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Abstract

Uniform spaces can be Cauchy-completed; and if the base space was a first-
order structure, this structure can be naturally extended to the completion.
While common in algebra, this construction has been more recently used to
produce new models of special set theories. We investigate here a natural
way to “twist” the semantics of any structure according to a uniformity on its
universe. We use it to relate the (classical first-order) theories of structures
and dense substructures and apply it to the case of Cauchy-completions.

1 Introduction

Given a first-order structure endowed with a structure of uniform (or metric) space,
the purpose of the current article is to study properties of formulas which remain
invariant under “sufficiently small” movements: we want to be able to perform tests
on the structure “with a precision of at most V ”, for any entourage V , and recover
information on the original structure from the result of these tests for all V . More
precisely, we try to approximate the classical first-order theory of the structure with
uniformly continuous valuations.
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Received by the editors June 2002.
Communicated by A. Hoogewijs.
1991 Mathematics Subject Classification : 03C30, 54E15, 03G30.
Key words and phrases : formula balancing, uniform model theory, uniformly continuous val-

uation.

Bull. Belg. Math. Soc. 11 (2004), 111–125



112 A. Rigo

As a first application, this gives explicit links between the theory of a first-order
structure with that of its Cauchy-completion under some uniformity1. This follows
from the fact that the properties we are seeking for are invariant under the operation
of restriction to a dense substructure.

The naive approach is to associate to a first-order structure X a family Xε of
first-order structures, with the same universe, but in which the equality and the
other relations are interpreted “up to small movements”: if, say, d is a metric on X

and ε > 0, we say that Xε � R[
→
x] if and only if there is a

→
y which is component-

wise ε-close to
→
x and for which X � R[

→
y ]. However, unless we introduce serious

syntactical restrictions on the formula ϕ, there is in general no relationship between
X � ϕ and {ε | Xε � ϕ}.

In the present paper we suggest a variant of this approach for which explicit
relationships can be given, and formalize it inside of a variant of continuous many-
valued model theory. Section 2 introduces the framework; sections 3 and 4 introduce
and study a particular valuation; section 5 gives related results and examples. In
5.4 links with large-cardinal-based set-theoretical constructions are given. For a
less formal introduction to the underlying notion of formula balancing and the way
it links the theories of first-order structures to that of their Cauchy-completions,
sections 3 and 5 (in particular 5.2) can be read independently.

2 Uniform model theory

We first introduce a basic formalism for uniformly continuous model theory. The
topological background can be found e.g. in [10]. Here are the basic definitions:

Let (X, E) be a uniform space2, where E ⊆ P(X ×X) is its filter of entourages.
Its Hausdorff hyperspace, denoted by H(X), is the set of all closed subsets3 of X
endowed with the uniformity generated by {V ? | V ∈ E}, where for any two closed
subsets F and G of X we say that (F,G) ∈ V ? if, and only if, for all x ∈ F there
is a y ∈ G such that (x, y) ∈ V and conversely for all y ∈ G there is a x ∈ F such
that (x, y) ∈ V .

Definition 1. We call uniform logic a uniform space Ω endowed with a family of
uniformly continuous maps, called uniform connectives, as follows:

∧Ω: Ω2 → Ω ∨Ω: Ω2 → Ω ∼Ω: Ω → Ω

∀Ω : H(Ω) → Ω ∃Ω : H(Ω) → Ω

plus a constant >Ω, seen as a 0-ary map. Naturally, Ω is also called the space of
truth-values.

Note that we do not expect any particular relationship between the connectives.
Of course, the current definition immediately generalizes to logics with an arbitrary
set of connectives and quantifiers.

1This is of course related to the ultraproduct construction, although the correspondence is less
straightforward in our case.

2We always assume that uniform spaces are Hausdorff (T2).
3We take the empty set as well.
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The notion of first-order language is as usual; it may include constant, relation
and function symbols. Given such a language L and a uniform logic Ω, a uniform
first-order structure is a non-empty uniform space (M, E) with a valuation [[ ]]
that interprets each symbol of L as follows:

• a constant symbol c is interpreted by a point [[c]] of M ;

• an n-ary function symbol f is interpreted by a uniformly continuous map
[[f ]] : Mn →M ;

• an m-ary relation symbol R is interpreted by a uniformly continuous map
[[R]] : Mm → Ω.

