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Abstract

The dual Euler-Simpson formulae are given. A number of inequalities,
for functions whose derivatives are either functions of bounded variation or
Lipschitzian functions or functions in Lp-spaces, are proved. The results are
applied to obtain the error estimates for some quadrature rules..

1 Introduction

One of the elementary quadrature rules of closed type is the Simpson’s rule based
on the Simpson’s formula [4, p. 45]

∫ b

a
f(t)dt =

b− a
6

[
f (a) + 4f

(
a + b

2

)
+ f (b)

]
− (b− a)5

2880
f (4)(ξ), (1.1)

where a ≤ ξ ≤ b. A simple quadrature rule of open type, which is closely related to
the Simpson’s rule, is based on the following three-point formula [4, p. 71]

∫ b

a
f(t)dt =

b− a
3

[
2f

(
3a + b

4

)
− f

(
a + b

2

)
+ 2f

(
a + 3b

4

)]

+
7(b − a)5

23040
f (4)(η), (1.2)

where a ≤ η ≤ b. The formulae (1.1) and (1.2) are valid for any function f which
has a continuous fourth derivative f (4) on [a, b] . P. S. Bullen [3] proved that, under
certain convexity assumptions on f , the three-point quadrature rule based on the
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formula (1.2) is more accurate than the Simpson’s quadrature rule. As pointed in
[3] , the formula (1.2) naturally appears in a pair with the formula (1.1) and we call
it the dual Simpson formula. This dual Simpson formula is the key notion in this
paper.

In the recent paper [5] the following two identities, named the extended Euler
formulae, have been proved:

f(x) =
1

b− a

∫ b

a
f(t)dt + Tn(x) +R1

n(x) (1.3)

and

f(x) =
1

b− a

∫ b

a
f(t)dt + Tn−1(x) +R2

n(x), (1.4)

where T0(x) = 0 and

Tm(x) =
m∑
k=1

(b− a)k−1

k!
Bk

(
x− a
b− a

) [
f (k−1)(b)− f (k−1)(a)

]
, (1.5)

for m ≥ 1, while

R1
n(x) = −(b− a)n−1

n!

∫
[a,b]

B∗n

(
x− t
b− a

)
df (n−1)(t)

and

R2
n(x) = −(b− a)n−1

n!

∫
[a,b]

[
B∗n

(
x− t
b− a

)
− Bn

(
x− a
b− a

)]
df (n−1)(t).

Here, as in the rest of the paper, we write
∫

[a,b] g(t)dϕ(t) to denote the Riemann-
Stieltjes integral with respect to a function ϕ : [a, b]→ R of bounded variation, and∫ b
a g(t)dt for the Riemann integral. The identities (1.3) and (1.4) extend the well

known formula for the expansion of an arbitrary function in Bernoulli polynomials
[6, p. 17] . They hold for every function f : [a, b]→ R such that f (n−1) is a continuous
function of bounded variation on [a, b], for some n ≥ 1, and for every x ∈ [a, b].
The functions Bk(t) are the Bernoulli polynomials, Bk = Bk(0) are the Bernoulli
numbers, andB∗k(t), k ≥ 0, are periodic functions of period 1, related to the Bernoulli
polynomials as

B∗k(t) = Bk(t), for 0 ≤ t < 1,

B∗k(t+ 1) = B∗k(t), for t ∈ R.

The Bernoulli polynomials Bk(t), k ≥ 0 are uniquely determined by the following
identities

B ′k(t) = kBk−1(t), k ≥ 1; B0(t) = 1 (1.6)

and
Bk(t + 1)− Bk(t) = ktk−1, k ≥ 0. (1.7)

For some further details on the Bernoulli polynomials and the Bernoulli numbers
see for example [1] or [2] . We have

B0(t) = 1, B1(t) = t− 1

2
, B2(t) = t2 − t +

1

6
, B3(t) = t3 − 3

2
t2 +

1

2
t, (1.8)
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so that B∗0(t) = 1 and B∗1(t) is a discontinuous function with a jump of −1 at each
integer. From (1.7) it follows that Bk(1) = Bk(0) = Bk for k ≥ 2, so that B∗k(t) are
continuous functions for k ≥ 2. Moreover, using (1.6) we get

B∗′k = kB∗k−1(t), k ≥ 1 (1.9)

and this holds for every t ∈ R when k ≥ 3, and for every t ∈ R \ Z when k = 1, 2.
The aim of this paper is to establish a generalizations of the dual Simpson formula

(1.2) and then, to give various error estimates for the quadrature rules which are
based on such generalizations of (1.2).

In Section 2 we use the extended Euler formulae (1.3) and (1.4) to obtain two new
integral identities. We call these new identities the dual Euler-Simpson formulae,
since they generalize the dual Simpson formula (1.2).

In Section 3 we prove a number of inequalities related to the dual Euler-Simpson
formulae, for functions whose derivatives are either functions of bounded variation
or Lipschitzian functions or functions from the Lp-spaces.

Finally, in Section 4, we consider the repeated dual Euler-Simpson quadrature
rule and the repeated modified dual Euler-Simpson quadrature rule which are based
on the dual Euler-Simpson formulae. We give the error estimates for these quadra-
ture rules when they are applied to the functions of various classes. Also, we show
that, under certain assumptions on the involved functions, these quadrature rules
can be more accurate than the analogous repeated Euler-Simpson quadrature rule
considered in [6] .

2 Dual Euler-Simpson formulae

For k ≥ 1 define the functions Gk(t) and Fk(t) as

Gk(t) := 2B∗k

(
1

4
− t

)
− B∗k

(
1

2
− t

)
+ 2B∗k

(
3

4
− t

)
, t ∈ R

and
Fk(t) := Gk(t)− B̃k, t ∈ R,

where

B̃k := Gk(0) = 2Bk

(
1

4

)
− Bk

(
1

2

)
+ 2Bk

(
3

4

)
, k ≥ 1.

Obviously, Gk(t) and Fk(t) are periodic functions of period 1 and continuous for
k ≥ 2. Thus, it is enough to know the behavior of these functions on the interval
[0, 1] . We shall investigate this behavior in the next section.

Let f : [a, b]→ R be such that f (n−1) exists on [a, b] for some n ≥ 1. We introduce
the following notation

D(a, b) :=
b− a

3

[
2f

(
3a + b

4

)
− f

(
a + b

2

)
+ 2f

(
a + 3b

4

)]
.

Further, we define T̃0(a, b) := 0 and, for 1 ≤ m ≤ n,

T̃m(a, b) :=
b− a

3

[
2Tm

(
3a + b

4

)
− Tm

(
a + b

2

)
+ 2Tm

(
a + 3b

4

)]
,
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where Tm(x) is given by (1.5). It is easy to see that

T̃m(a, b) =
1

3

m∑
k=1

(b− a)k

k!
B̃k

[
f (k−1)(b)− f (k−1)(a)

]
. (2.1)

In the next theorem we establish two formulae which play the key role in this
paper. We call them the dual Euler-Simpson formulae.

Theorem 1. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation on [a, b], for some n ≥ 1. Then∫ b

a
f(t)dt = D(a, b)− T̃n(a, b) + R̃1

n(a, b), (2.2)

where

R̃1
n(a, b) =

(b− a)n

3(n!)

∫
[a,b]

Gn

(
t− a
b− a

)
df (n−1)(t).

Also, ∫ b

a
f(t)dt = D(a, b)− T̃n−1(a, b) + R̃2

n(a, b), (2.3)

where

R̃2
n(a, b) =

(b− a)n

3(n!)

