# Solutions to equations of $p$-Laplacian type in Lorentz spaces 

P. De Nápoli<br>M.C. Mariani


#### Abstract

We find solutions to the linear problem (1.1) and to the p-Laplacian type problem (1.2) in Lorentz spaces, improving the sumability of the solutions.


## 1 Introduction

We consider the linear problem

$$
(1.1)\left\{\begin{array}{ccccc}
L(u) \equiv \operatorname{div}(M(x) \nabla u) & = & \operatorname{div} F & \text { in } & \Omega \\
u & = & 0 & \text { in } & \partial \Omega
\end{array}\right.
$$

where $\Omega \subset R^{N}$ is a bounded domain and $M(x)$ is a symmetric matrix in $L^{\infty}(\Omega)^{N \times N}$ satisfying the ellipticity condition: $M(x) \xi \cdot \xi \geq \alpha|\xi|^{2}$ for $x \in \Omega, \xi \in$ $\mathbb{R}^{N}(\alpha>0)$, and the nonlinear problem

$$
(1.2)\left\{\begin{array}{ccccc}
N(u) \equiv \operatorname{div}(a(x, u(x), \nabla u(x))) & = & \operatorname{div} F & \text { in } & \Omega \\
u & & 0 & \text { in } & \partial \Omega
\end{array}\right.
$$

Specifically, let $A(u)$ be a monotone operator of Leray-Lions type ([LL],[Li]) : $A(u)=\operatorname{div}(a(x, u, \nabla u))$, with $a: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ a Caratheodory function verifying the following conditions:
i)There exist two constants $\alpha, \beta>0$, and a function $d(x)$ in $L^{p^{\prime}}(\Omega)\left(\frac{1}{p}+\frac{1}{p^{\prime}}=1\right)$, $1<p<N$ such that:

$$
\begin{equation*}
a(x, s, \xi) \xi \geq \alpha|\xi|^{p} \tag{1.3}
\end{equation*}
$$

Received by the editors September 2000.
Communicated by J. Mawhin.
1991 Mathematics Subject Classification : 35J60, 46E30.
Key words and phrases : p-Laplacian, Lorentz spaces, sumability of solutions.

$$
|a(x, s, \xi)| \leq \beta\left(d(x)+|s|^{p-1}+|\xi|^{p-1}\right)
$$

ii) For $\xi, \eta \in R^{N}, \xi \neq \eta$, and a.e. for $x \in \Omega:[a(x, s, \xi)-a(x, s, \eta)] \cdot(\xi-\eta)>0$

We recall that for $a(x, s, \xi)=|\xi|^{p-2} \xi$, the Leray-Lions type operator $A=$ $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-laplacian (See [DJM],[G]).

Our main results are:
Theorem 1 Let $F \in L^{q, q^{\#}}\left(\Omega, \mathbb{R}^{N}\right)$ be, with $L^{q, q^{\#}}$ the Lorentz space, $2<q<N$ and $q^{\#}=\frac{q(N-2)}{N-q}$. Then, there exists a unique solution $u \in H_{0}^{1} \cap L^{q^{*}, q^{\#}}(\Omega)$ to (1.1). Morover we have the a-priori estimate:

$$
\|u\|_{L^{q^{*}, q^{\#}}(\Omega)} \leq C\|F\|_{L^{q, q} q^{\#}}
$$

## Theorem 2

Consider $F \in L^{q, q^{\#}}\left(\Omega, \mathbb{R}^{N}\right)$ and:

$$
\begin{gathered}
p^{\prime}<q<\frac{N}{p-1} \\
q^{\#}=\frac{(N-p) q}{N-(p-1) q}
\end{gathered}
$$

Then, there exists a unique solution $u \in W_{0}^{1, p} \cap L^{r, s}$ to (1.2) where:

$$
\begin{gathered}
r=\frac{N(p-1) q}{N-(p-1) q} \\
s=\frac{(N-p)(p-1) q}{N-(p-1) q}
\end{gathered}
$$

