
Cohomological Hasse principle for the ring

Fp((t))[[X, Y ]]

Belgacem Draouil

Abstract

In this paper,we will prove the prime-to-p-part of a cohomological Hasse
principle for the ring A = Fp((t))[[X, Y ]]. The proof is based on recent results
by Fujiwara and Panin.

1 Introduction

By a global field, we mean a number field or a function field in one variable over a
finite field. We start with the following classical exact sequence for a global field K:

0 −→ H2 (K, Z/n (1)) −→ ⊕
v
H2 (Kv, Z/n (1)) −→ Z/n −→ 0 (n ≥ 1, ) (1.1)

where v runs over all places of K, Kv denotes the completion of K at v and Z/n (1)
denotes the sheaf µn of nth root of unity. For any integer i, we denote Z/n (i) = µ⊗i

n .
A two dimensional global field is a field of transcendence degree one over Q

or of transcendence degree two over Fp. The exact sequence, corresponding to
(1.1), for such a field has been established in [6] by Kato, who found that the group
H2 (K, Z/n (1)) must be replaced by H3 (K, Z/n (2)). Besides, Kato pointed out the
importance of the groups H i+1 (K, Z/n (i)) (i ≥ 0) for a field of Kronecker dimension
i.
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Let X be a regular connected scheme of dimension d over a finite field with
function field K. Let Xi denote the set of points of X of dimension i. Kato ([6],
Section 0) introduced the complex

C0
n... −→ ⊕

v∈Xj

Hj+1 (k (v) , Z/n (j)) → ... → ⊕
v∈X1

H2 (k (v) , Z/n (1))

−→ ⊕
v∈X0

H1 (k (v) , Z/n)

and conjectured its exactness. Also, he proved the exactness of this complex when-
ever X is a surface and obtained the following exact sequence:

0 −→ H3 (K, Z/n (2)) → ⊕
v∈X1

H2 (k (v) , Z/n (1)) −→ ⊕
v∈X0

H1 (k (v) , Z/n)

−→ Z/n −→ 0, (1.2)

where k(v) denotes the residue field of X at v. Furthermore, Colliot-Thélène [1] and
Saito [13] gave affirmative answers to this conjecture for three-dimensional global
fields. The local version of the complex above was suggested by Kato (see [12], Sec-
tion 5 by Saito). Actually, Saito studied the complex C0

n for 2-dimensional complete
local rings having finite residue field. He showed that, if A in particular is regular,
then the following sequence is exact

0 −→ H3 (K, Z/n (2)) → ⊕
v∈P

H2 (k (v) , Z/n (1)) −→ Z/n −→ 0, (1.3)

where P is the set of height one prime ideals of A and K is its fraction field. The case
of 3-dimensional complete regular local rings of positive characteristic having finite
residue field has been investigated by Matsumi in [7]. Indeed, the author proved the
exactness of the following complex:

0 −→ H4 (K, Z/n (3)) → ⊕
v∈(SpecA)2

H3 (k (v) , Z/n (2))

→ ⊕
v∈(SpecA)1

H2 (k (v) , Z/n (1)) −→ Z/n −→ 0, (1.4)

for n prime to char(K). If at this point A is not regular, then the kernel of the map

H4 (K, Z/n (3))
ΨK−→ ⊕

v∈(SpecA)2

H3 (k (v) , Z/n (2))

contains a subgroup of type (Z/n)r
′
1(A), where r

′
1(A) is calculated as the Z-rank of

the exceptional fiber graph of a resolution of SpecA [3].
The present work deals with the study of the arithmetic Bloch-Ogus complex C0

n

for 2-dimensional complete normal local rings of positive characteristic with a local
field as residue field. Let A be such a ring with fraction field K. Our two main
results in this direction are the following.

Theorem (Corollary 4) For all ` prime to the characteristic of A, the following
sequence is exact
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0 −→ πc.s
1 (X) /` −→ H4 (K, Z/` (3)) → ⊕

v∈P
H3 (k (v) , Z/` (2)) −→ Z/` −→ 0.

Here, the group πc.s
1 (X) is the quotient group of πab

1 (X) that classifies completely
split coverings of X (Definition 3 below).