∫
[a,b]

Fn

(
t− a
b− a

)
df (n−1)(t).

Proof. Put

x =
3a + b

4
,
a + b

2
,
a + 3b

4

in formula (1.3) to get three new formulae. Then multiply these new formulae by

2(b− a)

3
, − b− a

3
,

2(b− a)

3
,

respectively, and add. The result is the formula (2.2). The formula (2.3) is obtained
from (1.4) by the same procedure. �

Remark 1. Suppose that f : [a, b]→ R is such that f (n) exists and is integrable on
[a, b], for some n ≥ 1. In this case (2.2) holds with

R̃1
n(a, b) =

(b− a)n

3(n!)

∫ b

a
Gn

(
t− a
b− a

)
f (n)(t)dt,

while (2.3) holds with

R̃2
n(a, b) =

(b− a)n

3(n!)

∫ b

a
Fn

(
t− a
b− a

)
f (n)(t)dt.

By direct calculation and using (1.8), we get

B̃1 = B̃2 = B̃3 = 0.

This implies, by (2.1),

T̃1(a, b) = T̃2(a, b) = T̃3(a, b) = 0.
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Also,

F1(t) = G1(t) =


−3t, 0 ≤ t ≤ 1/4
−3t+ 2, 1/4 < t ≤ 1/2
−3t+ 1, 1/2 < t ≤ 3/4
−3t+ 3, 3/4 < t ≤ 1

, (2.4)

F2(t) = G2(t) =


3t2, 0 ≤ t ≤ 1/4
3t2 − 4t + 1, 1/4 ≤ t ≤ 1/2
3t2 − 2t, 1/2 ≤ t ≤ 3/4
3t2 − 6t + 3, 3/4 ≤ t ≤ 1

(2.5)

and

F3(t) = G3(t) =


−3t3, 0 ≤ t ≤ 1/4
−3t3 + 6t2 − 3t + 3

8
, 1/4 ≤ t ≤ 1/2

−3t3 + 3t2 − 3
8
, 1/2 ≤ t ≤ 3/4

−3t3 + 9t2 − 9t + 3, 3/4 ≤ t ≤ 1

. (2.6)

Applying (2.2) with n = 1, 2, 3 we get the identities∫ b

a
f(t)dt−D(a, b) =

b− a
3

∫
[a,b]

G1

(
t− a
b− a

)
df(t)

=
(b− a)2

6

∫
[a,b]

G2

(
t− a
b− a

)
df ′(t)

=
(b− a)3

18

∫
[a,b]

G3

(
t− a
b− a

)
df ′′(t).

The same identities are obtained from (2.3) with n = 1, 2, 3, since T̃0(a, b) =
T̃1(a, b) = T̃2(a, b) = 0 and Fk(t) = Gk(t) for k = 1, 2, 3, while (2.3) with n = 4
yields the identity∫ b

a
f(t)dt−D(a, b) =

(b− a)4

72

∫
[a,b]

F4

(
t− a
b− a

)
df ′′′(t).

3 Some inequalities related to dual Euler-Simpson formulae

In this section we use the dual Euler-Simpson formulae established in Theorem 1 to
prove a number of inequalities for various classes of functions. First, we need some
properties of the functions Gk(t) and Fk(t) defined in the previous section. As we
noted earlier, it is enough to know the behavior of these functions on the interval
[0, 1]

The Bernoulli polynomials have a property of symmetry with respect to 1
2
, that

is [1, 23.1.8]
Bk(1− t) = (−1)kBk(t), 0 ≤ t ≤ 1, k ≥ 1. (3.1)

Setting t = 1
2

and t = 1
4

in (3.1) we get

Bk

(
1

2

)
= (−1)kBk

(
1

2

)
and Bk

(
3

4

)
= (−1)kBk

(
1

4

)
,

respectively. This implies

B2k−1

(
1

2

)
= 0, B2k−1

(
3

4

)
+B2k−1

(
1

4

)
= 0, B2k

(
3

4

)
= B2k

(
1

4

)
, k ≥ 1,
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so that we have

B̃2k−1 = 2B2k−1

(
1

4

)
−B2k−1

(
1

2

)
+ 2B2k−1

(
3

4

)
= 0, k ≥ 1, (3.2)

and

B̃2k = 2B2k

(
1

4

)
− B2k

(
1

2

)
+ 2B2k

(
3

4

)
= 4B2k

(
1

4

)
−B2k

(
1

2

)
, k ≥ 1.

Also, we have [1, 23.1.21, 23.1.22]

B2k

(
1

2

)
= −

(
1− 21−2k

)
B2k, B2k

(
1

4

)
= −2−2k

(
1− 21−2k

)
B2k, k ≥ 1,

which gives the formula

B̃2k =
(
8 · 2−4k − 6 · 2−2k + 1

)
B2k, k ≥ 1. (3.3)

Now, by (3.2) we have
F2k−1(t) = G2k−1(t), k ≥ 1. (3.4)

Also,
F2k(t) = G2k(t)− B̃2k, k ≥ 1, (3.5)

where B̃2k is given by (3.3). Further, the points 0 and 1 are the zeros of Fn(t), that
is

Fn(0) = Fn(1) = 0, n ≥ 1.

As we shall see below, 0 and 1 are the only zeros of Fn(t) for n = 2k, k ≥ 2, while
for n = 2k − 1, k ≥ 2 we have

F2k−1

(
1

2

)
= G2k−1

(
1

2

)
= 2B2k−1

(
3

4

)
− B2k−1 + 2B2k−1

(
1

4

)
= 0.

We shall see that 0, 1
2

and 1 are the only zeros of F2k−1(t) = G2k−1(t), for k ≥ 2.
Also, note that for n = 2k, k ≥ 1 we have

G2k (0) = G2k (1) = B̃2k =
(
8 · 2−4k − 6 · 2−2k + 1

)
B2k

and

G2k

(
1

2

)
= 4B2k

(
1

4

)
− B2k =

(
8 · 2−4k − 4 · 2−2k − 1

)
B2k,

while

F2k

(
1

2

)
= G2k

(
1

2

)
− B̃2k = −2

(
1− 2−2k

)
B2k. (3.6)

Lemma 1. For k ≥ 2 we have

Gk(1− t) = (−1)kGk(t), 0 ≤ t ≤ 1,

and
Fk(1− t) = (−1)kFk(t), 0 ≤ t ≤ 1.
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Proof. As we noted in Introduction, the functions B∗k(t) are periodic with period 1
and continuous for k ≥ 2. Therefore, for k ≥ 2 and 0 ≤ t ≤ 1 we have

B∗k

(
1

4
− t

)
=

 Bk

(
1
4
− t

)
, 0 ≤ t ≤ 1

4

Bk

(
5
4
− t

)
, 1

4
≤ t ≤ 1,

and, using (3.1),

B∗k

(
3

4
+ t

)
=

 Bk

(
3
4

+ t
)
, 0 ≤ t ≤ 1

4

Bk

(
−1

4
+ t

)
, 1

4
≤ t ≤ 1

=

 (−1)kBk

(
1
4
− t

)
, 0 ≤ t ≤ 1

4

(−1)kBk

(
5
4
− t

)
, 1

4
≤ t ≤ 1.

Comparing the above equalities, we see that

B∗k

(
3

4
+ t

)
= (−1)kB∗k

(
1

4
− t

)
, 0 ≤ t ≤ 1.

