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Abstract

Finite quotients of the sphere S2n+1 under certain groups of isometries
admits K-contact forms with exacly n + 1 closed characteristics. We prove
that if a closed connected 2n+1-dimensional smooth manifold M admits a K-
contact form with exactly n+1 closed characteristics, then it is finitely covered
by the 2n+1-dimensional sphere. In particular, ifM is simply connected, then
it is homeomorphic to S2n+1.

0 Introduction

This note stands as a correction to the paper Spherical rigidity via contact
dynamics, Bull. Belg. Math. Soc. 7 (2000), 563-569. The results in the above
mentioned paper are valid only up to finite coverings of the K-contact manifolds
involved. Indeed, there are examples of K-contact 2n + 1-dimensional manifolds
with exactly n + 1 closed characteristics and with finite nontrivial fundamental
groups (See the end of section 1 for details).

The text in [RU4] has been modified so as to take into account the above obser-
vation.
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1 Preliminaries

A classical topological application of Morse Theory states that an n-dimensional
closed manifold admitting a Morse function with only 2 critical points is homeo-
morphic with the sphere Sn ([HIR], p. 54). Since Morse Theory has been extended
into Morse-Bott Theory with the notion of nondegenerate critical manifolds ([BOT]),
it is quite natural to investigate the rigidity of the sphere using this generalized Morse
Theory. This is attempted in this note, but only in the contact geometric setting.

The work presented in this paper is a slight improvement of that started in [RU1].
We start with the basic contact geometric vocabulary that will be used through-

out this paper. A contact form on a 2n + 1-dimensional manifold M is a 1-form α
such that the identity

α ∧ (dα)n 6= 0

holds everywhere on M . Given such a 1-form, there is always a unique vector field
ξ satisfying α(ξ) = 1 and iξdα = 0. The vector field ξ is called the characteristic
vector field of the contact form α and the corresponding 1-dimensional foliation is
called a contact flow.

A contact form is said to be almost regular if its characteristic vector field is
almost regular, that is: each point in M belongs to a flow box pierced by the flow
only a finite number of times. If M is compact, all leaves are circles and since
the flow lines are geodesics in an appropriate metric (see below), it follows from a
theorem of Wadsley ([WAD]) that the leaves are orbits of a circle action on M . If
this action is free, then the contact form is said to be regular.

Every contact manifold (M,α) admits a nonunique riemannian metric g and a
(1,1) tensor field J such that the following identities hold ([BLA]):

Jξ = 0, α(ξ) = 1, J2 = −I + α ⊗ ξ, α(X) = g(ξ,X)

g(JX, JY ) = g(X, Y )− α(X)α(Y ), g(X, JY ) = dα(X, Y ).

The tensors g, α, ξ and J will be referred to as structure tensors and g is called
a contact metric adapted to α. When the characteristic vector field ξ is Killing
with respect to a contact metric g, then the manifold is said to be K-contact. All
almost regular contact manifolds are K-contact, but a K-contact form need not
be almost regular. However, any K-contact, compact manifold admits an almost
regular contact form ([RU2]).

Proposition 1. Every 2n + 1-dimensional sphere carries a K-contact form with
exactly n+ 1 closed characteristics.

Proof. These K-contact forms come from perturbations of the canonical sasakian
form on S2n+1 (see for example [BLA] for the definition of sasakian). Indeed, consider
the sphere S2n+1 as the set:

{(z1, z2, ..., zn+1) ∈ Cn+1, |z1|2 + |z2|2 + ...+ zn+1|2 = 1}

with the periodic R action φt : (z1, z2, ..., zn+1) 7→ (eitz1, e
itz2, ..., e

itzn+1). The vector
field ξ = d

dt |t=0
φt is the characteristic vector field of the standard sasakian (hence

K-contact) form α on the unit sphere.
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Consider now the isometric perturbation φλt :

φλt : (z1, z2, ..., zn+1) 7→ (eiλ1tz1, e
iλ2tz2, ..., e

itzn+1),

where the λ′js are real positive constants with λn+1 = 1. If the λj’s are rationally

independent, then the flow generated by ξλ = d
dt |t=0

φλt contains exactly n+1 compact

leaves which are circles. Let us denote by µ = ξλ − ξ. The vector field µ has the
following properties:

Lµg0 = 0, [µ, ξ] = 0, 1 + α(µ) > 0.

It is well known that with such a µ, the vector field ξλ = ξ + µ is characteristic for
a sasakian form ([KOY], Theorem 7.2). �

Let ρ be an isometry of S2n+1 such that ρs = 1 for some integer s, ρ(p) 6= p ∀p ∈
S2n+1 and ρ∗ξλ = ξλ. Denoting by Γ the finite group generated by ρ, one sees that
the manifold M2n+1 = S2n+1/Γ supports the K-contact form βλ = α

α(ξλ)
, and for

rationally independent λ, βλ has exactly n+ 1 closed characteristics. In particular,
in dimension 3, there are lens spaces supporting K-contact forms with exactly 2
closed characteristics.