In the present paper we will only study the elementary model-theoretical results
before we apply it to a particular kind of models. To this end note that the notions of
term and formula are as usual. The interpretation of a term t(x1, . . . , xj) in M gives
by induction a uniformly continuous map [[t]] : M j → M , starting from [[x]] = idM

for terms that are single variables.4 We then define by induction5

[[R(t1, . . . , tm)]](
→
x) = [[R]]([[t1]](

→
x), . . . , [[tm]](

→
x))

[[ψ ∧ ψ′]](→x) = [[ψ]](
→
x) ∧Ω [[ψ′]](

→
x)

[[ψ ∨ ψ′]](→x) = [[ψ]](
→
x) ∨Ω [[ψ′]](

→
x)

[[¬ψ]](
→
x) = ∼Ω [[ψ]](

→
x)

[[(∀v)ψ]](
→
x) = ∀Ω

(
Cl

{
[[ψ]](

→
x, v)

∣∣∣ v ∈M})
[[(∃v)ψ]](

→
x) = ∃Ω

(
Cl

{
[[ψ]](

→
x, v)

∣∣∣ v ∈M})
where Cl denotes the topological closure in Ω. We can check that [[ϕ]] is uniformly
continuous for all ϕ. From this it follows that both occurrences of Cl can be removed
from the above definitions if M is compact.

Definition 2. We call CL-reduction filter a subset F of Ω which is stable under
logical connectives in the following sense: for any a, b ∈ Ω and for any compact
subset K of Ω,

(a) >Ω ∈ F ;

(b) if a ∈ F and b ∈ F , then a ∧Ω b ∈ F ;

(c) if a ∈ F or b ∈ F , then a ∨Ω b ∈ F ;

(d) if a /∈ F , then ∼Ω a ∈ F ;

(e) if K ⊆ F , then ∀Ω(K) ∈ F ;

(f) if K ∩ F 6= ∅, then ∃Ω(K) ∈ F .

4This is the equivalent in uniform spaces of the Kripke-Joyal semantics in topoi.
5→x abbreviates x1, . . . , xj , where we assume as usual that we have enumerated all free variables

of the left-hand side formulas.
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The elements of a CL-reduction filter are of course the designated (“true
enough”) truth-values. This will let us easily relate the uniform semantics to the
classical semantics. Of course, “CL” stands for “classical logic”, and (a)-(f) are all
instances of the general rule that when any given connective takes the value “true” in
classical logic, then so should the corresponding connective from the uniform logic.
The same mechanism is easily generalized to let any uniform logic with any set of
connectives be reduced to any logic which implements the same set of connectives;
CL could be replaced by any one of many common many-valued logics.

Example 1. The restriction on compact subsets in the previous definition is impor-
tant. For example, suppose that Ω has a structure of complete boolean algebra in
which ∧, ∨, > and ¬ have their usual meaning, and ∀ and ∃ are the greatest lower
bound and least upper bound of sets of values, respectively. The uniformity on Ω
is arbitrary as long as it makes these connectives uniformly continuous. Then all
CL-reduction filters are ultrafilters, and conversely all ultrafilters which are closed
subsets of Ω are CL-reduction filters. Indeed, if K is a compact subset of Ω, then
∀(K) is easily checked to adhere to {a1 ∧ . . . ∧ an | n ∈ ω, a1, . . . , an ∈ K}.

As previously mentioned, given a CL-reduction filter F , any uniform first-order
structure M can be turned into a classical structure MF with the same universe
and in the same language: for any m-ary relation symbol R and x1, . . . , xm ∈M we
define

MF � R[x1, . . . , xm] ⇐⇒ [[R]](x1, . . . , xm) ∈ F
In the sequel we will need to assume that formulas can be put in negation normal

form (i.e. no negation sign appears but immediately before an atomic sub-formula
[2]) without changing their valuation. A uniform logic Ω is called negation-regular
if, and only if, for any a, b ∈ Ω and A ⊆ Ω,

∼Ω (a ∧Ω b) =∼Ω a ∨Ω ∼Ω b ∼Ω ∀Ω(ClA) = ∃Ω(Cl {∼Ω c | c ∈ A})

∼Ω (a ∨Ω b) =∼Ω a ∧Ω ∼Ω b ∼Ω ∃Ω(ClA) = ∀Ω(Cl {∼Ω c | c ∈ A})
and ∼Ω∼Ω (a) = a.

