A Nonmeasurable Partition of the Reals

Paula Kemp

Abstract

It is shown that there are Vitali type Lebesgue nonmeasurable subsets V of, say, the real unit interval with outer measure of V being equal to any preassigned positive real ≤ 1 and with inner measure of V being always equal to 0 .

The present paper is in the setting of the real numbers which is denoted by R. All notions of measure are in the sense of Lebesgue [1, p.62]. As usual, $m^{*}(S), m_{*}(S)$ and $m(S)$ respectively, stand for the outer measure, the inner measure, and the measure of a subset S of R.

Vitali's construction $[2, \mathrm{p} .22]$ of a nonmeasurable subset V of the closedopen unit interval $[0,1)$ denoted by I, is very often stated in the literature. However, no mention of the value of the outer measure $m^{*}(V)$ of any V is given.

Below we show that for every positive real number $r \leq 1$, there exists a Vitali nonmeasurable subset V of the unit interval $[0,1)$ such that $m^{*}(V)=r$ and always $m_{*}(V)=0$.

First however, we prove the following:
LEMMA 1. Let A be a subset of a nonempty closed-open interval $[a, b)$ such that A has at least one point in common with every closed subset of positive measure of $[a, b)$. Then
(1) $m^{*}(A)=b-a$

Proof. Assume on the contrary that $m^{*}(A)<b-a$. Then A can be covered by an open set E with $m(E)<b-a$. Clearly $[a, b)-E$ has a closed subset of positive measure of $[a, b)$ which has no point in common with A, contradicting our assumption. Thus the Lemma is proved.

[^0]Using the Axiom of Choice, we let W denote a well ordering of $[0,1)$.
In what follows any order among the elements of subsets of $[0,1)$ is made in connection with W. Thus, every subset of $[0,1)$ is well ordered.

We recall $[3$, p. 6$]$ that every uncountable closed subset of R is of the continuum cardinality $\aleph=\overline{\bar{R}}$ and therefore:
(2) every closed subset C_{u} of positive measure of $[a, b)$ is of cardinality \aleph

We recall also that the set of all closed subsets of the nonempty interval $[a, b)$ has cardinality \aleph and therefore:
(3) the set C of all closed subsets C_{u} of positive measure of the nonempty interval $[a, b)$ forms a family indexed by \aleph, i.e., $C=\left(C_{u}\right)_{u \in \aleph}$
where without loss of generality we let

$$
\begin{equation*}
a \in C_{0} \tag{4}
\end{equation*}
$$

Below Q stands for the subset of all rational numbers in I and for every real number r of I, we let

$$
\begin{equation*}
r+Q=\{r+q: q \in Q\} \tag{5}
\end{equation*}
$$

From now on we assume that $[a, b)$ is a nonempty interval of $I=[0,1)$, i.e.,
$\left(^{*}\right) \quad[a, b) \subseteq[0,1)$ with $\quad b>a$

THEOREM 1. The interval $[0,1)$ is the union of continuum many pairwise disjoint subsets S_{u} of $\left[0,1\right.$) such that any closed subset C_{u} mentioned in (3) has at least one point in common with one of the S_{u} 's.

Proof. For ordinals u elements of \aleph, based on (3), we define

$$
\begin{equation*}
S_{0}=c_{0}+Q(\bmod 1) \quad \text { with } \quad c_{0}=a \tag{6}
\end{equation*}
$$

and

$$
\begin{align*}
& S_{u}=c_{u}+Q(\bmod 1) \quad \text { where } c_{u} \text { is the first element (with respect } \tag{7}\\
& \text { to } W) \text { of } C_{u}-\left(\cup\left(S_{i}\right)_{i<u}\right) \quad \text { for every nonzero } u<\aleph
\end{align*}
$$

The above is possible since for every $u<\aleph$ by $\left(^{*}\right)$ and by (2) we have $\overline{\bar{C}}_{u}=\aleph$ and $\left.\overline{\bar{\cup}}_{i}\right)_{i<u}<\aleph$ in asmuch as every S_{u} is countable and $\overline{\bar{u}}<\aleph$.

From (6) and (7) it follows that
(8) if $u<v$ then $S_{u} \cap S_{v}=\emptyset$
since otherwise $c_{u}+q_{1}=c_{v}+q_{2}(\bmod 1)$ for rationals q_{1} and q_{2} in Q which contradicts (7). Hence,
(9) $\quad\left(S_{u}\right)_{u<\aleph}$ are pairwise disjoint subsets of I

If $[0,1)-\left(\cup\left(S_{u}\right)_{u<\mathbb{N}}\right) \neq \emptyset$, then we continue as in (6) and (7) by defining

$$
\begin{equation*}
S_{\aleph}=k_{0}+Q(\bmod 1) \text { where } k_{0} \text { is the first element of }[0,1)-\left(\cup\left(S_{u}\right)_{u<\aleph}\right) \tag{10}
\end{equation*}
$$

and for ordinals $t=1,2, \ldots$ we let

$$
\begin{gather*}
S_{\aleph+t}=k_{t}+Q(\bmod 1) \quad \text { where } k_{t} \text { is the first element of } \tag{11}\\
{[0,1)-\left(\cup\left(S_{u}\right)_{u<\aleph} \cup\left(\cup\left(S_{\aleph+i}\right)_{i<t}\right)\right)}
\end{gather*}
$$

provided the expression in (11) is nonempty. Clearly, the above process must stop for some $t=w$ (since $\overline{\overline{[0,1)}}=\aleph$). Obviously,

$$
\begin{equation*}
I=\cup\left(S_{u}\right)_{u<\mathcal{N}+w} \tag{12}
\end{equation*}
$$

As in the case of (8) here also it can be seen readily that

$$
\begin{equation*}
\text { if } u<v<\aleph+w \quad \text { then } \quad S_{u} \cap S_{v}=\emptyset \tag{13}
\end{equation*}
$$

Therefore, by (12) and (13) we see that I is the union of pairwise disjoint subsets S_{u} of I. Clearly from (4), (6), (7) it follows that every $u<\aleph$ the closed subset C_{u} mentioned in (3), has at least one point, namely c_{u}, in common with S_{u}. This need not be the case for the remaining S_{u} 's appearing in $\left(S_{u}\right)_{\aleph \leq u<\aleph+w}$. Thus Theorem 1 is proved.