By the similar observation we get

B∗k

(
1

2
+ t

)
= (−1)kB∗k

(
1

2
− t

)
, 0 ≤ t ≤ 1,

and

B∗k

(
1

4
+ t

)
= (−1)kB∗k

(
3

4
− t

)
, 0 ≤ t ≤ 1.

Using these identities, we get

Gk (1− t) = 2B∗k

(
−3

4
+ t

)
− B∗k

(
−1

2
+ t

)
+ 2B∗k

(
−1

4
+ t

)
= 2B∗k

(
1

4
+ t

)
− B∗k

(
1

2
+ t

)
+ 2B∗k

(
3

4
+ t

)
= (−1)k

[
2B∗k

(
3

4
− t

)
−B∗k

(
1

2
− t

)
+ 2B∗k

(
1

4
− t

)]
= (−1)kGk(t),

which proves the first identity. Further, we have B̃k = (−1)kB̃k, since (3.2) holds,
so that

Fk (1− t) = Gk (1− t)− B̃k = (−1)k
[
Gk(t)− B̃k

]
= (−1)kFk (t) ,

which proves the second identity. �

Note that the identities established in Lemma 1 are valid for k = 1, too, except
at the points 1

4
, 1

2
and 3

4
of discontinuity of F1(t) = G1(t).

Lemma 2. For k ≥ 2 the function G2k−1(t) has no zeros in the interval
(
0, 1

2

)
. The

sign of this function is determined by

(−1)k−1G2k−1(t) > 0, 0 < t <
1

2
.
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Proof. For k = 2, G3(t) is given by (2.6) and it is easy to see that

−G3(t) > 0, 0 < t <
1

2
.

Thus, our assertion is true for k = 2. Now, assume that k ≥ 3. Then 2k − 1 ≥ 5
and G2k−1(t) is continuous and twice differentiable function. Using (1.9) we get

G′2k−1(t) = −(2k − 1)G2k−2(t)

and
G′′2k−1(t) = (2k − 1)(2k − 2)G2k−3(t).

We know that 0 and 1
2

are the zeros of G2k−1(t). Let us suppose that some α,
0 < α < 1

2
, is also a zero of G2k−1(t). Then inside each of the intervals (0, α) and(

α, 1
2

)
the derivative G′2k−1(t) must have at least one zero, say β1, 0 < β1 < α and

β2, α < β2 <
1
2
. Therefore, the second derivative G′′2k−1(t) must have at least one

zero inside the interval (β1, β2) . Thus, from the assumption that G2k−1(t) has a zero

inside the interval
(
0, 1

2

)
, it follows that (2k − 1)(2k − 2)G2k−3(t) also has a zero

inside this interval. From this it follows that G3(t) would have a zero inside the

interval
(
0, 1

2

)
, which is not true. Thus, G2k−1(t) can not have a zero inside the

interval
(
0, 1

2

)
. To determine the sign of G2k−1(t), note that

G2k−1

(
1

4

)
= 2B2k−1 (0) −B2k−1

(
1

4

)
+ 2B2k−1

(
1

2

)
= −B2k−1

(
1

4

)
.

We have [1, 23.1.14]

(−1)kB2k−1(t) > 0, 0 < t <
1

2
,

which implies

(−1)k−1G2k−1

(
1

4

)
= (−1)kB2k−1

(
1

4

)
> 0.

Consequently, we have

(−1)k−1G2k−1(t) > 0, 0 < t <
1

2
.

�

Corollary 1. For k ≥ 2 the functions (−1)kF2k(t) and (−1)kG2k(t) are strictly in-

creasing on the interval
(
0, 1

2

)
, and strictly decreasing on the interval

(
1
2
, 1
)
. Con-

sequently, 0 and 1 are the only zeros of F2k(t) in the interval [0, 1] and

max
t∈[0,1]

|F2k(t)| = 2
(
1− 2−2k

)
|B2k| , k ≥ 2.

Also, we have

max
t∈[0,1]

|G2k(t)| =
(
1 + 4 · 2−2k − 8 · 2−4k

)
|B2k| , k ≥ 2.
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Proof. Using (1.9) we get[
(−1)kF2k(t)

]′
=
[
(−1)kG2k(t)

]′
= 2k(−1)k−1G2k−1(t)

and (−1)k−1G2k−1(t) > 0 for 0 < t < 1
2
, by the Lemma 2. Thus, (−1)kF2k(t) and

(−1)kG2k(t) are strictly increasing on the interval
(
0, 1

2

)
. Also, by the Lemma 1, we

have F2k(1−t) = F2k(t), 0 ≤ t ≤ 1 and G2k(1−t) = G2k(t), 0 ≤ t ≤ 1, which implies

that (−1)kF2k(t) and (−1)kG2k(t) are strictly decreasing on the interval
(

1
2
, 1
)
.

Further, F2k(0) = F2k(1) = 0, which implies that |F2k(t)| achieves its maximum at
t = 1

2
, that is

max
t∈[0,1]

|F2k(t)| =
∣∣∣∣F2k

(
1

2

)∣∣∣∣ = 2
(
1− 2−2k

)
|B2k| .

Also,

max
t∈[0,1]

|G2k(t)|

= max
{
|G2k (0)| ,

∣∣∣∣G2k

(
1

2

)∣∣∣∣}
= max

{(
8 · 2−4k − 6 · 2−2k + 1

)
|B2k| ,

(
1 + 4 · 2−2k − 8 · 2−4k

)
|B2k|

}
=

(
1 + 4 · 2−2k − 8 · 2−4k

)
|B2k| ,

which completes the proof. �

Corollary 2. Assume k ≥ 2. Then we have∫ 1

0
|F2k−1(t)| dt =

∫ 1

0
|G2k−1(t)|dt =

2

k

(
1− 2−2k

)
|B2k| .

Also, we have ∫ 1

0
|F2k(t)| dt =

∣∣∣B̃2k

∣∣∣ =
(
8 · 2−4k − 6 · 2−2k + 1

)
|B2k|

and ∫ 1

0
|G2k(t)| dt ≤ 2

∣∣∣B̃2k

∣∣∣ = 2
(
8 · 2−4k − 6 · 2−2k + 1

)
|B2k| .

Proof. Using (1.9) it is easy to see that

G′m(t) = −mGm−1(t), m ≥ 3. (3.7)

By (3.4) we have
∫ 1
0 |F2k−1(t)|dt =

∫ 1
0 |G2k−1(t)|dt. Now, using Lemma 1, Lemma 2

and (3.7) we get

∫ 1

0
|G2k−1(t)|dt = 2

∣∣∣∣∣
∫ 1

2

0
G2k−1(t)dt

∣∣∣∣∣ = 2
∣∣∣∣− 1

2k
G2k(t)|

1
2
0

∣∣∣∣
=

1

k

∣∣∣∣G2k

(
1

2

)
−G2k (0)

∣∣∣∣ =
2

k

(
1− 2−2k

)
|B2k| ,
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which proves the first assertion. By the Corollary 1, F2k(t) does not change the sign
on the interval (0, 1). Therefore, using (3.5) and (3.7), we get

∫ 1

0
|F2k(t)| dt =

∣∣∣∣∫ 1

0
F2k(t)dt

∣∣∣∣ =
∣∣∣∣∫ 1

0

[
G2k(t)− B̃2k

]
dt
∣∣∣∣

=
∣∣∣∣− 1

2k + 1
G2k+1(t)|10 − B̃2k

∣∣∣∣ =
∣∣∣B̃2k

∣∣∣
and B̃2k is given by (3.3). This proves the second assertion. Finally, we use (3.5)
again and the triangle inequality to obtain∫ 1

0
|G2k(t)|dt =

∫ 1

0

∣∣∣F2k(t) + B̃2k

∣∣∣ dt ≤ ∫ 1

0
|F2k(t)| dt +

∣∣∣B̃2k

∣∣∣ = 2
∣∣∣B̃2k

∣∣∣ ,
which proves the third assertion. �

Theorem 2. Let f : [a, b]→ R be such that f (n−1) is an L-Lipschitzian function on
[a, b] for some n ≥ 1. Then∣∣∣∣∣

∫ b

a
f(t)dt−D(a, b) + T̃n−1(a, b)

∣∣∣∣∣ ≤ (b− a)n+1

3(n!)