Lemma 1. If F is a CL-reduction filter in a negation-regular uniform logic and
M is a compact uniform first-order structure, then for any first-order formula
ϕ(x1, . . . , xm), we have

for any x1, . . . , xm ∈M , if MF � ϕ[x1, . . . , xm], then [[ϕ]](x1, . . . , xm) ∈ F .

The proof is a straightforward induction on ϕ in negation-normal form.

3 Formula balancing

We now introduce a natural way to turn any classical first-order structure into a
uniform structure.

In this paper we will consider (in a language L) first-order structures (M, E)
endowed with a uniformity which is Hausdorff (T2) and compatible in the following
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sense: anym-ary relation symbol of L is interpreted by a closed subset ofMm (for the
box product topology), and any function symbol of L is interpreted by a uniformly
continuous function.

Let R be any m-ary relation symbol of L. Let V ∈ E be an entourage. For each
such R and V we introduce a new m-ary relation symbol RV ; let L∼ be the language
obtained by replacing in L every R by the corresponding family of new symbols RV .
The constant and function symbols are left unchanged. Note that equality deserves
no special treatment here; in L∼ it will be replaced by a family of symbols =V . So
(in any case) L∼ is a language without equality – actually we will not need to assume
that L contained the equality in the first place.

Definition 3. We let M∼ be the L∼-structure defined on the same universe as M by
interpreting the new symbols RV as “R holds up to V in M”; formally, for

→
x ∈Mm,

M∼ � RV [
→
x] ⇐⇒ ∃

→
y with M � R[

→
y ] and (x1, y1) ∈ V, . . . , (xm, ym) ∈ V .

Let ϕ be a formula of L. An approximation of ϕ is a formula of L∼ whose
image under the obvious reduction map (RV 7→ R) is exactly ϕ. An approximation
ϕ∼2 of ϕ is finer than an approximation ϕ∼1 of ϕ if each time that a RV symbol
appears in ϕ∼1, the corresponding RW symbol that appears at the same place in ϕ∼2
satisfies W ⊆ V .

Definition 4. A formula ϕ(
→
x) in L with n free variables is said balanced in M

at the point
→
x ∈ Mn if, and only if, for any approximation of ϕ there is a finer

approximation ϕ∼ such that M∼ � ϕ∼[
→
x].

The core of the paper is dedicated to the study of the relationships between
formula balancing and satisfaction in M .

Lemma 2. Let ϕ∼1 be a formula in L∼. Let ϕ∼2 be the formula obtained from ϕ∼1 by
replacing any occurrence of a RV symbol by RW , for some W ⊆ V . Then:

• if the occurrence we replaced is enclosed by an even number of negation signs,
then M∼ � ϕ∼2[

→
x] ⇒ M∼ � ϕ∼1[

→
x];

• if the occurrence we replaced is enclosed by an odd number of negation signs,
then M∼ � ϕ∼2[

→
x] ⇐ M∼ � ϕ∼1[

→
x].

Proof. Write ϕ∼1 and ϕ∼2 in negation normal form. Clearly, as W ⊆ V , we have
RM∼

W ⊆ RM∼
V , and subsequently the extension of ¬RW in M∼ contains the extension

of ¬RV . The rest follows by induction. �

Remark 1. We can define for any V,W ∈ E the (W
V )-approximation of a formula

ϕ to be its approximation obtained by replacing each occurrence of all relation
symbols R by either RV or RW , depending on whether the occurrence was enclosed
by an even or odd number of negation signs. It follows from lemma 2 that ϕ is
balanced at the point

→
x if, and only if, for any V ∈ E there is a W ∈ E (optionally

with W ⊆ V ) such that M∼ satisfies the (W
V )-approximation of ϕ at

→
x.
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4 Approximation logic

We now proceed to build a uniform logic appropriate to formula balancing. We want
to show:

Theorem 3. Let (M, E) be a uniform space. There exists a negation-regular uniform
logic Ω and a CL-reduction filter F

Pd
such that for any first-order structure on M in

any first-order language L, compatible with the uniformity, there is a valuation [[ ]]
providing a uniform structure on M that captures the notion of formula balancing in
the following sense: for any formula ϕ of L with n free variables and any

→
x ∈Mn,

ϕ is balanced at
→
x if and only if [[ϕ]](

→
x) ∈ F

Pd
.

