Semipartial geometries, arising from locally hermitian 1-systems of $W_{5}(q)$

D. Luyckx*
J. A. Thas

Abstract

It is known that every 1 -system of $W_{5}(q)$ is an SPG regulus and thus defines a semipartial geometry. In this paper, the semipartial geometries arising from locally hermitian 1 -systems of $W_{5}(q), q$ even, will be investigated. It will be shown that non-isomorphic locally hermitian 1-systems of $W_{5}(q)$ yield non-isomorphic semipartial geometries, which implies the existence of new semipartial geometries.

1 Definitions

1.1 1-systems of $W_{5}(q)$

A 1-system of $W_{5}(q)$ is a set \mathcal{M} of $q^{3}+1$ lines $L_{0}, L_{1}, \ldots, L_{q^{3}}$ of $W_{5}(q)$ with the property that every generator of $W_{5}(q)$ which contains an element $L_{i} \in \mathcal{M}$, is disjoint from all lines $L_{j} \in \mathcal{M} \backslash\left\{L_{i}\right\}$. The set of all points on the lines of \mathcal{M} will be denoted by $\widetilde{\mathcal{M}}$; so $\widetilde{\mathcal{M}}$ is the union of the elements of \mathcal{M}.

If q is odd, then the symplectic polar space $W_{5}(q)$ does not contain reguli of totally isotropic lines, the opposite regulus of which entirely consists of totally isotropic lines. If q is even, such reguli do exist, as can be seen as follows. For even values of q, the polar spaces $W_{5}(q)$ and $Q(6, q)$ are isomorphic, as one obtains $W_{5}(q)$ by

[^0]projecting $Q(6, q)$ from its nucleus n onto a $\mathrm{PG}(5, q)$, not containing the nucleus. Consider two arbitrary skew lines M and N of $W_{5}(q)$, which are the projections from n onto $\operatorname{PG}(5, q)$ of the disjoint lines M^{\prime} and N^{\prime} of $Q(6, q)$. Then $\left\langle M^{\prime}, N^{\prime}\right\rangle$ is 3 -dimensional and it intersects $Q(6, q)$ in a hyperbolic quadric $Q^{+}(3, q)$, which consists in fact of two opposite reguli. Hence it is projected from n onto a hyperbolic quadric $Q^{+}(3, q)$ consisting of two opposite reguli of lines of $W_{5}(q)$.
In this paper, we will call a regulus of lines of $W_{5}(q)$ a strong regulus if and only if its opposite regulus also consists entirely of totally isotropic lines of $W_{5}(q)$. From the above, it follows that every two disjoint lines of $W_{5}(q), q$ even, determine a unique strong regulus of lines of $W_{5}(q)$, containing both of them. Keeping these observations in mind, one can define locally hermitian 1-systems of $W_{5}(q)$.

Definition

Let \mathcal{M} be a 1 -system of the symplectic polar space $W_{5}(q), q$ even, in $\operatorname{PG}(5, q)$. We say that \mathcal{M} is locally hermitian at some line $L \in \mathcal{M}$ if and only if for every line $M \in \mathcal{M} \backslash\{L\}$, the unique strong regulus of $W_{5}(q)$ which contains L and M, is completely contained in \mathcal{M}.

In [5], a class of locally hermitian 1-systems of $W_{5}(q)$ has been discovered for q even and $q>2$. Moreover, it is shown that this class contains $\frac{q-2}{2}$ elements which are pairwise non-isomorphic for the stabilizer of $W_{5}(q)$ in $\operatorname{PGL}(6, q)$. Under the action of the stabilizer of $W_{5}(q)$ in $\mathrm{P} \Gamma \mathrm{L}(6, q)$, the number of orbits in this set of 1-systems of $W_{5}(q)$ equals the number of orbits of $\operatorname{Aut}(\operatorname{GF}(q))$ in the set of all elements of $\operatorname{GF}(q) \backslash\{0\}$ with trace zero; see also [5].