We will prove that the existence of a K-contact form whose contact flow has
the minimum possible number of compact leaves characterizes the sphere up to
homeomorphism (diffeomorphism in dimensions ≤ 5) and finite covering. This is a
generalization of the result in [RU1] where the manifolds were assumed to be simply
connected.

2 Morse theory on K-contact manifolds

Let α, ξ, g be K-contact structure tensors on a closed manifoldM of dimension 2n+1.
There exist a periodic Killing vector field Z commuting with ξ such that closed
characteristics of α are exactly critical circles of the function α(Z) ([BAR]). In [RU1]
(see also [RU3]), Morse theory was carried out on closed K-contact manifolds and it
was established that the critical manifolds of the function α(Z) are all nondegenerate
and each has even index. Such functions are known to have a unique local minimum
(global minimum if M is compact) and all of their level surfaces are connected
([GST]).

Using a combination of Morse Theory with Carrière’s classification of riemannian
flows, we establish the following rigidity result for the 3-sphere.

Proposition 2. A closed 3-manifold is diffeomorphic with a lens space if it carries
a K-contact form with exactly 2 closed characteristics.

Proof. Let us denote the 3-manifold by M . Each of the two closed characteristics
has a solid torus tubular neighborhood, so M is the union of 2 solid tori glued
together by their boundaries. This means that M admits a genus-one Heegaard
decomposition. The only closed 3-manifolds admitting such a decomposition are
lens spaces (including S3) and S2×S1. Being sasakian, M cannot be diffeomorphic
with S2 × S1 (H1(M,R) must be trivial or have even rank, ([TAC])), therefore the
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contact flow on M is differentiably conjugate to an isometric flow on a lens space
Lp,q, the quotient of a standard sphere S3 under a finite abelian group of isometries
Γ ([CAR]). �

Since the 3-sphere carries a K-contact form with exactly 2 closed characteristics
(Proposition 1), it follows immediately from Proposition 2:

Corollary. A simply connected closed 3-manifold is diffeomorphic to S3 if and
only if it carries a K-contact form with exactly 2 closed characteristics.

3 Spherical rigidity

Given a K-contact manifold M2n+1 with n+ 1 closed characteristics, N0, N1,..., Nn

which are critical circles of a function α(Z) with index 0, 2, ..., 2n respectively, we
shall denote byM2k+1, 0 ≤ k ≤ n, the closures of the sets {x ∈M2n+1, limt→∞Ψt(x)
∈ Nk}, where Ψt is the gradient flow for the function α(Z). For an arbitrary vector
field Y on M2n+1, one has

d(α(Z))(Y ) = diZα(Y ) = g(JZ, Y ).

Therefore, Ψt is generated by the vector field JZ. For the argument to follow,
we point out that ξ, Z and JZ are commuting vector fields. The subsets M2k+1

constitute a stratification of M2n+1 as follows:

M1 ⊂ M3 ⊂M5 ⊂ ... ⊂ M2n−1 ⊂ M2n+1 (1)

and each M2k+1 is a closed 2k+1-dimensional submanifold with k+1 nondegenerate
critical circles for the restriction of α(Z).

Proposition 3. M3 is a K-contact submanifold, which is diffeomorphic with a
lens space.

Proof. For x ∈ N0 or x ∈ N1; if v ∈ TxM
3 and α(v) = 0, then the fact that

Jv ∈ TxM3 follows from J -invariance of the splitting νNi = ν−Ni ⊕ ν
+
Ni

for the normal
bundle of Ni, i = 0, 1 (see Proposition 2 in [RU1]). For x ∈ M3 − (N0 ∪ N1), the
tangent space TxM

3 is spanned by the vectors JZ, ξ and Z−α(Z)ξ and is therefore
J -invariant. This implies that M3 is a K-contact submanifold.

Since M3 supports a K-contact flow with exactly two closed characteristics, it
follows from Prposition 2 that M3 must be diffeomorphic with a lens space. �

Proposition 4. The fundamental group of a closed K-contact 2n+1-dimensional
manifold with exactly n+ 1 closed characteristics is finite abelian.

Proof. Let
π : M̃ → M2n+1

denote the universal covering of the K-contact manifold M2n+1 with exactly n+1
closed characteristics. For n = 1, Proposition 4 follows immediately from Propos-
ition 2. So we may assume n ≥ 2. The universal covering space M̃ inherits a
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K-contact form whose closed characteristics are nondegenerate critical circles of a

function α̃(Z), all of whose critical manifolds have even indices. In particular there
is exactly one critical circle of index 0, that is π−1(M1). As a consequence, each
connected component of π−1(M3) contains the circle π−1(M1) and hence, π−1(M3)
is connected, making it into a covering space of M3.