∫ 1

0
|Fn(t)|dt · L. (3.8)

Also, we have∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) + T̃n(a, b)

∣∣∣∣∣ ≤ (b− a)n+1

3(n!)

∫ 1

0
|Gn(t)|dt · L. (3.9)

Proof. For any integrable function Φ : [a, b]→ R we have∣∣∣∣∣
∫

[a,b]
Φ(t)df (n−1)(t)

∣∣∣∣∣ ≤
∫ b

a
|Φ(t)|dt · L, (3.10)

since f (n−1) is L-Lipschitzian function. Applying (3.10) with Φ(t) = Fn
(
t−a
b−a

)
, we

get ∣∣∣∣∣(b− a)n

3(n!)

∫
[a,b]

Fn

(
t− a
b− a

)
df (n−1)(t)

∣∣∣∣∣
≤ (b− a)n

3(n!)

∫ b

a

∣∣∣∣Fn ( t− ab− a

)∣∣∣∣ dt · L
=

(b− a)n+1

3(n!)

∫ 1

0
|Fn(t)| dt · L.

Applying the above inequality, we get the inequality (3.8) from the identity (2.3).

Similarly, we can apply the inequality (3.10) with Φ(t) = Gn

(
t−a
b−a

)
, and then use

the identity (2.2), to obtain the inequality (3.9). �

As we have already noted in Section 2, we have

T̃0(a, b) = T̃1(a, b) = T̃2(a, b) = T̃3(a, b) = 0. (3.11)
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Moreover, since B̃2 = 0 and B̃2k−1 = 0, k ≥ 1, we have

T̃m(a, b) =
1

3

[m2 ]∑
k=2

(b− a)2k

(2k)!
B̃2k

[
f (2k−1)(b)− f (2k−1)(a)

]
, m ≥ 4, (3.12)

where
[
m
2

]
is the greatest integer less than or equal to m

2
.

Corollary 3. Let f : [a, b]→ R be given function.
If f is L-Lipschitzian on [a, b], then∣∣∣∣∣

∫ b

a
f(t)dt−D(a, b)

∣∣∣∣∣ ≤ 5

24
(b− a)2 · L.

If f ′ is L-Lipschitzian on [a, b], then∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b)

∣∣∣∣∣ ≤ 5

324
(b− a)3 · L.

If f ′′ is L-Lipschitzian on [a, b], then∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b)

∣∣∣∣∣ ≤ 1

576
(b− a)4 · L.

If f ′′′ is L-Lipschitzian on [a, b], then∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b)

∣∣∣∣∣ ≤ 7

23040
(b− a)5 · L.

Proof. Using (2.4) and (2.5) we get

∫ 1

0
|F1(t)|dt =

5

8
and

∫ 1

0
|F2(t)| dt =

5

54
,

respectively. Therefore, using (3.11) and applying (3.8) with n = 1 and n = 2, we
get the first and the second inequality, respectively. Using the Corollary 2, we get∫ 1

0
|F3(t)| dt =

1

32
and

∫ 1

0
|F4(t)| dt =

7

320
.

Now, the third inequality follows from (3.8) with n = 3 and (3.11), while the fourth
one follows from (3.8) with n = 4 and (3.11). �

Corollary 4. Let f : [a, b] → R be such that f (n−1) is an L-Lipschitzian function
on [a, b] for some n ≥ 3. Set D1(a, b) := 0 and for any integer r such that 2 ≤ r ≤ n

2

define

Dr(a, b) :=
1

3

r∑
i=2

(b− a)2i

(2i)!
B̃2i

[
f (2i−1)(b)− f (2i−1)(a)

]
. (3.13)
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If n = 2k − 1, k ≥ 2, then∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) +Dk−1(a, b)

∣∣∣∣∣ ≤ 4(b− a)2k

3 [(2k)!]

(
1− 2−2k

)
|B2k| · L.

If n = 2k, k ≥ 2, then∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) +Dk−1(a, b)

∣∣∣∣∣ ≤ (b− a)2k+1

3 [(2k)!]

(
8 · 2−4k − 6 · 2−2k + 1

)
|B2k| · L

and∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) +Dk(a, b)

∣∣∣∣∣ ≤ 2(b − a)2k+1

3 [(2k)!]

(
8 · 2−4k − 6 · 2−2k + 1

)
|B2k| · L.

Proof. For n = 2k−1, by (3.12) we have that T̃n−1(a, b) = Dk−1(a, b). Thus, the first
inequality follows from Corollary 2 and (3.8). For n = 2k, by (3.12) we have that
T̃n−1(a, b) = Dk−1(a, b) and T̃n(a, b) = Dk(a, b). Now, the second inequality follows
from Corollary 2 and (3.8), while the third one follows from Corollary 2 and (3.9).

�

Remark 2. Suppose that f : [a, b] → R is such that f (n) exists and is bounded on
[a, b], for some n ≥ 1 In this case we have for all t, s ∈ [a, b]∣∣∣f (n−1)(t)− f (n−1)(s)

∣∣∣ ≤ ‖f (n)‖∞ · |t− s| ,

which means that f (n−1) is an ‖f (n)‖∞-Lipschitzian function on [a, b]. Therefore,
the inequalities established in Theorem 2 hold with L = ‖f (n)‖∞. Consequently,
under appropriate assumptions on f, the inequalities from Corollary 3 hold with
L = ‖f ′‖∞, ‖f ′′‖∞, ‖f ′′′‖∞, ‖f ′′′′‖∞, respectively. However, a similar observation
can be made for the results of the Corollary 4.

Theorem 3. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation on [a, b] for some n ≥ 1. Then∣∣∣∣∣

∫ b

a
f(t)dt−D(a, b) + T̃n−1(a, b)

∣∣∣∣∣ ≤ (b− a)n

3(n!)
max
t∈[0,1]

|Fn(t)| · V b
a (f (n−1)) (3.14)

and ∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) + T̃n(a, b)

∣∣∣∣∣ ≤ (b− a)n

3(n!)
max
t∈[0,1]

|Gn(t)| · V b
a (f (n−1)), (3.15)

where V b
a (f (n−1)) is the total variation of f (n−1) on [a, b].

Proof. If Φ : [a, b] → R is bounded on [a, b] and the Riemann-Stieltjes integral∫
[a,b] Φ(t)df (n−1)(t) exists, then∣∣∣∣∣

∫
[a,b]

Φ(t)df (n−1)(t)

∣∣∣∣∣ ≤ max
t∈[a,b]

|Φ(t)| · V b
a (f (n−1)). (3.16)
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We apply the estimate (3.16) to Φ(t) = Fn
(
t−a
b−a

)
to obtain∣∣∣∣∣(b− a)n

3(n!)