Furthermore, we have the apriori estimate:

$$
\|u\|_{L^{r, s}} \leq C\|F\|_{L^{q, q}}^{p^{\prime}}
$$

Remark The weak formulation of problem (1.1) is: find $u \in H_{0}^{1}(\Omega)$ with

$$
\int_{\Omega} M(x) \nabla u \cdot \nabla \varphi=\int_{\Omega} F \cdot \nabla \varphi \quad \forall \varphi \in H_{0}^{1}(\Omega)
$$

if $F \in\left(L^{2}(\Omega)\right)^{N}$, then $\operatorname{div} F \in H^{-1}(\Omega)$ and from Lax-Milgram's lemma we obtain the existence of a unique solution in $H_{0}^{1}(\Omega)$.

When $F \in L^{q}$ with $q>2$, we obtain a better sumability of the solution $u$ from the following theorem of G. Stampachia ([S2], Theorem 4.2)
Theorem Let $F \in L^{q}(\Omega)^{N}$ with $q>2$, and supose that $u$ is a weak solution to problem (1.1). Then we have:
i) If $2 \leq q<N$ then $u \in L^{q^{*}}(\Omega)$
ii) If $q=N$ then $u \in L^{p}(\Omega)$ for any $p<+\infty$
iii) If $q>N$ we have that $u \in L^{\infty}(\Omega)$

Here $q^{*}=\frac{q N}{N-q}$ is the Sobolev exponent.
As remarked by Boccardo ([B]), a similar result holds in the non-linear case for operators of monotone type.

## Remarks

i) In theorem 1, we have $q^{\#}>q$ hence $L^{q} \subset L^{q, q^{\#}}$, and $q^{\#}<q *$, so $L^{q^{*}, q^{\#}} \subset L^{q^{*}}$.
ii) Theorem 2 is a extension of theorem 1 to the nonlinear case.

## 2 Preliminaries: Lorentz spaces

The Lorentz spaces [Lo] are a generalization of the $L^{p}$ spaces and are related to several topics of Harmonic Analysis, in connection with the Marcinkiewicz interpolation theorem (see [SW],[R]) and with the convolution operators (see [O]).

In this section we give some definitions and results $[\mathrm{T}]$ that we will need in order to prove theorems 1 and 2.
Definition 2.1 Let $(X, \mathcal{M}, \mu)$ a measure space and $u: X \rightarrow \mathbb{R}^{k}$ a measurable function. Suppose that $\mu(\{x \in X: u(x)>t\})<\infty$ for any $t$. The distribution function of $u$, and the decreasing rearangement of $u, u^{*}$, are defined as:

$$
d(t)=d_{u}(t)=\mu(\{x \in X:|u(x)|>t\})
$$

and $u^{*}(s)=\min \left\{t \geq 0: d_{u}(t) \leq s\right\}$.
Definition 2.2 For $1<p<\infty$ we define the pseudo-norm

$$
|u|_{L^{p, q}}=|u|_{L^{p, q}}=\left(\int_{0}^{\infty}\left(s^{1 / p} u^{*}(s)\right)^{q} \frac{d s}{s}\right)^{1 / q}
$$

and

$$
|u|_{L^{p, \infty}}=\sup _{s>0} s^{1 / p} u^{*}(s)
$$

The Lorentz space $L^{p, q}\left(X, \mathbb{R}^{k}\right)$ is defined as the set of measurable functions with $|u|_{L^{p, q}}<\infty$.