LEMMA 2. Let

$$
\begin{equation*}
V=\left\{c_{u}: u<\aleph\right\} \cup\left\{k_{t}: \aleph \leq t<\aleph+w\right\} \tag{14}
\end{equation*}
$$

where the c_{u} 's are as given in (4), (6), (7) and the k_{t} 's are as given in (10), (11). Then V is a nonmeasurable subset of $[a, b)$ and

$$
\begin{equation*}
m^{*}(V)=b-a \tag{15}
\end{equation*}
$$

Proof. From (4), (6), (7) it follows that V has one point, namely c_{u} in common with every closed subset C_{u} of positive measure of $[a, b)$. Thus by (1), we see that $m^{*}(V)=b-a$. On the other hand, because of (1), (13), (14), we also have

$$
\begin{equation*}
(V+p)_{\bmod 1} \cap(V+q)_{\bmod 1}=\emptyset \quad \text { and } \quad m^{*}(V)=m^{*}(V+q)_{\bmod 1}=b-a \tag{16}
\end{equation*}
$$

for distinct rationals p and q in Q
REMARK 1. We observe that our definition of V given in (14) resembles Vitali's construction [2, p.22]. However, with the significant difference that in our case V has one point in common with every closed subset of positive measure of $[a, b)$ from which it follows that $m^{*}(V)=b-a$ which may not be the case in the Vitali's construction.

LEMMA 3. Let $\left(q_{i}\right)_{i \in \omega}$ be an enumeration of the rationals in Q. Then the interval $[0,1)$ is a countable union of pairwise disjoint nonmeasureable subsets
$\left(V+q_{i}\right)_{\text {mod } 1}$ with $i \in \omega$ where each $\left(V+q_{i}\right)_{\text {mod } 1}$ is congruent by translation to V as given in (14).

Moreover,

$$
\begin{align*}
& {[0,1)=\cup_{i \in \omega}\left(V+q_{i}\right)_{\bmod 1} \quad \text { with } \quad m^{*}\left(V+q_{i}\right)_{\bmod 1}=b-a} \tag{17}\\
& \text { and } \quad m_{*}\left(V+q_{i}\right)_{\bmod 1}=0
\end{align*}
$$

Proof. From (6), (7), (11) it follows that

$$
\begin{gather*}
S_{u}=\left\{c_{u}+q_{0}, c_{u}+q_{1}, c_{u}+q_{2}, \ldots\right\} \quad \text { for } u<\aleph \tag{18}\\
S_{u}=\left\{k_{u}+q_{0}, k_{u}+q_{1}, k_{u}+q_{2}, \ldots\right\} \quad \text { for } \aleph \leq u<\aleph+w
\end{gather*}
$$

where in (18) all the sums are (mod 1). Then the first two equalities in (17) readily follows from (12), (14), (16), (18). On the other hand for every $i \in \omega$ we have $m_{*}\left(V+q_{i}\right)=0 \quad$ This is because otherwise every $V+q_{i} \quad$ would contain a closed subset of positive measure which by (16) and the first equality in (17) would imply that $m[0,1)$ is infinite, which is a contradiction. Thus, Lemma 3 is proved.

Finally, we have:
THEOREM 2. The set R is a disjoint union of countably many congruent by translation nonmeasurable subsets each of which is of outer measure b - a and of inner measure 0 .

Proof. Clearly

$$
\begin{equation*}
R=[0,1) \cup[-1,0) \cup[1,2) \cup[-2,-1) \cup[2,3) \ldots \tag{19}
\end{equation*}
$$

But then the proof of Theorem 2 follows from Lemma 3 applied to each of the terms of the union given in (19).

REMARK 2. Based on Theorem 2 easy proofs of some known important statements can be given. For instance: Every subset H of positive outer measure of R has a nonmeasurable subset. This is because H must have a subset M of positive outer measure in common with at least one of the terms in (19), say with, $[0,1)$. But then by (17) we see that M, in its turn, must have a subset N of positive outer measure in common with at least one of the $\left(V+q_{i}\right)_{\bmod 1}$. Thus, the subset N of H cannot be measurable for otherwise it would imply that the interval $[0,1)$ is of infinite measure.

Bibliography

[1] P.R. Halmos, Measure Theory Van Nostrand Co., N.Y (1968);
[2] J.C. Oxtoby, Measure and Category Springer-Verlag, N.Y (1980);
[3] R.L. Wheeden and A. Zygmund, Measure and Integral Marcel Dekker, N.Y (1965);

Department of Mathematics
Southwest Missouri State University
Springfield, MO 65804
USA
email: pak170f@mail.smsu.edu

[^0]: Received by the editors September 1999.
 Communicated by C. Debiève.
 1991 Mathematics Subject Classification : Primary 28A12.