∫
[a,b]

Fn

(
t− a
b− a

)
df (n−1)(t)

∣∣∣∣∣
≤ (b− a)n

3(n!)
max
t∈[a,b]

∣∣∣∣Fn ( t− ab− a

)∣∣∣∣ · V b
a (f (n−1))

=
(b− a)n

3(n!)
max
t∈[0,1]

|Fn (t)| · V b
a (f (n−1)).

Now, we use the above inequality and the identity (2.3) to obtain (3.14) In the same

manner, we apply the estimate (3.16) to Φ(t) = Gn

(
t−a
b−a

)
, and then use the identity

(2.2), to obtain the inequality (3.15). �

Corollary 5. Let f : [a, b]→ R be given function.
If f is a continuous function of bounded variation on [a, b], then∣∣∣∣∣

∫ b

a
f(t)dt−D(a, b)

∣∣∣∣∣ ≤ 5

12
(b− a) · V b

a (f).

If f ′ is a continuous function of bounded variation on [a, b], then∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b)

∣∣∣∣∣ ≤ 1

24
(b− a)2 · V b

a (f ′).

If f ′′ is a continuous function of bounded variation on [a, b], then∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b)

∣∣∣∣∣ ≤ 5

1296
(b− a)3 · V b

a (f ′′).

If f ′′′ is a continuous function of bounded variation on [a, b], then∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b)

∣∣∣∣∣ ≤ 1

1152
(b− a)4 · V b

a (f ′′′).

Proof. From the explicit expressions (2.4), (2.5) and (2.6), we get

max
t∈[0,1]

|F1(t)| = −F1

(
3

4

)
=

5

4
,

max
t∈[0,1]

|F2(t)| = −F2

(
1

2

)
=

1

4

and

max
t∈[0,1]

|F3(t)| = −F3

(
1

3

)
=

5

72
,

respectively. Therefore, using (3.11) and applying (3.14) with n = 1, n = 2 and
n = 3, we get the first, the second and the third inequality, respectively. Further,
using the Corollary 1, we get

max
t∈[0,1]

|F4(t)| =
1

16
.

Now, the fourth inequality follows from (3.14) with n = 4 and (3.11). �
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Corollary 6. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation on [a, b], for some n ≥ 3. Define Dr(a, b), r ≥ 0 as in the Corollary
4.
If n = 2k − 1, k ≥ 2, then∣∣∣∣∣

∫ b

a
f(t)dt−D(a, b) +Dk−1(a, b)

∣∣∣∣∣ ≤ (b− a)2k−1

3 [(2k − 1)!]
max
t∈[0,1]

|F2k−1(t)| · V b
a (f (2k−2)).

If n = 2k, k ≥ 2, then∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) +Dk−1(a, b)

∣∣∣∣∣ ≤ 2(b− a)2k

3 [(2k)!]

(
1− 2−2k

)
|B2k| · V b

a (f (2k−1))

and ∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) +Dk(a, b)

∣∣∣∣∣
≤ (b− a)2k

3 [(2k)!]

(
1 + 4 · 2−2k − 8 · 2−4k

)
|B2k| · V b

a (f (2k−1)).

Proof. The argument is similar to that used in the proof of Corollary 4. We apply
Theorem 3 and use the formulae established in Corollary 1. �

Remark 3. Suppose that f : [a, b]→ R is such that f (n) ∈ L1[a, b] for some n ≥ 1
In this case f (n−1) is a continuous function of bounded variation on [a, b] and we
have

V b
a (f (n−1)) =

∫ b

a

∣∣∣f (n)(t)
∣∣∣ dt = ‖f (n)‖1,

Therefore, the inequalities established in Theorem 3 hold with ‖f (n)‖1 in place of
V b
a (f (n−1)). However, a similar observation can be made for the results of the Corol-

laries 5 and 6.

Theorem 4. Assume (p, q) is a pair of conjugate exponents, that is

1 < p, q <∞, 1

p
+

1

q
= 1 or p =∞, q = 1.

Let f : [a, b]→ R be such that f (n) ∈ Lp[a, b] for some n ≥ 1. Then we have∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) + T̃n−1(a, b)

∣∣∣∣∣ ≤ K(n, p)(b− a)n+ 1
q · ‖f (n)‖p, (3.17)

where

K(n, p) =
1

3(n!)

[∫ 1

0
|Fn(t)|q dt

]1
q

.

Also, we have∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) + T̃n(a, b)

∣∣∣∣∣ ≤ K∗(n, p)(b − a)n+ 1
q · ‖f (n)‖p, (3.18)

where

K∗(n, p) =
1

3(n!)

[∫ 1

0
|Gn(t)|q dt

] 1
q

.
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Proof. Applying the Hölder inequality we have∣∣∣∣∣(b− a)n

3(n!)

∫ b

a
Fn

(
t− a
b− a

)
f (n)(t)dt

∣∣∣∣∣
≤ (b− a)n

3(n!)

[∫ b

a

∣∣∣∣Fn ( t− ab− a

)∣∣∣∣q dt

] 1
q

·
∥∥∥f (n)

∥∥∥
p

=
(b− a)n+ 1

q

3(n!)

[∫ 1

0
|Fn(t)|q dt

] 1
q

·
∥∥∥f (n)

∥∥∥
p

= K(n, p)(b− a)n+ 1
q · ‖f (n)‖p

Using the above inequality, by the Remark 1, from (2.3) we get the estimate(3.14)
In the same manner, from (2.2) we get the estimate (3.18). �

Remark 4. For p =∞ we have

K(n,∞) =
1

3(n!)

∫ 1

0
|Fn(t)| dt

and

K∗(n,∞) =
1

3(n!)

∫ 1

0
|Gn(t)|dt.

The results established in Theorem 4 for p =∞ coincide with the results of Theorem
2 with L = ‖f (n)‖∞. Moreover, by Remark 2 and Corollary 3, we have∣∣∣∣∣

∫ b

a
f(t)dt−D(a, b)

∣∣∣∣∣ ≤ K(n,∞) (b− a)n+1 · ‖f (n)‖∞, n = 1, 2, 3, 4,

where

K(1,∞) =
5

24
, K(2,∞) =

5

324
, K(3,∞) =

1

576
, K(4,∞) =

7

23040
.

Further, by Remark 2 and Corollary 4, for k ≥ 2 we have∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) +Dk−1(a, b)

∣∣∣∣∣ ≤ K(2k − 1,∞)(b− a)2k · ‖f (2k−1)‖∞,
∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) +Dk−1(a, b)

∣∣∣∣∣ ≤ K(2k,∞)(b− a)2k+1 · ‖f (2k)‖∞

and ∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) +Dk(a, b)

∣∣∣∣∣ ≤ K∗(2k,∞)(b− a)2k+1 · ‖f (2k)‖∞,

where

K(2k − 1,∞) =
4
(
1− 2−2k

)
3 [(2k)!]

|B2k| ,

K(2k,∞) =
8 · 2−4k − 6 · 2−2k + 1

3 [(2k)!]
|B2k|

and

K∗(2k,∞) ≤
2
(
8 · 2−4k − 6 · 2−2k + 1

)
3 [(2k)!]

|B2k| .
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Remark 5. Let us define for p = 1

K(n, 1) :=
1

3(n!)
max
t∈[0,1]

|Fn(t)|

and

K∗(n, 1) :=
1

3(n!)
max
t∈[0,1]

|Gn(t)| .