Remark 2. The uniform logic Ω can actually be built in a way that only depends
on “structural” properties of E and not on the universe M ; for example, there is a
single Ω that captures balancing for all metric spaces.

In view of the above theorem, the following is a corollary of lemma 1:

Theorem 4. Assume that M is a classical first-order structure with a compact
compatible uniformity. Then for any sentence ϕ of L, if M � ϕ, then ϕ is balanced
in M .

We will also see that with syntactical restrictions, similar relationships can be
derived in the other direction, as well as in the non-compact case.

In the sequel of the section we prove theorem 3.

Let (M, E) be a uniform space. We put on E the order defined by: for any U, V ∈
E , we say that U ≺ V if, and only if, there is a W ∈ E such that6 W ◦ U ◦W ⊆ V .
We extend the order to E × E as follows: for any U1, U2, V1, V2 ∈ E , we say that
(U1, U2) ≺ (V1, V2) if, and only if, U1 � V1 and U2 ≺ V2. Let

Ω = {A ⊆ E × E | ∀(V,W ) ∈ A ∀V ′ ⊇ V ∀W ′ ⊆ W, (V ′,W ′) ∈ A}
j : Ω −→ Ω

A 7−→ {T ∈ E × E | ∀S ≺ T S ∈ A}
Ωj = image of j in Ω

j is a “closure operation” on Ω; a set A ∈ Ωj is called a closed set of Ω. The
uniform logic we are looking for is Ωj, which plays the role of “cuts” of E × E ;
we endow it with the “cut uniformity” generated by the basis (W ∗)W∈E , where for
A,B ∈ Ωj, we say that (A,B) ∈ W ∗ if, and only if, the following two conditions
hold for any V1, V2 ∈ E :

1. if (V1,W ◦ V2 ◦W ) ∈ A then (W ◦ V1 ◦W,V2) ∈ B;

2. if (V1,W ◦ V2 ◦W ) ∈ B then (W ◦ V1 ◦W,V2) ∈ A.

6V ◦W denotes the composition of binary relations, that is, {(x, z) | ∃y (x, y) ∈ V, (y, z) ∈ W}



Formula balancing and continuously valuated models 117

Remark 3. As a uniform space, Ωj is not related to H(E ×E). For example, in the
latter the empty set is an isolated point, whereas Ωj has no isolated point in general.
Moreover, in hyperspaces, (A,B) 7→ A∪B is continuous but (A,B) 7→ A∩B is not
[13]; both are uniformly continuous in Ωj.

The construction W ◦ V1 ◦W can be seen as a way to make V1 a little bit larger,
in the sense that if you see V1 as much bigger than W , then what you do is add a
“W -little bit” to both sides of V1. We add it to both sides for symmetry reasons.

The uniform connectives are given by (for any A,B ∈ Ωj and A closed subset of
Ωj):

>j = E × E
A ∧j B = A ∩B
A ∨j B = A ∪B
∼j A = j({(V,W ) | (W,V ) /∈ A}) (“transposed complement”)

∀jA =
⋂
A

∃jA = j(
⋃
A)

Remark 4. Ω and Ωj are complete Heyting algebras: the former is the internal
locale of the topos of presheaves on the poset (E ×E , (⊇,⊆)); the latter is generated
from the former by the (sheaf) topology j. For more about Grothendieck topoi see
e.g. [11]. Note that ∼j is not an intuitionistic negation, but a paraconsistent one:
A ∧j (∼j A) might take non-⊥ values.7

We split the proof of the theorem into the following lemmas:

Lemma 5. Ωj with the above-defined uniform connectives is a uniform logic.

Lemma 6. The following defines a CL-reduction filter on Ωj:

F
Pd

= {A ∈ Ωj | π2[A] = E}

where π2 : E × E → E is the projection on the second factor and the notation f [X]
means {f(x) | x ∈ X}.

Note that F
Pd

is neither open nor closed in Ωj; in fact, both F
Pd

and Ωj \FPd
are

dense in Ωj.