1.2 Semipartial geometries

A semipartial geometry is an incidence structure $\Gamma=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ of points and lines satisfying the following axioms:
spg1 Each point is incident with $t+1(t \geq 1)$ lines and two distinct points are incident with at most one line.
spg2 Each line is incident with $s+1(s \geq 1)$ points and two distinct lines are incident with at most one point.
spg3 If two points are not collinear, then there are $\mu(\mu>0)$ points collinear with both.
spg4 If a point x and a line L are not incident, then there are 0 or $\alpha(\alpha \geq 1)$ points which are collinear with x and incident with L.

In [4], it is shown that every 1-system of $W_{5}(q)$ is an SPG regulus in $\operatorname{PG}(5, q)$ with parameters $m=1, r=q^{3}+1, \alpha=q$, and $\theta=q+1$, which means the following. An $S P G$ regulus of $\mathrm{PG}(n, q)$ is a set \mathcal{R} of m-dimensional subspaces $\pi_{1}, \pi_{2}, \ldots, \pi_{r}$, $r>1$, of $\mathrm{PG}(n, q)$, satisfying:

SPG1 $\pi_{i} \cap \pi_{j}=\emptyset$ for all $i \neq j$.

SPG2 If $\operatorname{PG}(m+1, q)$ contains $\pi_{i} \in \mathcal{R}$, then it has a point in common with either 0 or $\alpha(\alpha>0)$ spaces in $\mathcal{R} \backslash\left\{\pi_{i}\right\}$. If $\mathrm{PG}(m+1, q)$ has no point in common with $\pi_{j} \in \mathcal{R}$ for all $j \neq i$, then it is called a tangent $(m+1)$ space of \mathcal{R} at π_{i}.

SPG3 If the point x of $\operatorname{PG}(n, q)$ is not contained in an element of \mathcal{R}, then it is contained in a constant number $\theta(\theta \geq 0)$ of tangent $(m+1)$-spaces of \mathcal{R}.

As SPG reguli yield semipartial geometries by Thas [7], it is clear that every 1-system of $W_{5}(q)$ defines a semipartial geometry. This semipartial geometry is constructed as follows. Let \mathcal{M} be a 1 -system of a symplectic polar space $W_{5}(q)$ in $\operatorname{PG}(5, q)$ and embed $\mathrm{PG}(5, q):=H$ as a hyperplane in $\operatorname{PG}(6, q)$. Define an incidence geometry $\Gamma=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ with the set of all points of $\mathrm{PG}(6, q) \backslash H$ as point set \mathcal{P}, the set of all planes of $\mathrm{PG}(6, q)$ not in H which meet H in a line of \mathcal{M} as line set \mathcal{L}, and with the natural incidence I . Then Γ is a semipartial geometry with parameters $s=q^{2}-1$, $t=q^{3}, \alpha=q$ and $\mu=q^{2}\left(q^{2}-1\right)$. This semipartial geometry will further be denoted by $\operatorname{SPG}(\mathcal{M})$. Since the semipartial geometries $\operatorname{SPG}(\mathcal{M})$, with \mathcal{M} locally hermitian, will appear to have many subnets as subgeometries, we also mention the definition of a net.

A net of order $s+1$ and degree $t+1$ is an incidence geometry $\Gamma=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ of points and lines satisfying the axioms spg1 and spg2 above and the following third axiom:
\mathbf{N} If a point x and a line L are not incident, then there exists exactly one line which is incident with x and not concurrent with L.

In a net of order $s+1$ and degree $t+1$, two distinct lines are called parallel if and only if they have no point in common. For every non-incident point-line pair (x, L), the unique line through x and not concurrent with L is then the unique line incident with x and parallel to L.

For later purposes, we give two constructions of a net of order q^{2} and degree $q+1$.

