A lemma on the randomness of d-th powers in $G F(q), d \mid q-1$

P. Sziklai*

Abstract

In this short note a theorem on the random-like behaviour of d-th powers in $G F(q)$ is proved, for $d \mid q-1$. It is a common generalization of a result by Szőnyi [4] and another by Babai, Gál and Wigderson [1].

1 Introduction

In this paper we prove a theorem, which is a common generalization of a result of Szőnyi [4] and another by Babai, Gál and Wigderson [1]. It is interesting in itself, applications can be found in future. Its moral, roughly speaking, is that under some light and natural conditions, it is a "random event of probability $\frac{1}{d}$ " being a d-th power in $G F(q)$, where d is a divisor of $q-1$.

In fact this theorem is a consequence of the character sum version of Weil's estimate. In order to formulate it, we need a

Definition 1.1. Let $f_{1}(x), \ldots, f_{m}(x) \in G F(q)[x]$ be given polynomials. We say that their system is d-power independent, if no partial product $f_{i_{1}}^{s_{1}} f_{i_{2}}^{s_{2}} \ldots f_{i_{j}}^{s_{j}}(1 \leq j \leq m$; $\left.1 \leq i_{1}<i_{2}<\ldots<i_{j} \leq m ; 1 \leq s_{1}, s_{2}, \ldots, s_{j} \leq d-1\right)$ can be written as a constant multiple of a d-th power of a polynomial.

Equivalently, one may say that if any product $f_{i_{1}}^{s_{1}} f_{i_{2}}^{s_{2}} \ldots f_{i_{j}}^{s_{j}}$ is a constant multiple of a d-th power of a polynomial, then this product is 'trivial', i.e. for all the exponents $d \mid s_{i}, i=1, \ldots, j$. Now

[^0]Theorem 1.2. Let $f_{1}(x), \ldots, f_{m}(x) \in G F(q)[x]$ be a set of d-power independent polynomials, where $d \mid(q-1)$. If

$$
d^{m-1} \sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)<\frac{q+\sqrt{q}\left(d^{m}-1\right)}{\frac{d(d-1)}{2} \sqrt{q}+1}
$$

then there is an $x_{0} \in G F(q)$ such that every $f_{i}\left(x_{0}\right)$ is a d-th power in $G F(q)$ for every $i=1, \ldots, m$. More precisely, if we denote the number of these $x_{0}-s$ by N, then

$$
\left|N-\frac{q}{d^{m}}\right| \leq\left(\frac{d-1}{2} \sqrt{q}+\frac{1}{d}\right) \sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)-\sqrt{q}\left(1-\frac{1}{d^{m}}\right) .
$$

For the sake of simplicity one can say that if $\sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)<\frac{2 \sqrt{q}}{d^{m}(d-1)}$ then $\mid N-$ $\frac{q}{d^{m}} \left\lvert\, \leq \frac{d-1}{2} \sqrt{q} \sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)\right.$, if $d^{m} \geq 4$.

Note that this theorem implies that, under some natural conditions, one can solve a system of equations

$$
\chi_{d}\left(f_{i}(x)\right)=\delta_{i} \quad(i=1, \ldots, m)
$$

where the δ_{i}-s are d-th complex roots of unity, and χ_{d} is the multiplicative character of order d. So 'the d-th power behaviour' can be prescribed if the polynomials are 'independent'. It can be interpreted as 'being a d-th power' is like a random event of probability $\frac{1}{d}$.

Some words about the condition $d \mid(q-1)$: as the d-th and the g.c.d. $(d, q-1)$-th powers are the same, if $d \mid q-1$ were not the case, one may apply the lemma with g.c.d. $(d, q-1)$ instead of d.

We remark that Szőnyi [4] proved this theorem for $d=2$, while L. Babai, A. Gál and Wigderson [1] for linear polynomials.

We will need
Result 1.3 (character sum version of Weil's estimate, [2], Thm. 5.41) Let $f(x)$ be a polynomial over $G F(q)$ and r the number of distinct roots of f in its splitting field. If χ_{e} is a multiplicative character (of order e) of $G F(q)$ and $f(x) \neq c g(x)^{e}$, then

$$
\left|\sum_{x \in G F(q)} \chi_{e}(f(x))\right| \leq(r-1) \sqrt{q}
$$

2 The proof

Proof of Theorem 1.2: First note that we use the definition $\chi(x)=\chi_{d}(x)=x^{\frac{q-1}{d}}$. Let $\left\{\varepsilon_{0}=1, \varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{d-1}\right\}$ be the set of d-th complex roots of unity. Define the following expression:

$$
\begin{aligned}
H & =\sum_{x \in G F(q)} \prod_{i=1}^{m}\left(\chi\left(f_{i}(x)\right)-\varepsilon_{1}\right)\left(\chi\left(f_{i}(x)\right)-\varepsilon_{2}\right) \ldots\left(\chi\left(f_{i}(x)\right)-\varepsilon_{d-1}\right) \\
& =\sum_{x \in G F(q)} \prod_{i=1}^{m}\left(\chi\left(f_{i}(x)\right)^{d-1}+\chi\left(f_{i}(x)\right)^{d-2}+\ldots+\chi\left(f_{i}(x)\right)+1\right) .
\end{aligned}
$$