Lemma 7. Suppose that (M, E) is endowed with a first-order structure in a language
L. For any m-ary relation symbol R of L define

[[R]] : Mn −→ Ωj
→
x 7−→ j(

{
(V,W ) ∈ E × E

∣∣∣ M∼ � RV [
→
x]

}
)

7It can even take designated values, although it cannot be equal to >.
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The valuation of constant and function symbols is given by their (unmodified)
interpretation in M . Then [[ ]] provides a uniform structure for the logic Ωj and the
valuation of any formula ϕ of L is equal to

[[ϕ]] : Mn −→ Ωj
→
x 7−→ j(

{
(V,W ) ∈ E × E

∣∣∣ M∼ � ((W
V )-approx of ϕ)[

→
x]

}
)

Lemma 8. The uniform logic Ωj is negation-regular.

Lemma 9. For any formula ϕ of L with n free variables and any
→
x ∈ Mn, ϕ is

balanced at
→
x if and only if [[ϕ]](

→
x) ∈ F

Pd
.

Proof of lemma 5. We easily check that Ωj as defined is a T2 uniform space.

• ∧j is clearly uniformly continuous.

• ∨j is well defined, i.e. the union of two closed sets is a closed set: indeed, let
A = j(A) and B = j(B) and assume that T ∈ j(A ∪ B) but T /∈ A. There is a
(U1, U2) ≺ T such that (U1, U2) /∈ A. We must show that T ∈ B = j(B). This is
true because for any (V1, V2) ≺ T we can show that S = (V1 ∩ U1, V2 ∪ U2) satisfies
S ≺ T but S /∈ A, hence S ∈ B and (V1, V2) ∈ B.

The uniform continuity of ∨j is clear.

• ∼j is uniformly continuous: although it might be false that ∀(A,A′) ∈ W ∗ (∼j

A,∼j A
′) ∈ W ∗, it is the case that ∀(A,A′) ∈ W ∗ (∼j A,∼j A

′) ∈ (W ◦W )∗.

• ∀j is clear.

• ∃j is similar to ∼j. �

Proof of lemma 6. F
Pd

clearly satisfies conditions (a)-(d) and (f) of definition 2. The
proof of (e) is more involved. First note that with the same definition F

Pd
can be

extended to the whole of Ω; then for any A ∈ Ω we have A ∈ F
Pd

if, and only if,
j(A) ∈ F

Pd
.

We must prove that if K is a compact subset of F
Pd

, then
⋂K ∈ F

Pd
. For

T ∈ E we let HT = {(V,W ) ∈ E × E | V 6≺ T}. Clearly, HT ∈ Ωj. We claim that
for any T ∈ E , if A 6⊆ HT for all A ∈ K, then there exists T ′ ∈ E such that
(T, T ′) ∈ ⋂K.8 The lemma follows from this claim by checking that A ∈ F

Pd
if and

only if (∀T ∈ E) A 6⊆ HT .
To prove the claim, let T ∈ E .

Let A ∈ K. By hypothesis, there exists a (V0,W0) ∈ A \ HT . By definition of
HT there exists a V ′ such that V ′ ◦ V0 ◦ V ′ ⊆ T . By definition of uniform spaces we
can find a W ∈ E such that W ◦W ◦W ⊆ W0 ∩ V ′. We have (A ∪HT , HT ) /∈ W ∗

because (V0,W ◦W ◦W ) ∈ A ∪ HT but (W ◦ V0 ◦W,W ) /∈ HT . There exists an

8The stronger result
⋂
K 6⊆ HT cannot be deduced here.
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S ∈ E such that S∗ ◦S∗ ⊆ W ∗, so that we have S∗[A∪HT ]∩S∗[HT ] = ∅.9 For each
A ∈ K we get such an S; let us call it SA.

The function A 7→ A ∪ HT is uniformly continuous, so that the image K′ of
the compact K is itself compact. When A ranges over K, the neighbourhoods
S∗A[A∪HT ] built above completely cover this compact K′; there exists a finite family
V of points of Ωj such that the S∗A[A∪HT ] for A ∈ V already cover it. On the other
hand,

⋂
A∈V S

∗
A[HT ] is a finite intersection of neighbourhoods of HT , so it is still

a neighbourhood of HT . It means that there exists a U ∈ E such that U∗[HT ] is
disjoint from K′.