Now let p ∈M3 and C be a loop in M2n+1 based at p. Let γ be a lift of C with
initial point q1 and terminal point q2 both in π−1(p) ⊂ π−1(M3). Since π−1(M3) is
connected, there is a path γ′ ∈ π−1(M3) connecting q1 to q2. The paths γ′ and γ
are homotopic in M̃ and therefore, π(γ′) ⊂ M3 is a loop based at p, homotopic to
C . This proves that the natural homomorphism

π1 : π1(M
3)→ π1(M

2n+1)

is surjective. But since π1(M
3) is finite abelian, we conclude that π1(M

2n+1) is finite
abelian. �

Let W 2n+1 denote the (finite) covering of M2n+1 in which M3 lifts to S3. W 2n+1

is also a K-contact manifold with exactly n+1 closed characteristics also denoted by
N0, ...,Nn. The subsets W 2k−1 and Nk are disjoint closed submanifolds of W 2k+1, so
each has a tubular neighborhood inW 2k+1. In fact, one can find open neighborhoods
U of W 2k−1 and V of Nk such that W 2k−1, Nk ' S1 and S2k−1×S1 are deformation
retracts of U , V and U∩V respectively. The Mayer-Vietoris sequence for the (integer
coefficients) homology yields the following long exact sequence:

...→ H∗(S2k−1 × S1)→ H∗(W 2k−1)⊕H∗(S1)→ H∗(W 2k+1)→ H∗−1(S2k−1 × S1)→ ...

(2)

Lemma 1. For 1 ≤ k ≤ n, H1(W
2k+1) ' {0} and for 2 ≤ k ≤ n, H2(W

2k−1) '
H2(W

2k+1).

Proof. Writing the exact sequence (2) for ∗ = 2, k 6= 1, one obtains:

0→ H2(W
2k−1)→ H2(W

2k+1)→ Z→ H1(W
2k−1)⊕ Z→ 0

The lemma follows since H1(W
2n+1) = {0} and H1(W

3) = {0}. �

Lemma 2. For 2 ≤ k ≤ n, if W 2k−1 is a homology sphere, then so is W 2k+1.

Proof. SinceH1(W
2k+1) ' {0} by Lemma 1, we need only to show thatHi(W

2k+1) '
{0} fro 2 ≤ i ≤ 2k.

Writing the exact sequence for ∗ = 2l, 1 < l < k and use the hypothesis, one
obtains the exact sequence:

0→ H2l(W
2k+1)→ 0→ 0→ H2l−1(W

2k+1)→ 0

from which follows that Hi(W
2k+1) ' {0} for 3 ≤ i ≤ 2k − 2.

Next consider the sequence (2) for ∗ = 2 and use Lemma 1 to obtain the exact
sequence

0→ H2(W
2k+1)→ Z→ Z→ 0
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leading to H2(W
2k+1) ' {0}.

Using Poincaré Duality in conjunction with the isomorphisms H0(W
2k+1) ' Z

and H1(W
2k+1) ' {0}, one obtains the following sequence of isomorphisms:

H2k(W
2k+1) ' H1(W 2k+1) ' Hom(H1(W

2k+1),Z) ' {0}.

Finally using Poincaré Duality again in conjunction with the isomorphisms
H1(W

2k+1) ' {0} and H2(W
2k+1) ' {0}, one obtains the following sequence of

isomorphisms:

H2k−1(W
2k+1) ' H2(W 2k+1) ' Hom(H2(W

2k+1),Z) ' {0}.

We have thus shown that Hi(W
2k+1) ' {0} for 2 ≤ i ≤ 2k. �

Theorem 1. Up to a finite covering, a closed smooth 2n+1-dimensional manifold
is homeomorphic with the 2n+1-sphere if and only if it admits a K-contact form
with exactly n+1 closed characteristics.

Proof. We have pointed out in Proposition 1 that odd dimensional spheres admit
K-contact forms with exactly the minimal number of closed characteristics (see also
[RU2]). So it remains only to prove the if part of our statement.

LetM2n+1 be a K-contact closed manifold with exactly n+1 closed characteristics
and let W 1 ⊂ W 3 ⊂ ... ⊂ W 2n+1 be the stratification of its universal coveringW 2n+1

as in (1). Since W 3 is diffeomorphic with S3, using Lemma 2 and induction on k,
we see that W 2n+1 is a homology sphere. Now, for n ≥ 2, since W 2n+1 is simply
connected, our theorem follows from Smale’s solution to the generalized Poincaré
conjecture ([SMA]). For n = 1, the theorem reduces to Proposition 2. �
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