Then, using Remark 3 and Theorem 3, we can extend the results established in
Theorem 4 to the pair p = 1, q =∞. This means that if we set 1

q
= 0, then (3.17)

and (3.18) hold for p = 1. Also, by Remark 3 and Corollary 5, we have∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b)

∣∣∣∣∣ ≤ K(n, 1) (b− a)n · ‖f (n)‖1, n = 1, 2, 3, 4,

where

K(1, 1) =
5

12
, K(2, 1) =

1

24
, K(3, 1) =

5

1296
, K(4, 1) =

1

1152
.

Further, by Remark 3 and Corollary 6, for k ≥ 2 we have∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) +Dk−1(a, b)

∣∣∣∣∣ ≤ K(2k − 1, 1)(b− a)2k−1 · ‖f (2k−1)‖1,

∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) +Dk−1(a, b)

∣∣∣∣∣ ≤ K(2k, 1)(b− a)2k · ‖f (2k)‖1

and ∣∣∣∣∣
∫ b

a
f(t)dt−D(a, b) +Dk(a, b)

∣∣∣∣∣ ≤ K∗(2k, 1)(b − a)2k · ‖f (2k)‖1,

where

K(2k − 1, 1) =
1

3 [(2k − 1)!]
max
t∈[0,1]

|F2k−1(t)| ,

K(2k, 1) =
2
(
1− 2−2k

)
3 [(2k)!]

|B2k|

and

K∗(2k, 1) =
2
(
1 + 4 · 2−2k − 8 · 2−4k

)
3 [(2k)!]

|B2k| .
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4 Error estimates for dual Euler-Simpson quadrature formulae

Let us divide the interval [a, b] into ν subintervals of equal length h = 1
ν
(b − a).

Assume that f : [a, b]→ R is such that f (n−1) is a continuous function of bounded
variation on [a, b], for some n ≥ 1. We consider the repeated dual Euler-Simpson
formula ∫ b

a
f(t)dt = Dν(f)− σn−1(f) + ρn(f) (4.1)

and the repeated modified dual Euler-Simpson formula∫ b

a
f(t)dt = Dν(f)− σn(f) + ρ̃n(f), (4.2)

where

Dν(f) =
ν∑
i=1

D (a + (i− 1) h, a+ ih)

=
h

3

ν∑
i=1

[2f(a + (i− 3/4)h) − f(a + (i− 1/2)h) + 2f(a + (i− 1/4)h)]

and

σm(f) =
ν∑
i=1

T̃m (a + (i− 1)h, a + ih) , m ≥ 0.

Because of (3.11) we have

σ0(f) = σ1(f) = σ2(f) = σ3(f) = 0, (4.3)

while for m ≥ 4, using (3.12) we get

σm(f) =
ν∑
i=1

1

3

[m2 ]∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(a+ ih)− f (2j−1)(a+ (i− 1)h)

]

=
1

3

[m2 ]∑
j=2

h2j

(2j)!
B̃2j

ν∑
i=1

[
f (2j−1)(a+ ih)− f (2j−1)(a+ (i− 1)h)

]

=
1

3

[m2 ]∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(b)− f (2j−1)(a)

]
. (4.4)

The remainders ρn(f) and ρ̃n(f) can be written as

ρn(f) =
ν∑
i=1

ρn(f ; i), ρ̃n(f) =
ν∑
i=1

ρ̃n(f ; i), (4.5)

where, for i = 1, · · · , ν,

ρn(f ; i) =
∫ a+ih

a+(i−1)h
f(t)dt−D (a+ (i− 1)h, a + ih) + T̃n−1 (a + (i− 1)h, a + ih)

and

ρ̃n(f ; i) =
∫ a+ih

a+(i−1)h
f(t)dt−D (a + (i− 1) h, a + ih) + T̃n (a+ (i− 1)h, a + ih) .
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We shall apply the results from the preceding section to obtain some estimates for
the remainders ρn(f) and ρ̃n(f). Before doing this, note that for n = 2k − 1, k ≥ 3,
we have

σ2k−2(f) = σ2k−1(f) =
1

3

k−1∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(b)− f (2j−1)(a)

]
.

Thus
ρ2k−1(f) = ρ̃2k−1(f),

so that (4.1) and (4.2) coincide in this case. This shows that (4.2) can be interesting
only when n = 2k, k ≥ 2. In this case we have

ρ̃2k(f) = ρ2k(f) + σ2k(f)− σ2k−1(f)

= ρ2k(f) +
h2k

3 [(2k)!]
B̃2k

[
f (2k−1)(b)− f (2k−1)(a)

]
.

In fact we have
ρ̃2k−2(f) = ρ2k(f), k ≥ 3.

Therefore, for k ≥ 3 we can approximate
∫ b
a f(t)dt by

Dν(f)− 1

3

k−1∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(b)− f (2j−1)(a)

]
,

using either (4.1) with n = 2k−1 or (4.2) with n = 2k−2. To obtain the error esti-
mate for this approximation, if we apply (4.1), then we must assume that f (2k−2) is a
continuous function of bounded variation on [a, b] . To do this via the formula (4.2),
it is enough to assume that f (2k−3) is a continuous function of bounded variation on
[a, b]

Theorem 5. Let f : [a, b]→ R be such that f (n−1) is an L-Lipschitzian function on
[a, b] for some n ≥ 1.
For n = 1, 2, 3, 4 we have, respectively,∣∣∣∣∣

∫ b

a
f(t)dt−Dν(f)

∣∣∣∣∣ ≤ 5

24
νh2 · L,

∣∣∣∣∣
∫ b

a
f(t)dt−Dν(f)

∣∣∣∣∣ ≤ 5

324
νh3 · L,∣∣∣∣∣

∫ b

a
f(t)dt−Dν(f)

∣∣∣∣∣ ≤ 1

576
νh4 · L,∣∣∣∣∣

∫ b

a
f(t)dt−Dν(f)

∣∣∣∣∣ ≤ 7

23040
νh5 · L.

If n = 2k − 1, k ≥ 3, then∣∣∣∣∣∣
∫ b

a
f(t)dt−Dν(f) +

1

3

k−1∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(b)− f (2j−1)(a)

]∣∣∣∣∣∣
≤ 4νh2k

3 [(2k)!]

(
1− 2−2k

)
|B2k| · L.
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If n = 2k, k ≥ 3, then∣∣∣∣∣∣
∫ b

a
f(t)dt−Dν(f) +

1

3

k−1∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(b)− f (2j−1)(a)

]∣∣∣∣∣∣
≤ νh2k+1

3 [(2k)!]

(
8 · 2−4k − 6 · 2−2k + 1

)
|B2k| · L.

If n = 2k, k ≥ 2, then∣∣∣∣∣∣
∫ b

a
f(t)dt−Dν(f) +

1

3

k∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(b)− f (2j−1)(a)

]∣∣∣∣∣∣
≤ 2νh2k+1

3 [(2k)!]

(
8 · 2−4k − 6 · 2−2k + 1

)
|B2k| · L.

Proof. Applying (3.8) and (3.9) we get for i = 1, · · · , ν, respectively,

|ρn(f ; i)| ≤ hn+1

3(n!)

∫ 1

0
|Fn(t)| dt · L

and

|ρ̃n(f ; i)| ≤ hn+1

3(n!)

∫ 1

0
|Gn(t)|dt · L.

Using the above estimates and the triangle inequality, we get from (4.5)

|ρn(f)| ≤
ν∑
i=1

|ρn(f ; i)| ≤ νhn+1

3(n!)