If A is regular, then, using [10] by Panin, we derive

Theorem (Proposition 5) Let A = Fp((t))[[X, Y ]]. Then for all ` prime to p,
the following Hasse principle complex of A is exact

0 −→ H4 (K, Z/` (3)) −→ ⊕
v∈P

H3 (k (v) , Z/` (2)) −→ Z/` −→ 0.

The proofs of both theorems above are based on “duality theory” as well as on
the purity theorem of Fujiwara-Gabber. By “duality theory” we mean the following
theorem, which we shall prove below.

Theorem (Theorem 1) Let X = SpecA\{m}, where m is the unique maximal
ideal of A. Then for all ` prime to the characteristic of A the isomorphism

H5 (X, Z/` (3)) ' Z/`

and the perfect duality

H1 (X, Z/`)×H4 (X, Z/`(3)) −→ H5 (X, Z/` (3)) ' Z/`

hold.

Recently (see [4], observations after Corollary 7.1.7), Fujiwara established the
formal base change theorem (II), and then observed that the absolute cohomological
purity in equicharacteristic follows without the extra condition of the resolution of
singularity. Let us state this observation as a theorem.

Theorem of Fujiwara-Gabber Let T be an equicharacteristic Noetherian excel-
lent regular scheme, and Z be a regular closed subscheme of codimension c. Then
for an arbitrary natural number ` prime to char(T ), the canonical isomorphism

H i
Z (T, Z/` (j)) ' H i−2c (Z, Z/` (j − c))

holds.

2 Notations and Preliminaries

For an abelian group M and a positive integer n, M/n is the cokernel of the map
M

n−→ M . For a scheme Z, and a sheaf F over the étale site of Z, H i (Z,F)
denotes the ith étale cohomology group. For a positive integer ` invertible on Z,
Z/` (1) stands for the sheaf of `th roots of unity, and for an integer i, we denote

Z/` (i) = ( Z/` (1))⊗i.
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A local field k is said to be d-dimensional local if there exists a sequence of fields
ki (1 ≤ i ≤ d) such that
(i) each ki is a complete discrete valuation field having ki−1 as the residue field of
the valuation ring Oki

of ki, and
(ii) k0 is a finite field.

For such a field, and ` prime to Char(k), we get (see [5], II §3.2 Proposition 1)

Hd+1 (k, Z/` (d)) ' Z/` (2.1)

and a perfect duality given by:

H i (k, Z/` (j))×Hd+1−i (k, Z/`(d− j) −→ Hd+1 (k, Z/` (d)) ' Z/`. (2.2)

For a field L, let us denote by Ki (L) the ith Quillen group [11]. It coincides
with the ith Milnor group for i ≤ 2. Recall that for such i the cohomological symbol
defined by Tate induces the isomorphism

hi
`,L KiL/` −→ H i (L, Z/` (i)) .

for all ` prime to char(L) (note that for i = 2 we get the so-called Merkur’jev-Suslin
Theorem).

Throughout, A stands for a 2-dimensional complete normal local ring of positive
characteristic with the 1-dimensional local field k as residue field. The fraction
field and the maximal ideal of A are denoted by K and m, respectively. If A is
regular, then A is finite over Fp((t))[[X, Y ]], where we use Cohen’s structure theorem
([9],section 31). Finally, we put P the set of height one prime ideals of A, and for
v ∈ P we set
Av : the henselization of A at v,
Kv : the fraction field of Av,
k(v) : its residue field.

3 The Kato’complex

In this section, we give the exact sequence for A corresponding to (1.1), A as defined
in the previous section. To this end, we need a duality theorem for X = SpecA\{m},
which will be deduced from Grothendieck’s local duality. First, let us discuss the
Grothendieck local duality. Let B denote a d-dimensional normal complete local
ring of positive characteristic, with maximal ideal x′. Now, assume firstly that the
residue field of B is separably closed (in other words B is strictly local). Then,
for X ′ = SpecB\{x′} and for any ` prime to char(B), the Poincaré duality theory
([15],Exposé I,Remarque 4.7.17) says that there exists a trace isomorphism