To conclude we show that (T, U ◦ U) ∈ ⋂K. Let A ∈ K. As we have shown,
(A ∪ HT , HT ) /∈ U∗. By definition of U∗, and because HT ⊆ A ∪ HT , we find
V1, V2 ∈ E such that (V1, U ◦ V2 ◦ U) ∈ A ∪HT but

(U ◦ V1 ◦ U, V2) /∈ HT

so that U ◦ V1 ◦ U ≺ T , and in particular V1 ≺ T , hence (V1, U ◦ V2 ◦ U) ∈ A and
(T, U ◦ U) ∈ A. �

Proof of lemma 7. Let R be an m-ary relation symbol of L. By an argument similar
to that of lemma 5 we can check that [[R]] is uniformly continuous, so that [[ ]]
provides a uniform structure.

Let ϕ be a first-order formula in the language L. We prove the second part of
the result by induction on ϕ. If we ignore all occurrences of j, the result is clear by
construction of the uniform connectives. We have to check that the connectives are
stable under j, i.e. (for any A,B ∈ Ω and A ⊆ Ω):

• j(A ∩B) = j(j(A) ∩ j(B)) (which is j(A) ∩ j(B))

• j(A ∪B) = j(j(A) ∪ j(B)) (which is j(A) ∪ j(B))

• j(∼Ω A) = j(∼j j(A)) (which is ∼j j(A))

• j(
⋂A) = j(

⋂
A∈A j(A)) (which is

⋂
A∈A j(A))

• j(
⋃A) = j(

⋃
A∈A j(A))

where ∼Ω denotes the transposed complement in Ω (so that ∼j= j◦ ∼Ω). All cases
are straightforward (use the density of the ≺ order for ∼Ω). To complete the proof
check that the topological closure Cl in Ωj behaves nicely – more precisely, that for
any A ⊆ Ωj,

∩ClA = ∩A and j(∪ClA) = j(∪A)

�

9For a binary relation R and any x in its domain we let R[x] = {y | (x, y) ∈ R}. Note that we
consider symmetrical relations here. When R is an entourage of a uniformity, R[x] is a neighbour-
hood of x in the induced topology.
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Proof of lemma 8. Again, the result is clear if we ignore all occurrences of j. The
complete result is proved from the equalities found in the proof of the previous
lemma; for example, the ∼j case is as follows: for any A ∈ Ωj we have

∼j∼j A =∼j j ∼Ω A = j ∼Ω∼Ω A = jA = A

The other cases are similar. For both quantifiers we moreover have to check that

Cl {∼j A | A ∈ A} = {∼j A | A ∈ ClA}

�

Proof of lemma 9. Just check that for any A ∈ Ω, we have π2[A] = E if, and only
if, π2[j(A)] = E . �

This concludes the proof of theorem 3.

5 Applications and complements

The present theory was developed to study the relationships (both the similarities
and the differences) between a given first-order structure and a second one obtained
by Cauchy-completing the former. It actually applies as soon as we have a first-
order structure with a compact uniformity and consider a substructure which is
dense. The notion of formula balancing does not change when restricted to a dense
subset, so that it can be used to approximate the theory of the compact structure
by computations in its dense substructure.

We know quite well which classes of formulas are preserved across various op-
erations (see e.g. [2]; for Cauchy-completions [1]). Hinnion studied the Cauchy-
completion of arbitrary structures in [7]; as the paper is unpublished, his results of
interest to us will be recalled in 5.2.

Formula balancing takes another approach: if the negation of an arbitrary for-
mula ϕ is not balanced in the substructure, then ϕ is automatically true in the
compact structure by theorem 4. This result can be completed by converse implica-
tion results stating that certain classes of formulas, if balanced in the substructure,
are true in the full structure.

5.1 Converse implications

Proposition 10. Let M be a first-order structure endowed with a compatible uni-
formity and ϕ(

→
x) a positive or negative formula (i.e. respectively, a formula with

no negation sign or the negation of such a formula). Let
→
x ∈Mn.

1. ϕ and ¬ϕ cannot be both balanced at
→
x;

2. if M is compact and ϕ is balanced at
→
x, then M � ϕ(

→
x).
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Proposition 11. Let M be any first-order structure with a compatible uniformity
and ϕ(

→
x) a universal formula with n free variables. Then

for any
→
x ∈Mn, if ϕ is balanced at

→
x, then M � ϕ(

→
x).