∫ 1

0
|Fn(t)|dt · L

and

|ρ̃n(f)| ≤
ν∑
i=1

|ρ̃n(f ; i)| ≤ νhn+1

3(n!)

∫ 1

0
|Gn(t)| dt · L.

Now, we use (4.3) and (4.4) and the rest of the argument is quite the same as for
the Corollaries 3 and 4. �

Remark 6. Instead of the assumption that f (n−1) is an L-Lipschitzian function on
[a, b],we can use the stronger assumption that f (n) exists and is bounded on [a, b], for

some n ≥ 1 In this case Theorem 5 applies with L replaced by
∥∥∥f (n)

∥∥∥
∞

(see Remark

2).

Theorem 6. Let f : [a, b] → R be such that f (n−1) is a continuous function of
bounded variation on [a, b] for some n ≥ 1.
For n = 1, 2, 3, 4 we have, respectively,∣∣∣∣∣

∫ b

a
f(t)dt−Dν(f)

∣∣∣∣∣ ≤ 5

12
h · V b

a (f),

∣∣∣∣∣
∫ b

a
f(t)dt−Dν(f)

∣∣∣∣∣ ≤ 1

24
h2 · V b

a (f ′),
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∣∣∣∣∣
∫ b

a
f(t)dt−Dν(f)

∣∣∣∣∣ ≤ 5

1296
h3 · V b

a (f ′′),

∣∣∣∣∣
∫ b

a
f(t)dt−Dν(f)

∣∣∣∣∣ ≤ 1

1152
h4 · V b

a (f ′′′).

If n = 2k − 1, k ≥ 3, then∣∣∣∣∣∣
∫ b

a
f(t)dt−Dν(f) +

1

3

k−1∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(b)− f (2j−1)(a)

]∣∣∣∣∣∣
≤ h2k−1

3 [(2k − 1)!]
max
t∈[0,1]

|F2k−1(t)| · V b
a (f (2k−2)).

If n = 2k, k ≥ 3, then∣∣∣∣∣∣
∫ b

a
f(t)dt−Dν(f) +

1

3

k−1∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(b)− f (2j−1)(a)

]∣∣∣∣∣∣
≤ 2h2k

3 [(2k)!]

(
1− 2−2k

)
|B2k| · V b

a (f (2k−1)).

If n = 2k, k ≥ 2, then∣∣∣∣∣∣
∫ b

a
f(t)dt−Dν(f) +

1

3

k∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(b)− f (2j−1)(a)

]∣∣∣∣∣∣
≤ h2k

3 [(2k)!]

(
1 + 4 · 2−2k − 8 · 2−4k

)
|B2k| · V b

a (f (2k−1)).

Proof. Applying (3.14) and (3.15) we get for i = 1, · · · , ν, respectively,

|ρn(f ; i)| ≤ hn

3(n!)
max
t∈[0,1]

|Fn(t)| · V a+ih
a+(i−1)h(f

(n−1))

and

|ρ̃n(f ; i)| ≤ hn

3(n!)
max
t∈[0,1]

|Gn(t)| · V a+ih
a+(i−1)h(f (n−1)).

Using the above estimates and the triangle inequality, we get from (4.5)

|ρn(f)| ≤
ν∑
i=1

|ρn(f ; i)|

≤ hn

3(n!)
max
t∈[0,1]

|Fn(t)| ·
ν∑
i=1

V a+ih
a+(i−1)h(f (n−1))

=
hn

3(n!)
max
t∈[0,1]

|Fn(t)| · V b
a (f (n−1))

and similarly

|ρ̃n(f)| ≤ hn

3(n!)
max
t∈[0,1]

|Gn(t)| · V b
a (f (n−1))..

Now, we use (4.3) and (4.4) and argue similarly as in the Corollaries 5 and 6. �
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Remark 7. If f : [a, b]→ R is such that f (n) ∈ L1[a, b] for some n ≥ 1, then f (n−1)

is a continuous function of bounded variation on [a, b] and V b
a (f (n−1)) = ‖f (n)‖1.

Therefore, Theorem 6 applies with ‖f (n)‖1 in place of V b
a (f (n−1)) (see Remark 3).

Theorem 7. Assume (p, q) is a pair of conjugate exponents, that is

1 < p, q <∞, 1

p
+

1

q
= 1 or p =∞, q = 1.

Let f : [a, b]→ R be such that f (n) ∈ Lp[a, b] for some n ≥ 1. Then we have

|ρn(f)| ≤ νK(n, p)hn+ 1
q · ‖f (n)‖p

and

|ρ̃n(f)| ≤ νK∗(n, p)hn+ 1
q · ‖f (n)‖p,

where K(n, p) and K∗(n, p) are defined as in Theorem 4.

Proof. For i = 1, · · · , ν consider the function gi(t) = f (n)(t), t ∈ [a + (i− 1)h, a + ih] .
Obviously we have

‖gi‖p ≤ ‖f (n)‖p,

where the norm ‖gi‖p is taken over the interval [a+ (i− 1)h, a + ih] , while the norm
‖f (n)‖p is taken over the interval [a, b] . Applying (3.17) and (3.18) and using the
above inequality, we get for i = 1, · · · , ν

|ρn(f ; i)| ≤ K(n, p)hn+ 1
q · ‖gi‖p ≤ K(n, p)hn+ 1

q · ‖f (n)‖p

and

|ρ̃n(f ; i)| ≤ K∗(n, p)hn+ 1
q · ‖gi‖p ≤ K∗(n, p)hn+ 1

q · ‖f (n)‖p.

The result follows from (4.5) by the triangle inequality. �

In the following discussion we assume that f : [a, b] → R has a continuous
derivative of order n, for some n ≥ 1. In this case we can use (2.3) and the second
formula from Remark 1 to obtain, for i = 1, · · · , ν,

ρn(f ; i) =
hn

3(n!)

∫ a+ih

a+(i−1)h
Fn

(
t− a− (i− 1)h

h

)
f (n)(t)dt

=
hn+1

3(n!)

∫ 1

0
Fn(s)f (n)(a + (i− 1)h + hs)ds.

Therefore, by (4.5) we get

ρn(f) =
hn+1

3(n!)

∫ 1

0
Fn(s)Φn(s)ds, (4.6)

where

Φn(s) =
ν∑
i=1

f (n)(a + (i− 1)h + hs), 0 ≤ s ≤ 1. (4.7)
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Similarly, we get

ρ̃n(f) =
hn+1

3(n!)

∫ 1

0
Gn(s)Φn(s)ds.

Obviously, Φn(s) is a continuous function on [0, 1] and∫ 1

0
Φn(s)ds = h−1

ν∑
i=1

[
f (n−1)(a + ih)− f (n−1)(a+ (i− 1)h)

]
= h−1

[
f (n−1)(b)− f (n−1)(a)

]
. (4.8)

From the discussion given at the beginning of this section it follows that it is the most
interesting to consider the repeated dual Euler-Simpson formula (4.1) for n = 2k,
k ≥ 2, which can be rewritten as∫ b

a
f(t)dt = Dν(f) − 1

3

k−1∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(b)− f (2j−1)(a)

]
+ ρ2k(f). (4.9)

We assume the sum on the right hand side in the above equality to be zero when
k = 2.