We recall that $|u|_{L^{p, q}}$ is not a norm. A norm can be introduced defining

$$
\|u\|_{L^{p, q}}=\left(\int_{0}^{\infty}\left(s^{1 / p} u^{* *}(s)\right)^{q} \frac{d s}{s}\right)^{1 / q}
$$

where

$$
u^{* *}(s)=\frac{1}{s} \int_{0}^{s} u^{*}(t) d t
$$

Proposition 2.3 (Equivalence between $\|u\|_{L^{p, q}}$ and $|u|_{L^{p, q}}$, see $[T]$, (4.v))

1. If $p>1$ then:

$$
\|u\|_{L^{p, 1}}=\frac{p}{p-1} \int_{0}^{\infty} s^{1 / p} u^{*}(s) \frac{d s}{s}
$$

2. If $p>1$ and $1<q \leq \infty$ then:

$$
\left(1-\frac{1}{p}\right)\|u\|_{L^{p, q}} \leq|u|_{L^{p, q}} \leq\|u\|_{L^{p, q}}
$$

We recall that the Lorentz spaces $L^{p, p}$ are the classical spaces $L^{p}$ :

Proposition 2.4 (see [O], lemma 2.2) Let $1<p<\infty$ be and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, then we have:

$$
\|f\|_{L^{p}} \leq\|f\|_{L^{p, p}} \leq p^{\prime}\|f\|_{L^{p}}
$$

From this result and the following one, we can compare the result obtained in $L^{p}$ and the one in the Lorentz space.
Proposition 2.5 (see [T], 4. vii))
Let be $p>1$ and $1 \leq q<r \leq \infty$. Then $L^{p, q} \subset L^{p, r}$ with continuous inclusion.
In the Lorentz spaces it is possible to improve the Sobolev inequality:
Theorem $2.6\left([T]\right.$, Theorem 4.A) Let $1 \leq p<n$ then $W^{1, p}\left(\mathbb{R}^{n}\right) \subset L^{p^{*}, p}\left(R^{n}\right)$, where $p^{*}=\frac{n p}{n-p}$, with continuous imbeding.

Using an standard density argument we obtain:

## Corollary 2.7

Let $\Omega \subset R^{n}$, then $W_{0}^{1, p}(\Omega) \subset L^{p, p^{*}}(\Omega)$ with continuous imbeding, and for $\partial \Omega \in$ $C^{1}$ we have the same result for $W^{1, p}(\Omega)$

We also have an inequality of the Hölder type:
Proposition 2.8 Let $f \in L^{p, q}(X)$ and $g \in L^{p^{\prime}, q^{\prime}}(X)$ be, with $\frac{1}{p}+\frac{1}{p^{\prime}}=\frac{1}{q}+\frac{1}{q^{\prime}}=1$. Then $f \cdot g \in L^{1}(X)$ and the following inequality holds:

$$
\int_{X}|f \cdot g| d \mu \leq|f|_{p, q}|g|_{p^{\prime}, q^{\prime}}
$$

We recall that from ([T], Theorem 1.A) we also have:

$$
\begin{aligned}
& \int_{X}|f \cdot g| d \mu \leq \int_{0}^{\infty} f^{*}(s) g^{*}(s) d s=\int_{0}^{\infty} s^{1 / p} f^{*}(s) \frac{1}{s^{1 / q}} s^{1 / p^{\prime}} g^{*}(s) \frac{1}{s^{1 / q^{\prime}}} d s \\
& \leq\left\{\int_{0}^{\infty}\left(s^{1 / p} f^{*}(s)\right)^{q} \frac{d s}{s}\right\}^{1 / q}\left\{\int_{0}^{\infty}\left(s^{1 / p^{\prime}} f^{*}(s)\right)^{q^{\prime}} \frac{d s}{s}\right\}^{1 / q^{\prime}}=|f|_{p, q}|g|_{p^{\prime}, q^{\prime}}
\end{aligned}
$$

where the last inequality holds from the usual Hölder inequality.
For $k>0$ and $x \in R$ define the truncating function:

$$
T_{k}(x)=\left\{\begin{array}{lll}
-k & \text { if } & x<k \\
x & \text { if } & -k \leq x \leq k \\
k & \text { if } & x>k
\end{array}\right.
$$