H2d−1 (X ′, Z/` (d))
v−→ Z/` (3.1)

and a perfect pairing

H i (X ′, Z/`)×H2d−1−i (X ′, Z/`(d) −→ H2d−1 (X ′, Z/` (d)) ' Z/`. (3.2)
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Furthermore, we have (see [14], Exposé X, the last paragraph in the Introduction)

H i (X ′, Z/`(j)) = 0 , for all i ≥ 2d (3.3)

Assume now that the residue field of B is any field k. Let ks be a separable closure of
k. The strict henselization Bsh of B (with respect to the separably closed extension
ks of k) at the unique maximal ideal x of B is a strictly local ring. It coincides with
the integral closure of B in the maximal unramified extension Lur of the fraction
field L of B. If x′ is the maximal ideal of Bsh, we put X ′ = SpecBsh\{x′} and X =
SpecB\{x}. Then the Galois group of X ′ over X is Gal(Kur/K) which is isomorphic
to Gal(ks/k). Consequently, for any integer j ≥ 0, we get the Hochschield-Serre
spectral sequence (see [8], Remark 2.21)

Ep,q
2 = Hp(k,Hq(X ′, Z/` (j)) =⇒ Hp+q(X, Z/` (j) . (3.4)

We are in position now to prove our duality theorem for X = SpecA\{m}.

Theorem 1. For all ` prime to the characteristic of A, the isomorphism

H5 (X, Z/` (3)) ' Z/` (3.5)

and the perfect duality

H1 (X, Z/`)×H4 (X, Z/`(3)) −→ H5 (X, Z/` (3)) ' Z/` (3.6)

hold.

Proof. Since H i (X ′, Z/` (3)) = 0 for all i ≥ 4 (3.3) and k is of cohomological
dimension 2, the previous spectral sequence induces the isomorphism

H5 (X, Z/` (3)) ' H2(k,H3(X ′, Z/` (3)) ' H2(k, Z/` (1)) ' Z/`,

which gives the first part of the theorem.
Next, we prove(3.6). The filtration of the group H4 (X, Z/`(3)) implies the exact

sequence
0 → E2,2

∞ −→ H4 (X, Z/` (3)) −→ E1,3
∞ −→ 0

Since Ep,q
2 = 0 for all p ≥ 3, we find that E1,3

2 = E1,3
3 = . . . = E1,3

∞ . The same
argument yields E2,2

3 = E2,2
4 = ... = E2,2

∞ and E2,2
3 = Co ker d0,3

2 . Whence the
following exact sequence:

0 → Co ker d0,3
2 −→ H4 (X, Z/` (3)) −→ H1(k,H3(X ′, Z/` (3)) −→ 0,

where d0,3
2 is the map H0(k,H3(X ′, Z/` (3)) → H2(k,H2(X ′, Z/` (3)).

Combining Tate’s duality for k and duality (3.2), we derive that the group
H0(k,H1(X ′, Z/`)) is dual to the group H2(k,H2(X ′, Z/` (3)) and the group
H2(k, H0(X ′, Z/`)) is dual to the group H0(k,H3(X ′, Z/` (3)). On the other hand,
by the same argument as used in ([2],diagram 46), we get the commutative diagram

H0(k,H3(X ′, Z/` (3)) × H2(k,H0(X ′, Z/`)) −→ H2 (k, Z/` (1))
v−→ Z/`

↓ ↑ ‖ ‖
H2(k,H2(X ′, Z/` (3)) × H0(k,H1(X ′, Z/`)) −→ H2 (k, Z/` (1))

v−→ Z/`
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given by the cup products and the spectral sequence (3.4). We infer that Co ker d0,3
2

is the dual of Ker′d0,1
2 , where ′d0,1

2 is the boundary map for the spectral sequence
((3.4), j = 0)

′Ep,q
2 = Hp(k, Hq(X ′, Z/`) =⇒ Hp+q(X, Z/`).