Theorem 8. If f : [a, b]→ R is such that f (2k) is a continuous function on [a, b] ,
for some k ≥ 2, then there exists a point η ∈ [a, b] such that

ρ2k(f) = −ν h2k+1

3 [(2k)!]
B̃2kf

(2k)(η). (4.10)

Proof. Using (4.6) we can rewrite ρ2k(f) as

ρ2k(f) = (−1)k
h2k+1

3 [(2k)!]
Jk, (4.11)

where

Jk =
∫ 1

0
(−1)kF2k(s)Φ2k(s)ds. (4.12)

If
m = min

t∈[a,b]
f (2k)(t), M = max

t∈[a,b]
f (2k)(t),

then from (4.7) we get

νm ≤ Φ2k(s) ≤ νM, 0 ≤ s ≤ 1.

On the other side, from Corollary 1 it follows that

(−1)kF2k(s) ≥ 0, 0 ≤ s ≤ 1,

which implies

νm
∫ 1

0
(−1)kF2k(s)ds ≤ Jk ≤ νM

∫ 1

0
(−1)kF2k(s)ds.

We have already calculated in the proof of Corollary 2 that
∫ 1
0 F2k(s)ds = −B̃2k, so

that we have
νm(−1)k−1B̃2k ≤ Jk ≤ νM(−1)k−1B̃2k.

By the continuity of f (2k)(s) on [a, b], it follows that there must exist a point η ∈ [a, b]
such that

Jk = ν(−1)k−1B̃2kf
(2k)(η).

Combining this with (4.11) we get (4.10). �
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Remark 8. The repeated dual Euler-Simpson formula (4.9) is a generalization of
the dual Simpson formula (1.2). Namely from (4.10) for k = 2 and ν = 1 we get

ρ4(f) =
7(b− a)5

23040
f (4)(η)

and (4.9) reduces to (1.2).

Remark 9. In [6, p. 222] the following repeated Euler-Simpson formula has been
considered:∫ b

a
f(t)dt = Sν(f)

+
1

3

k−1∑
j=2

h2j

(2j)!
(1− 4 · 2−2j)B2j

[
f (2j−1)(b)− f (2j−1)(a)

]
+ ρS,2k(f),

where

Sν(f) =
h

6

ν∑
i=1

[f(a + (i− 1)h) + 4f(a + (i− 1/2)h) + f(a + ih)] .

It has been proved that, under the assumptions of Theorem 8, there exists a point
ξ ∈ [a, b] such that [6, p. 225]

ρS,2k(f) = ν
h2k+1

3 [(2k)!]
(1− 4 · 2−2k)B2kf

(2k)(ξ).

We can compare the remainders ρS,2k(f) and ρ2k(f). From (3.3) and (4.10) we get

ρ2k(f) = −ν h2k+1

3 [(2k)!]

(
8 · 2−4k − 6 · 2−2k + 1

)
B2kf

(2k)(η)

= −ν h2k+1

3 [(2k)!]

(
1− 4 · 2−2k

)
(1− 2 · 2−2k)B2kf

(2k)(η).

This gives
ρ2k(f)

ρS,2k(f)
= −(1− 2 · 2−2k)

f (2k)(η)

f (2k)(ξ)
.

Therefore, if f (2k) does not change the sign on [a, b] , then ρ2k(f) and ρS,2k(f) have
opposite signs. Moreover, if f (2k)(t) ≥ 0, a ≤ t ≤ b, then

(−1)k−1IS,2k(f ; ν) ≤ (−1)k−1
∫ b

a
f(t)dt ≤ (−1)k−1I2k(f ; ν),

where

IS,2k(f ; ν) = Sν(f) +
1

3

k−1∑
j=2

h2j

(2j)!
(1− 4 · 2−2j)B2j

[
f (2j−1)(b)− f (2j−1)(a)

]
and

I2k(f ; ν) = Dν(f) − 1

3

k−1∑
j=2

h2j

(2j)!
B̃2j

[
f (2j−1)(b)− f (2j−1)(a)

]
.
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On the contrary, if f (2k)(t) ≤ 0, a ≤ t ≤ b, then

(−1)k−1I2k(f ; ν) ≤ (−1)k−1
∫ b

a
f(t)dt ≤ (−1)k−1IS,2k(f ; ν).

Also note that for the numerical coefficients

K = −ν h2k+1

3 [(2k)!]

(
8 · 2−4k − 6 · 2−2k + 1

)
B2k

and

KS = ν
h2k+1

3 [(2k)!]
(1− 4 · 2−2k)B2k

we have
7

8
≤ − K

KS
= 1− 2 · 2−2k < 1, k ≥ 2.

Thus, if f (2k) changes very slowly, then the approximate equality
∫ b
a f(t)dt = I2k(f ; ν)

will be more accurate than the approximate equality
∫ b
a f(t)dt = IS,2k(f ; ν).

Theorem 9. If f : [a, b]→ R is such that f (2k) is a continuous function on [a, b] ,
for some k ≥ 2, and does not change the sign on [a, b] , then there exists a point
θ ∈ [0, 1] such that

ρ2k(f) = −θ h2k

3 [(2k)!]
2(1− 2−2k)B2k

[
f (2k−1)(b)− f (2k−1)(a)

]
. (4.13)

Proof. Suppose that f (2k)(t) ≥ 0, a ≤ t ≤ b. Then from (4.7) we get

Φ2k(s) ≥ 0, 0 ≤ s ≤ 1.

From Corollary 1 it follows that

0 ≤ (−1)kF2k(s) ≤ (−1)kF2k

(
1

2

)
, 0 ≤ s ≤ 1.

Therefore, if Jk is given by (4.12), then

0 ≤ Jk ≤ (−1)kF2k

(
1

2

) ∫ 1

0
Φ2k(s)ds.

Using (3.6) and (4.8), we get

0 ≤ Jk ≤ (−1)k−12
(
1− 2−2k

)
B2kh

−1
[
f (2k−1)(b)− f (2k−1)(a)

]
,

which means that there must exist a point θ ∈ [0, 1] such that

Jk = θ(−1)k−12
(
1− 2−2k

)
B2kh

−1
[
f (2k−1)(b)− f (2k−1)(a)

]
.

Combining this with (4.11) we get (4.13). The argument is the same when f (2k)(t) ≤
0, a ≤ t ≤ b, since in that case we get

(−1)k−12
(
1− 2−2k

)
B2kh

−1
[
f (2k−1)(b)− f (2k−1)(a)

]
≤ Jk ≤ 0.

�
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Remark 10. If we approximate
∫ b
a f(t)dt by I2k(f ; ν), then the next approximation

will be I2k+2(f ; ν). The difference ∆2k(f ; ν) = I2k+2(f ; ν)− I2k(f ; ν) is equal to the
last term in I2k+2(f ; ν), that is

∆2k(f ; ν) = − h2k

3 [(2k)!]
B̃2k

[
f (2k−1)(b)− f (2k−1)(a)

]
= − h2k

3 [(2k)!]
(1− 2 · 2−2k)(1− 4 · 2−2k)B2k

[
f (2k−1)(b)− f (2k−1)(a)

]
.

We see that, under the assumptions of Theorem 9, ρ2k(f) and ∆2k(f ; ν) are of the
same sign. Moreover, we have

ρ2k(f)

∆2k(f ; ν)
=

2θ(1− 2−2k)

(1− 2 · 2−2k)(1− 4 · 2−2k)
≤ 20

7
θ, k ≥ 2.

Thus, we have the following estimate for the remainder ρ2k(f):

|ρ2k(f)| ≤ 20

7
|∆2k(f ; ν)| , k ≥ 2.
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