Remark 2.9 If

$$
\left\|T_{k}(u)\right\|_{L^{(p, q)}(X)} \leq C
$$

for any $k$, then $u \in L^{p, q}(X)$ and $\|u\|_{L^{(p, q)}(X)} \leq C$.
Remark 2.10 Let $f \in L^{p, q}$ and $m>0$ be. Then $|f|^{m} \in L^{p m, q m}$

$$
\left||f|^{m}\right|_{p, q}=|f|_{m p, m q}^{m}
$$

In fact we have

$$
d_{|u|^{m}}(t)=d_{u}\left(t^{1 / m}\right)
$$

It follows that $\left(|u|^{m}\right)^{*}=\left(u^{*}\right)^{m}$, then,

$$
\left||u|^{m}\right|_{p, q}=\left\{\int_{0}^{\infty}\left(s^{1 / p m} u^{*}(s)\right)^{m q} \frac{d s}{s}\right)^{1 / q}=|u|_{p m, q m}^{m}
$$

## 3 The linear problem

Proof of theorem 1
We choose $\varphi=\frac{1}{2 m+1}\left|T_{k}(u)\right|^{2 m} T_{k}(u)$ as a test function in the weak formulation of the problem.

Hence, $\nabla \varphi=\left|T_{k}(u)\right|^{2 m} \nabla\left(T_{k} u\right), \varphi \in H_{0}^{1}$ and

$$
\begin{equation*}
\int_{\Omega}\left|T_{k}(u)\right|^{2 m} M(x) \nabla u \cdot \nabla T_{k}(u)=\int_{\Omega}\left|T_{k}(u)\right|^{2 m} F \cdot \nabla T_{k}(u) \tag{3.1}
\end{equation*}
$$

Using the ellipticity condition, we can estimate the first term as:

$$
\begin{aligned}
\int_{\Omega}\left|T_{k}(u)\right|^{2 m} M(x) \nabla u \cdot \nabla T_{k}(u)=\int_{\Omega}\left|T_{k}(u)\right|^{2 m} M(x) \nabla & T_{k}(u) \cdot \nabla T_{k}(u) \\
& \geq \alpha \int_{\Omega}\left|\nabla T_{k}(u)\right|^{2}\left|T_{k}(u)\right|^{2 m}
\end{aligned}
$$

Regarding to the second term, we obtain:

$$
\begin{gathered}
\int_{\Omega}\left|T_{k}(u)\right|^{2 m} F \cdot \nabla T_{k}(u) \leq \int_{\Omega}\left|T_{k}(u)\right|^{2 m}|F| \cdot\left|\nabla T_{k}(u)\right| \\
=\int_{\Omega}\left(\left|T_{k}(u)\right|^{m}|F|\right) \cdot\left(\left|T_{k}(u)\right|^{m}\left|\nabla T_{k}(u)\right|\right) \\
\leq\left(\int_{\Omega}\left|T_{k}(u)\right|^{2 m}|F|^{2}\right)^{1 / 2}\left(\int_{\Omega}\left|T_{k}(u)\right|^{m}\left|\nabla T_{k}(u)\right|^{2}\right)^{1 / 2}
\end{gathered}
$$

From the Hölder inequality for Lorentz spaces,

$$
\begin{gathered}
\int_{\Omega}\left|T_{k}(u)\right|^{2 m}|F|^{2} \leq\left.\left||F|^{2}\right|_{L^{q / 2, q^{\# / 2}}}\left|T_{k}(u)\right|^{2 m}\right|_{L^{q /(q-2), q^{\# /(q \#-2)}}} \\
\leq|F|_{L^{q, q^{\#}}}^{2}\left|T_{k} u\right|_{L^{2 m q /(q-2), 2 m q^{\# /(q \#-2)}}}^{2 m}
\end{gathered}
$$