Proposition 10 is an easy exercise. Proposition 11 is shown by a straightforward
induction on ϕ. As a corollary, if M is compact, a universal formula is true if
and only if it is balanced. These two cases are of particular interest for algebraic
structures, in which a lot of axioms are expressed as either positive or universal
sentences (e.g. groups, rings, fields, etc.).

5.2 Cauchy-completions

In this section we denote by X a first-order structure endowed with a compatible
uniformity and XE its Cauchy-completion.10 As usual we assume that the extension
of all relations in X is closed, and functions are interpreted by uniformly continuous
functions of X. Both the relations and the functions are uniquely extended to XE
by the universal property of the Cauchy-completion.

As seen above, as X is dense in XE , a sentence is balanced in X if and only if it
is balanced in XE . Here is a summary of all possible cases for a sentence ϕ, showing
that there is no completely general relationship between balancing, truth in X, and
truth in XE other than that given by theorem 4.

For the compact examples, we take X = {x ∈ Q | 0 < x < 5} and XE = [0, 5]
with the usual uniformities.

X � ϕ balanced XE � ϕ example
true only ϕ true >
true ϕ and ¬ϕ true (∀x, y)(x = y ⇒ x = y)
true ϕ and ¬ϕ false (∀x)(∃y)(y 6 x ∧ y 6= x)
true only ¬ϕ false (∀x)(∃y)(y 66 x)

Another interesting example for the third case is the formula that states that the
predicate P (x) ≡ x 6 π is not defined in the structure, i.e. ¬(∃x)(∀y)(y 6 x ⇐⇒
P (y)). Of course, examples that are false in X are deduced from the given ones by
taking their negation. The next two examples are the cases that are impossible if
XE is compact, so we take X to be all positive rationals and XE all non-negative
reals. G(x, y) is the predicate y = x2; see section 5.3 for details about functions
represented as their underlying graph.

X � ϕ balanced XE � ϕ example
true only ¬ϕ true “G is the graph of a function”
true only ϕ false (∀x)(∃y)(xy = 1)

Note that proposition 11 holds for any universal formula, even ones with nega-
tions; by contrast, the study of elementary (direct) preservation properties from X
to XE (Hinnion [7]) shows that “X � ϕ ⇒ XE � ϕ” holds for formulas ϕ inductively
built from:

10Again, most of this applies to any “compactification”, i.e. any pair of structures X ⊆ X ′ where
X is dense in X ′ and X ′ is compact.
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• atomic formulas, ∨, ∧, ∀;

• the ∃ quantifier if XE is compact.

The common point between Hinnion’s and our results is that the treatment of
the ∃ quantifier requires compactness.

5.3 Functions

Comparing a first-order structure X with one in which the functions have been re-
placed by their underlying relations (call itX ′), we see that the condition we assumed
on the uniformities of X (making the functions uniformly continuous) is stronger
than the condition on X ′ (making the graphs closed). The following proposition
addresses this problem:

Proposition 12. With the notations above, assume that RX′
is the closed graph

of a function fX . Consider the axiom σ in the language of X ′ that states that R
satisfies the “unique image” condition. Then fX is uniformly continuous if and only
if σ is balanced in X ′.

The proof is a tedious but straightforward verification on σ. As a corollary, if the
Cauchy-completion XE of a structure X is compact, then a function on X extends
to a function on XE if and only if it was a uniformly continuous function on X.
Both directions of the equivalence can fail without compactness.

Remark 5. Proposition 12 could be the starting point for a uniform model theory in
which uniformities are required to be compatible with the axioms of a theory T in the
sense that these axioms are balanced11. With such a definition, the presentations
as functions or as relations with graph-of-a-function axioms are again equivalent.
Propositions 10, 11 and 12 are powerful tools in algebraic settings; for example,
it is immediate that a structure of group, ring, field, module, ... is carried to a
compactification if, and only if, the uniformity is compatible in the above sense.