Similarly, the group H1(k,H3(X ′, Z/` (3)) is dual to H1(k,H0(X ′, Z/`)). The
desired duality is thus deduced from the following commutative diagram:

0 → Co ker d0,3
2 −→ H4 (X, Z/` (3)) −→ H1(k,H3(X ′, Z/` (3)) −→ 0

↓ o ↓ o ↓ o
0 →

(
Ker′d0,1

2

)∨
−→ (H1 (X, Z/`))

∨ −→ (H1(k, H0(X ′, Z/`)))
∨ −→ 0

where (M)∨ denotes the dual Hom(M, Z/`) for any Z/`−module M and the bottom
exact sequence is the dual of the well-known exact sequence

0 −→′ E1,0
2 −→ H1 (X, Z/`) −→ Ker′d0,1

2 −→ 0.

The latter follows from the above spectral sequence. �

Remark 2. If v ∈ P then the duality (2.2)

H1 (k(v), Z/`)×H2 (k(v), Z/`(2)) −→ H3 (k, Z/` (2)) ' Z/`

is compatible with the duality (3.6). In other words, the following diagram is com-
mutative:

H1 (X, Z/`) × H4 (X, Z/`(3) −→ H5 (X, Z/` (3))
v−→ Z/`

↓ i∗ ↑ i∗ ↑ i∗ ‖
H1 (k(v), Z/`) × H2 (k(v), Z/`(2)) −→ H3 (k(v), Z/` (2))

v−→ Z/`

where i∗ is the map on H i induced from the map y −→ X ′ and i∗ is the Gysin
map. Commutativity of this diagram is obtained via the same argument (projection
formula ([8], VI 6.5) and compatibility of traces ([8], VI 11.1)) as previously used
in [2] in order to establish the commutative diagram in the proof of assertion ii) at
page 791. This leads to the commutative diagram:

H2 (k(v), Z/`(2))
i∗−→ H4 (X, Z/`(3)

↓ ↓
(H1 (k(v), Z/`))∨

(i∗)∧−→ (H1 (X, Z/`))∨
(3.7)

This theorem will be used to calculate the homologies of the arithmetic Bloch-
Ogus complex associated to A. This complex is closely related to the quotient group
of πab

1 (X) which classifies abelian c.s coverings of X.

Definition 3. Let Z be a noetherian scheme. A finite étale covering f : W → Z
is called a c.s covering if for any closed point z of Z, z ×Z W is isomorphic to a
finite scheme-theoretic sum of copies of z. We denote πc.s

1 (Z) the quotient group of
πab

1 (Z) which classifies abelian c.s coverings of Z.
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For X as in the above, the group πc.s
1 (X) /` is the dual of the kernel of the map

H1 (X, Z/`) −→
∏
v∈P

H1 (k (v) , Z/`) (3.8)

(see [12], Section 2, Definition and sentence just below). Now, we are able to calcu-
late the homologies of the Bloch-Ogus complex associated to the ring A.

Corollary 4. For all ` prime to the characteristic of A, the following sequence is
exact

0 −→ πc.s
1 (X) /` −→ H4 (K, Z/` (3)) −→ ⊕

v∈P
H3 (k (v) , Z/` (2)) −→ Z/` −→ 0

Proof. Consider the localization sequence on X = SpecA\ {m}

... → H i (X, Z/`(3)) −→ H i (K, Z/`(3)) −→ ⊕
v∈P

H i+1
v (X, Z/`(3)) → ...

Firstly, for any v ∈ P , we have the isomorphisms

H i
v (X, Z/` (3)) ' H i

v (SpecAv, Z/` (3)) by excision.

Secondly, we can apply the purity theorem of Fujiwara-Gabber (see Introduction)
for Z = v, T = SpecAv to obtain the isomorphisms

H4
v (SpecAv, Z/` (3)) ' H2 (k (v) , Z/` (2)) ,

H5
v (SpecAv, Z/` (3)) ' H3 (k (v) , Z/` (2))

But then

H4
v (X, Z/`(3)) ' H2 (k (v) , Z/` (2))

and

H5
v (X, Z/`(3)) ' H3 (k (v) , Z/` (2))

' Z/` , k (v) is a two-dimensional local field
H5 (K, Z/`(3)) = 0, cd` (K) < 4

Hence we get the exact sequence

⊕
v∈P

H2 (k (v) , Z/` (2))
g−→ H4 (X, Z/` (3)) −→ H4 (K, Z/` (3))