Then, the second term of (3.1) is smaller than

$$
|F|_{L^{q, q} ⿻}\left|T_{k} u\right|_{L^{2 m q /(q-2), 2 m q^{\#} /\left(q^{\#-2)}\right.}}^{m}\left(\int_{\Omega}\left|T_{k}(u)\right|^{2 m}\left|\nabla T_{k}(u)\right|^{2}\right)^{1 / 2}
$$

and writing all together,
$\alpha \int_{\Omega}\left|\nabla T_{k}(u)\right|^{2}\left|T_{k}(u)\right|^{2 m}$

$$
\leq|F|_{L^{q, q}}\left|T_{k} u\right|_{L^{2 m q /(q-2), 2 m q \#} /\left(q^{\#}-2\right)}^{m}\left(\int_{\Omega}\left|T_{k}(u)\right|^{2 m}\left|\nabla T_{k}(u)\right|^{2}\right)^{1 / 2}
$$

or equivalently,

$$
\alpha\left(\int_{\Omega}\left|\nabla T_{k}(u)\right|^{2}\left|T_{k}(u)\right|^{2 m}\right)^{1 / 2} \leq|F|_{L^{q, q}}\left|T_{k} u\right|_{L^{2 m q /(q-2), 2 m q^{\#} /\left(q^{\#}-2\right)}}^{m}
$$

On the other hand, we have that

$$
\left|\nabla T_{k}(u)\right|^{2}\left|T_{k}(u)\right|^{2 m}=\left|\nabla\left(\frac{\left|T_{k}(u)\right|^{m+1}}{m+1}\right)\right|^{2}
$$

then,

$$
\alpha\left\|\nabla\left(\frac{\left|T_{k}(u)\right|^{m+1}}{m+1}\right)\right\|_{L^{2}(\Omega)} \leq|F|_{L^{q, q^{\#}}(\Omega)}\left|T_{k} u\right|_{L^{2 m q /(q-2), 2 m q \# /(q \#-2)}}^{m}
$$

and from the Sobolev inequality in Lorentz spaces:

$$
\left\|\left|T_{k}(u)\right|^{m+1}\right\|_{L^{2^{*}, 2}(\Omega)} \leq c|F|_{L^{q, q \#}}\left|T_{k} u\right|_{L^{2 m q /(q-2), 2 m q} \# /\left(q^{\#}-2\right)}^{m}
$$

where $c$ is a constant depending on the ellipticity constant, on the Sobolev inequality constant and on $m$, but not on $k$.

Finally we have that

$$
\left|T_{k} u\right|_{L^{2 *}(m+1), 2(m+1)}^{m+1} \leq C|F|_{L^{q, q} \neq}\left|T_{k} u\right|_{L^{2 m q /(q-2), 2 m q^{\#} /\left(q^{\#}-2\right)}}^{m}
$$

Now we choose the exponents, in order to have the same norm in both sides of the inequallity:
i) $2^{*}(m+1)=\frac{2 m q}{q-2}$
ii) $2(m+1)=\frac{2 m q^{\#}}{q^{\#}-2}$.

Condition i) is the one in Stampachia's theorem. From i) we obtain: $m=\frac{N(q-2)}{2(N-q)}$.
With this value of $m$, we get

$$
2^{*}(m+1)=\frac{2 m q}{q-2}=\frac{2 q}{q-2} \frac{N(q-2)}{2(N-q)}=\frac{q N}{N-q}=q^{*}
$$

Finally, from ii) we obtain

$$
q^{\#}=2(m+1)=\frac{q(N-2))}{N-q}
$$

and

$$
\left|T_{k} u\right|_{L^{q^{*}, q^{\#}}} \leq c|F|_{L^{q, q^{\#}}}
$$

with $c$ independent of $k$. From remark 2.9 we conclude that $u \in L^{q^{*}, q^{\#}}(\Omega)$ and

$$
|u|_{L^{q^{*}, q^{\#}}(\Omega)} \leq C|F|_{L^{q, q}}
$$

## 4 The nonlinear problem

Proof of theorem 2
First, we recall that for $F \in L^{p^{\prime}}, \operatorname{div} F \in\left(W_{0}^{1, p}(\Omega)\right)^{\prime}$, by the Leray-Lions Theorem ([LL]) $N$ is a monotone operator and there exists a unique solution to the problem:

$$
\text { (1.2) }\left\{\begin{array}{cccc}
N(u) \equiv \operatorname{div}(a(x, u(x), \nabla u(x))) & = & \operatorname{div} F & \text { in } \Omega \\
u & & 0 & \text { in } \partial \Omega
\end{array}\right.
$$