Remark 6. Balancing is not closed under logical consequences, i.e. it is possible
that ϕ and ϕ ⇒ ψ are both balanced formulas, but ψ is not. Trivial examples are
given by all formulas ϕ such that ϕ and ¬ϕ are both balanced: in this case, ϕ and
ϕ⇒ ⊥ are balanced, but ⊥ is never balanced. In this respect, paraconsistent logics
seem more natural for balancing, as balancing can be made closed under their logical
consequence relation. As explained in section 2 the notion of “CL-reduction filter”
can be extended to non-classical logics; a direct adaptation of F

Pd
can turn it into

a Pd- or Pt-reduction filter, where Pd stands for Paradoxical logic (“true”, “false”,
“both”) and Pt means Partial logic (“true”, “false”, “neither”). This is used in [14]
to build new models in these logics.

11Whether and how much this definition depends on the chosen axiomatic presentation of T
should be investigated.
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5.4 Higher cardinals and models of set theory

The notions presented in the present paper were actually first developed in the frame
of large cardinal topology, where significant set-theoretical consistency problems
have been solved by building Cauchy-completions of relatively simple structures
and exhibiting their new properties. Formula balancing can be seen as a way to
predict which new properties can appear by this kind of process. This line of work
originates from a paper of Malitz ([12]) subsequently developed by Weydert ([16]),
Forti, Hinnion and Honsell ([5], [6]) and Esser ([3], [4]).

Accordingly, all the results above immediately generalize to κ-uniform spaces,
where κ is any infinite regular cardinal. See e.g. [9] and [15] for large cardinals and
their use in general topology. We recall the basic definitions: we call κ-uniform space
a uniform space whose filter of entourages is κ-complete, i.e. closed under κ-finite
intersections (i.e. intersections of cardinality less than κ). By κ-compact we mean
that any open cover admits a sub-cover with less than κ pieces, or equivalently that
any κ-complete filter on the space has got an adherence point. The classical case is
of course κ = ℵ0.

If X is a uniform space, then it is well-known that its Cauchy-completion is
compact if and only if it is bounded [10]. In general, however, a κ-uniform space
with a κ-compact completion is always κ-bounded (i.e. for any entourage V there is
a κ-finite cover of X with V -small pieces), but the converse is not true. One might
wonder if the main theorems developed here would also work if one assumed only
that X is κ-bounded. We will show now that it is not the case.

We are about to build an ℵ1-bounded ℵ1-uniform model whose completion is not
ℵ1-compact. The universe of this model is any tree of height ℵ1, whose levels are
all ℵ1-finite (i.e. finite or countable), but with no branch of length ℵ1. This exists
because ℵ1 is not a ramifiable cardinal12; this is a result of Aronszajn (1934). See
for example [9] (theorem 7.10) for the construction.

Let us call X this tree. We call the α-root of a point x ∈ X the following point:

• x itself if x is of level less than or equal to α;

• the unique x′ of level α below x, otherwise.

Note that the α-root is a point of level at most (but sometimes less than) α.
We put on X the uniformity generated by the basis F = {∼α | α < ℵ1}, where two
points x, y ∈ X are said to satisfy x ∼α y if and only if they have the same α-root.
This generates an ℵ1-uniformity and each ∼α cuts the tree into one (singleton) class
per item under the level α, plus one large class above each point of level α. Clearly
X is ℵ1-bounded.

It can be shown that X itself is already Cauchy-complete, so X = XE is an ℵ1-
bounded ℵ1-uniform space, but it is not ℵ1-compact (because the induced topology
is discrete).

We now put on X the binary relation R defined as R(x, y) ⇐⇒ x 66 y, i.e. “x
is not (non-strictly) below y in the tree”. R is a closed subset of X ×X (because it

12The metatheory is ZFC.
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has got the discrete topology!). We are now ready to check that the sentence

ϕ : (∀x)(∃y) ¬R(x, y)

is true in X but not balanced.
ϕ is obviously true in X: just choose y = x. But ϕ cannot be balanced because

[[ϕ]] = ∅. Indeed, let W ∈ E . We must check that X∼ 2 (∀x)(∃y) ¬RW (x, y). As
{∼α | α < ℵ1} is a basis of E , there exists α < ℵ1 such that ∼α⊆ W . Let x be a
point of level α+1. We claim that for any y ∈ X we have X∼ � R∼α(x, y). Consider
a given y ∈ X. Let y′ be the α-root of y; then y′ is at most of level α so that x
cannot be below y′: we have X � R(x, y′). As y′ ∼α y the claim is verified.
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