−→ ⊕
v∈P

H3 (k (v) , Z/` (2)) −→ H5 (X, Z/` (3)) −→ 0

By the previous theorem, we get the isomorphism H5 (X, Z/` (3)) ' Z/`, which
yields the exact sequence

0 −→ Co ker g −→ H4 (K, Z/` (3)) −→ ⊕
v∈P

H3 (k (v) , Z/` (2)) −→ Z/` −→ 0

On the other hand, the commutative diagram (3.7) implies that Co ker g is dual to
the kernel of the map

H1 (X, Z/`) −→
∏
v∈P

H1 (k (v) , Z/`) ,

which is equal to πc.s
1 (X) /` (3.8) �
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Next, assume that the ring A is regular. We shall prove that the group πc.s
1 (X) /`

vanishes.

Proposition 5. Let A = Fp((t))[[X, Y ]]. Then for all ` prime to p, the following
Hasse principle complex of A is exact:

0 −→ H4 (K, Z/` (3)) −→ ⊕
v∈P

H3 (k (v) , Z/` (2)) −→ Z/` −→ 0.

Proof. We only have to prove the injectivity of the map

ΨK : H4 (K, Z/` (3)) −→ ⊕
v∈P

H3 (k (v) , Z/` (2)) .

Let q be an integer and consider the sheaf Hq (Z/` (3)) on SpecA, the Zariskien
sheaf associated to the presheaf U −→ Hq (U, Z/` (3)). The recent works of Panin
[10] allows us to see that the cohomology of this sheaf is calculated as the homology
of the Bloch-Ogus complex

Hq (K, Z/` (3)) −→ ⊕
v∈P

Hq−1 (k (v) , Z/` (2)) −→ Hq−1 (k (m) , Z/` (1)) .

Therefore the group KerΨK is identified with the group H0 ((SpecA)Zar,H4(Z/` (3))).
On the other hand, the Bloch-Ogus spectral sequence

Hp ((SpecA)Zar,Hq(Z/` (3))) ⇒ Hp+q(SpecA, Z/` (3))

gives the exact sequence

H4(SpecA, Z/` (3)) −→ H0
(
(SpecA)Zar,H4(Z/` (3)

)
)

−→ H2
(
(SpecA)Zar,H3(Z/` (3)

)
) → H5(SpecA, Z/` (3))

As the ring A is henselian, we obtain the isomorphism

H i (SpecA, Z/`(3)) ' H i (Speck, Z/`(3)) , i ≥ 0.

But the groups H4 (Speck, Z/`(3)) and H5 (Speck, Z/`(3)) vanish, because the co-
homological dimension of k is 2. Hence, we have the isomorphism

H0
(
(SpecA)Zar,H4(Z/` (3)

)
)

v−→ H2
(
(SpecA)Zar,H3(Z/` (3)

)
),

which means that KerΨK is isomorphic to the Cokernel of the map

⊕
v∈P

H2 (k (v) , Z/` (2)) −→ H1 (k (m) , Z/` (1))

Moreover, by the theorem of Merkur’jev-Suslin and by Kummer’s theory, the latter
map can be written as

⊕
v∈P

K2 (k (v)) /` −→ k (m)× /`,
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where we use the commutative diagram

⊕
v∈P

K2 (k (v)) /` −→ k (m)× /`

↓ o ↓ o
⊕

v∈P
H2 (k (v) , Z/` (2)) −→ H1 (k (m) , Z/` (1))

The surjectivity of the map

⊕
v∈P

H2 (k (v) , Z/` (2)) −→ H1 (k (m) , Z/` (1))

is then deduced from the exactness of the Gersten-Quillen complex ([10],theorem
A):

K3 (A) /` −→ K3 (K) /` −→ ⊕
v∈P

K2 (k (v)) /` −→ k (m)× /` −→ 0

�

Remark 6. Following Kato and Saito [12], we can construct the reciprocity map

φK H1 (K, Z/`) −→ Hom (CK , Z/`)

for the fraction field K of the ring A, where CK is an ideal class group associated
to K. The fact that πc.s

1 (X) vanishes for a regular ring implies the injectivity of the
reciprocity map.
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