in $W_{0}^{1, p}(\Omega)$.
In order to prove theorem 2, we choose

$$
\varphi=\frac{\left|T_{k}(u)\right|^{m p} T_{k}(u)}{m p+1} \in W_{0}^{1, p}(\Omega)
$$

as a test function in the weak formulation. Then,

$$
\int_{\Omega}\left|T_{k}(u)\right|^{m p} a(x, u, \nabla u) \cdot \nabla T_{k}(u)=\int_{\Omega}\left|T_{k}(u)\right|^{m p} F \cdot \nabla T_{k}(u)
$$

We can estimate the first term using (1.3) as:

$$
\begin{gathered}
\int_{\Omega}\left|T_{k}(u)\right|^{m p} a(x, u, \nabla u) \cdot \nabla T_{k}(u)=\int_{\{|u| \leq k\}}\left|T_{k}(u)\right|^{m p} a\left(x, u, \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) \\
=\int_{\Omega}\left|T_{k}(u)\right|^{p m} a\left(x, u, \nabla T_{k}(u)\right) \cdot \nabla T_{k}(u) \geq \alpha \int_{\Omega}\left|\nabla T_{k}(u)\right|^{p}\left|T_{k}(u)\right|^{p m}
\end{gathered}
$$

and using the Hölder inequality in the second term, we obtain:

$$
\begin{gathered}
\int_{\Omega}\left|T_{k}(u)\right|^{m p} F \cdot \nabla T_{k}(u) \leq \int_{\Omega}\left(\left|T_{k}(u)\right|^{m(p-1)}|F|\right)\left|T_{k}(u)\right|^{m}\left|\nabla T_{k}(u)\right| \\
\leq\left(\int_{\Omega}\left|T_{k} u\right|^{m p}|F|^{p^{\prime}}\right)^{1 / p^{\prime}}\left(\int_{\Omega}\left|T_{k}(u)\right|^{m p}\left|\nabla T_{k} u\right|^{p}\right)^{1 / p}
\end{gathered}
$$

and then,

$$
\int_{\Omega}\left|T_{k} u\right|^{m p}\left|\nabla T_{k} u\right|^{p} \leq \frac{1}{\alpha^{p^{\prime}}} \int_{\Omega}\left|T_{k} u\right|^{m p}|F|^{p^{\prime}}
$$

From the Hölder inequality in Lorentz spaces, and the fact that $F \in L^{q, q^{\#}}(\Omega)$, we get

$$
\int_{\Omega}\left|T_{k}(u)\right|^{m p}|F|^{p^{\prime}} \leq\left\||F|^{p^{\prime}}\right\|_{L^{q / p^{\prime}, q^{\#} / p^{\prime}}}\left\|\left|T_{k}(u)\right|^{m p}\right\|_{L^{q /\left(q-p^{\prime}\right), q^{\#} /\left(q^{\#}-p^{\prime}\right)}}
$$

or equivalently (Remark 2.10),

$$
\int_{\Omega}\left|T_{k}(u)\right|^{m p}|F|^{p^{\prime}} \leq|F|_{L^{q, q}}^{p^{\prime}}{ }^{p^{\prime}}\left|T_{k}(u)\right|_{L^{r, s}}^{m p}
$$

where

$$
r=\frac{m p q}{q-p^{\prime}}, \quad s=\frac{m p q^{\#}}{q^{\#}-p^{\prime}}
$$

On the other hand, by Sobolev inequallity,

$$
\begin{aligned}
& \int_{\Omega}\left|T_{k}(u)\right|^{m p}\left|\nabla T_{k} u\right|^{p}=\int_{\Omega}\left|\nabla\left(\frac{\left|T_{k}(u)\right|^{m} T_{k}(u)}{m+1}\right)\right|^{p} \\
& \geq c\left\|\left|T_{k}(u)\right|^{m} T_{k}(u)\right\|_{L^{p^{*}, p}}^{p}=\left\|T_{k}(u)\right\|_{L^{p^{*}(m+1), p(m+1)}(m+1) p}^{p}
\end{aligned}
$$

with $c=c(m, \Omega)$.
Then,

$$
\left\|T_{k} u\right\|_{L^{p^{*}(m+1), p(m+1)}}^{(m+1) p} \leq c\|F\|_{L^{q, q} q^{\#}}^{p^{\prime}}\left\|T_{k}(u)\right\|_{L^{r, s}}^{m p}
$$