As N denotes the number of 'solutions', H is roughly $d^{m} N$ (because the product $\left(\chi\left(f_{i}(x)\right)-\varepsilon_{1}\right)\left(\chi\left(f_{i}(x)\right)-\varepsilon_{2}\right) \ldots\left(\chi\left(f_{i}(x)\right)-\varepsilon_{d-1}\right)$ is zero if $\chi\left(f_{i}(x)\right) \neq 1$ or 0 ; it is ± 1 if $f_{i}(x)=0$ and it is as big as d iff $\chi\left(f_{i}(x)\right)=1$). An 'error term' comes from the zeros of the polynomials:

$$
\left|H-d^{m} N\right| \leq d^{m-1} \sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)
$$

Let's examine H :

$$
H=q+\sum_{x \in G F(q)} \sum_{j=1}^{m} \sum_{1 \leq i_{1}<\ldots<i_{j} \leq m} \sum_{1 \leq s_{1}, \ldots, s_{j} \leq d-1} \chi\left(f_{i_{1}}(x)^{s_{1}} f_{i_{2}}(x)^{s_{2}} \ldots f_{i_{j}}(x)^{s_{j}}\right) .
$$

The second term (which is a real integer in fact, but it is not important for us now) has absolute value less than

$$
|H-q| \leq \sum_{j=1}^{m} \sum_{1 \leq i_{1}<\ldots<i_{j} \leq m} \sum_{1 \leq s_{1}, \ldots, s_{j} \leq d-1}\left(\sum_{k=1}^{j} \operatorname{deg}\left(f_{i_{k}}\right) s_{k}-1\right) \sqrt{q}
$$

by Weil. But this is equal to

$$
\begin{aligned}
& \sqrt{q} \sum_{j=1}^{m} \sum_{1 \leq i_{1}<\ldots<i_{j} \leq m} \sum_{k=1}^{j} \operatorname{deg}\left(f_{i_{k}}\right)(d-1)^{j-1} \sum_{l=1}^{d-1} l-\sqrt{q} \sum_{j=1}^{m}\binom{m}{j}(d-1)^{j} \\
= & \frac{d(d-1)}{2} \sqrt{q} \sum_{j=1}^{m}(d-1)^{j-1}\binom{m-1}{j-1} \sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)-\sqrt{q}\left(d^{m}-1\right) \\
= & \frac{d(d-1)}{2} d^{m-1} \sqrt{q} \sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)-\sqrt{q}\left(d^{m}-1\right) .
\end{aligned}
$$

Now, using the assumption

$$
d^{m-1} \sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)<\frac{q+\sqrt{q}\left(d^{m}-1\right)}{\frac{d(d-1)}{2} \sqrt{q}+1}
$$

we have

$$
\frac{d(d-1)}{2} d^{m-1} \sqrt{q} \sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)-\sqrt{q}\left(d^{m}-1\right)+d^{m-1} \sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)<q,
$$

so $N>0$ and the existence of x_{0} is proved. For the inequality we can divide the left hand side by d^{m} to get

$$
\left|N-\frac{q}{d^{m}}\right| \leq\left(\frac{d-1}{2} \sqrt{q}+\frac{1}{d}\right) \sum_{i=1}^{m} \operatorname{deg}\left(f_{i}\right)-\sqrt{q}\left(1-\frac{1}{d^{m}}\right) .
$$

References

[1] L. Babai, A. Gál and A. Wigderson, Superpolynomial lower bounds for monotone span programs, Combinatorica, to appear.
[2] Lidl and Niederreiter, Finite fields, Encyclopedy of Mathematics 20, Addison-Wesley, Reading, 1983.
[3] T. SzŐnyI, On the number of directions determined by a set of points in an affine Galois plane, J. Comb. Theory A 74 (1996), 141-146.
[4] T. SzőNYI, Note on the existence of large minimal blocking sets in Galois planes, Combinatorica 12 (1992), 227-235.

Technical University Budapest

Pázmány P. sétany 1/d, Budapest, Hungary H-1117
email : sziklai@cs.bme.hu

[^0]: *Research was partially supported by OTKA F030737, D32817 and Eötvös grants.
 Received by the editors February 2000.
 Communicated by J. Thas.

