition of f̂ = q`−1

i0...in−1
, it follows

that its non-zero components may be found in the rows kn`−2 + ik (0 ≤ k ≤ n− 1),
whose expression, for any k, is :

fkn`−2+ik + fn`−1+(kn`−2+ik) + . . .+ f(n−1)n`−1+(kn`−2+ik) =

√
n

n
.

On the other hand, the above systems of equations applied to f̂ = q`−1
i0...in−1

reduce
to :

fi0 + fn`−2+i1 + . . .+ f(n−1)n`−2+in−1
= . . . =

= f(n−1)n`−1+i0 + f(n−1)n`−1+(n`−2+i1) + . . .+ f(n−1)n`−1+((n−1)n`−2+in−1)

and

fi0fn`−1+i0 = . . . =

= fi0f(n−1)n`−1+i0 = . . . =

...

= f(n−2)n`−1+i0f(n−1)n`−1+i0 = 0

...

f(n−1)n`−2+in−1
fn`−1+((n−1)n`−2+in−1) = . . . =

= f(n−1)n`−2+in−1
f(n−1)n`−1+((n−1)n`−2+in−1) = . . . =

= f(n−2)n`−1+((n−1)n`−2+in−1)f(n−1)n`−1+((n−1)n`−2+in−1) = 0

Let us put xkj = fjn`−1+kn`−2+ik for any 0 ≤ j, k ≤ n − 1, then the above systems of
equations are equivalent to

(a)


x0

0 + x0
1 + . . . + x0

n−1 =
√
n
n

...

xn−1
0 + . . .+ xn−1

n−1 =
√
n
n

(b)

{
x0

0 + x1
0 + . . . + xn−1

0 = · · · =
x0
n−1 + x1

n−1 + . . .+ xn−1
n−1

(c1)


x0

0x
1
0 = . . . = x0

0x
n−1
0

. . .

= x0
n−2x

0
n−1 = 0

...
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(cn−1)


xn−1

0 xn−1
1 = . . . = xn−1

0 xn−1
n−1

. . .

= xn−1
n−2x

n−1
n−1 = 0

In view of the fact that xkj ≥ 0 for all indices j, k, it follows that in each of the
equations in (a) at least one of the summands has to be non-zero. The equations
(c) imply the unicity of this summand. It thus follows that the system of equations
(a) reduces to

x0
r0

= x1
r1

= . . . = xn−1
rn−1

=

√
n

n

for certain 0 ≤ ri ≤ n − 1. Moreover, analyzing the equations (b), it follows that
in each of the composing equations there should be the same number of non-zero
terms. A tedious, but essentially straightforward verification, shows that in each of
them there is actually exactly just one non-zero component. The solutions are thus
of the form

x0
r0

= x1
r1

= . . . = xn−1
rn−1

=

√
n

n

with ri 6= rj if i 6= j. In other words,

f =

√
n

n


eî0
...

eîn−1

 ∈ Rn`

where îj = pn`−2 + ip for some suitable indices ip, such that the 0 ≤ î0, . . . , în−1 ≤
n`−1 − 1 are mutually distinct, and such that∑n−1

r=0 îr =
∑n−1
r=0 ir +

∑n−1
r=0 rn

`−2

= n
2
(n`−2 − 1) + n`−2(n(n−1)

2
)

= n
2
(n`−1 − 1)

and

d(̂ij, îk) = d(pn`−2 + ip, qn
`−2 + iq) = 1 + d(ip, iq) = 1 + (`− 1) = `.

This finishes the proof. �

5.3. Let us interpret this result in the binary case, for simplicity’s sake. In this
case, the maximal value for normalized epistasis is 1− 1

2`−1 and is reached by fitness
functions c, which are zero everywhere, except for two points at maximal Hamming
distance (e.g., 0 . . . 0 and 1 . . . 1), with equal fitness value.

Although both c and the “Dirac function” d (with single peak at 1 . . . 1, e.g.) are
both hard (optimalization essentially reduces to random search), at first glance, it
might seem strange that c is more difficult to optimize by the GA than d. However,
one should take into account the fact that the maximum m of d is more stable than
the two maxima m1 and m2 of c, in the following sense.

Once the maximum m of d is discovered, the simple GA will continue selecting
m with a high probability, due to its high fitness. Combined with a point different
from m, crossover is, of course, highly probable to eliminate m. On the other hand,
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crossover will almost always use two copies of m, due to its high selection probability,
and this will not only make m survive, but even produce more copies of m in the
population.

In the case of the fitness c, things are different, since both m1 and m2 have
(equal) high probability of being selected. If only m1 is encountered in the initial
population or through random search and if m2 remains undiscovered for a “long
enough period”, m1 will also tend to dominate, just as in the previous case. However,
if m2 is also present, in equal proportion as m1, copies of m1 and m2 have equal
(high) probability of being selected. Crossover between m1 and m2 destroys both of
them however, leading the GA away from these maxima.

Of course, in practical situations, i.e., with large lengths `, both functions have
the same normalized epistasis (approximately equal to 1.00), the previous result thus
mainly being of theoretical interest. Moreover, the above phenomenon only will oc-
cur within large populations, forcing both maxima m1 and m2 to occur with equal
frequency.

We experimentally verified the behaviour just described, using G(f) as an indi-
cator for GA-hardness, as in 1.4. We worked with strings of length 4, with a (large)
population of size 200. We then found :

f G(f) ε∗`
R2

0 7 0.00
R2

1 8 0.20
R2

2 13 0.69
c 20 0.87

(Note that R2
2 is just the “Dirac” function, centered at 1111).
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