Now we choose $m$ and $q^{\#}$ such that:
$r=p^{*}(m+1)=\frac{m p q}{q-p^{\prime}}$, and $s=p(m+1)=\frac{m p q^{*}}{q^{*}-p^{\prime}}$.
Solving the first equation for $m$ :

$$
m=\frac{\frac{N}{N-p}}{\frac{q}{q-p^{\prime}}-\frac{N}{N-p}}
$$

From $p^{\prime}<q<\frac{N}{p-1}$, we obtain $m>0$. Hence,

$$
\begin{aligned}
& r=p^{*}(m+1)=\frac{N(p-1) q}{N-(p-1) q} \\
& s=p(m+1)=\frac{(N-p)(p-1) q}{N-(p-1) q}
\end{aligned}
$$

and from the second equation

$$
q^{\#}=\frac{(N-p) q}{N-(p-1) q}
$$

From proposition 2.9 we get:

$$
\|u\|_{L^{r, s}} \leq C\|F\|_{L^{q, q^{\#}}}^{p^{\prime}}
$$

## References

[B] L. Bocardo - Probleme Ellittici con Termine Noto $L^{1}$ e Misura (Course notes)S.I.S.A. 114/96/M (July 96)
[DJM] G. Dinca, P. Jebelean, J. Mawhin - Variational and Topological Methods for Dirichlet Problems with p-Laplacian
[G] J.-P. Gossez - Some Remarks on the Antimaximum Principle - Revista de la Unión Matemática Argentina- vol. 41 , 1 (1998) pp. 79-84
[Li] J.L. Lions- Quelques Méthodes de résolution des problémes aux limites non lineaires - Dunod - Gauthier-Villars - Paris (1969)
[LL] J. Leray , J.L. Lions - Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder- Bull. Soc. math. France 93, (1963) pp. 97-107
[Lo] G.G. Lorentz, Some New Functional Spaces, Annals of Mathematics, vol. 51 (1950) pp. 37-55.
[O] R. O'Neil, Convolution Operators and $L(p, q)$ Spaces - Duke Math. J. 30 (1963) pp. 129-142.
[R] N.M. Riviere, Interpolación a la Marcinkiewicz - Revista de la Unión Matemática Argentina, Vol 25 (1971) pp. 363-377.
[SW] E.M. Stein , G. Weiss - Introduction to Fourier Analysis on Euclidean Spaces - Princeton University Press, 1971.
[S] G. Stampacchia - Le problème de Dirichlet pour les Équations Elliptiques du Second Ordre à Coefficients Discontinus - Ann. Inst. Fourier, Grenoble - vol. 15, 1 (1965)- pp. 189-258
[T] G. Talenti - Inequallities in Rearrangement Invariant Function Spaces in Nonlinear analysis, function spaces and applications, Vol. 5 Proceedings of the Spring School held in Prague, May 23-28, 1994. Mathematical Institute, Czech Academy of Sciences, and Prometheus Publishing House, Praha 1995 p. 177-230
(Internet Addres: http://rattler.cameron.edu/emis/procedings/praha94/8.html)
P. De Nápoli

Dpto. de Matemática
Fac. de Cs. Exactas y Naturales, UBA
Pab. I, Ciudad Universitaria (1428) Buenos Aires, Argentina

Address for correspondence: Prof. M. C. Mariani,
Dpto. de Matemática
Fac. de Cs. Exactas y Naturales, UBA
Pab. I, Ciudad Universitaria (1428) Capital, Argentina
E-mail: mcmarian@dm.uba.ar