Consider a regulus R of lines in $\mathrm{PG}(3, q)$, embed $\mathrm{PG}(3, q)$ as a hyperplane in a projective space $\mathrm{PG}(4, q)$, and let $\mathrm{AG}(4, q)$ denote the affine space $\mathrm{PG}(4, q) \backslash \mathrm{PG}(3, q)$. Suppose that \mathcal{P} is the set of all points of $\operatorname{AG}(4, q)$, let \mathcal{L} consist of the planes of $\mathrm{AG}(4, q)$, the extensions of which to $\mathrm{PG}(4, q)$ meet $\mathrm{PG}(3, q)$ in a line of R, and let incidence be the incidence of $\operatorname{AG}(4, q)$. Then $\mathcal{N}:=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ is a net of order q^{2} and degree $q+1$. In Johnson [3], a net of this kind is called a regulus net.

Consider the 3-dimensional projective space $\operatorname{PG}(3, q)$ and let N be a fixed line of $\operatorname{PG}(3, q)$. Define \mathcal{P} to be the set of all lines of $\operatorname{PG}(3, q)$, skew to N, and let \mathcal{L} be the set of points of $\operatorname{PG}(3, q)$, not on N. Then $\mathcal{N}:=(\mathcal{P}, \mathcal{L}, \mathrm{I})$, where I is the incidence of $\mathrm{PG}(3, q)$, is a net of order q^{2} and degree $q+1$. A net of this kind is denoted by H_{q}^{3} and called a co-dimension 2 net in Johnson [3].

In the book "Subplane covered nets" by Johnson ([3]), in which the reader can find a wealth of information concerning nets and related topics, it is shown that every regulus net is isomorphic to a co-dimension 2 net and conversely.

Suppose that \mathcal{M} is a locally hermitian 1 -system of $W_{5}(q), q$ even. Then \mathcal{M} consists of q^{2} strong reguli $R_{1}, R_{2}, \ldots, R_{q^{2}}$ through a common line $L \in \mathcal{M}$. Consider an arbitrary point x of $\operatorname{SPG}(\mathcal{M})$. For every regulus $R_{i}, i \in\left\{1,2, \ldots, q^{2}\right\}$, it then holds that the subgeometry of $\operatorname{SPG}(\mathcal{M})$, induced in $\left\langle R_{i}, x\right\rangle$, is a subnet of order q^{2} and degree $q+1$ of $\operatorname{SPG}(\mathcal{M})$. In particular, it is a regulus subnet of $\operatorname{SPG}(\mathcal{M})$. We conclude that $\operatorname{SPG}(\mathcal{M})$ contains a lot of (regulus) subnets of order q^{2} and degree $q+1$.

The following lemma, which has been shown in [6], gives information on the structure of subnets of $\operatorname{SPG}(\mathcal{M})$ of order q^{2} and degree $q+1$. It will play an important role in the next section.

Lemma 1.1. Let \mathcal{M} be a 1-system of a symplectic polar space $W_{5}(q), q>2$, in $\operatorname{PG}(5, q):=H$. A subnet of order q^{2} and degree $q+1$ in $\operatorname{SPG}(\mathcal{M})$ is always the subgeometry induced by $\operatorname{SPG}(\mathcal{M})$ in a subspace $\mathrm{PG}(4, q)$ of the ambient space $\mathrm{PG}(6, q)$ of $\operatorname{SPG}(\mathcal{M})$, where $\mathrm{PG}(4, q)$ meets H in a $\mathrm{PG}(3, q)$ containing exactly $q+1$ lines of \mathcal{M}.

2 Non-isomorphic locally hermitian 1-systems yield non-isomorphic semipartial geometries

In this section, we focus on the question whether the semipartial geometries that arise from non-isomorphic, locally hermitian 1 -systems \mathcal{M}_{1}, respectively \mathcal{M}_{2}, of $W_{5}(q)$ with q even, are isomorphic or not. We first show that an isomorphism between $\operatorname{SPG}\left(\mathcal{M}_{1}\right)$ and $\operatorname{SPG}\left(\mathcal{M}_{2}\right)$ is induced by an element of $\operatorname{P\Gamma L}(7, q)$ which maps \mathcal{M}_{1} onto \mathcal{M}_{2}.

Theorem 2.1. Let \mathcal{M}_{1} and \mathcal{M}_{2} be locally hermitian 1-systems of a symplectic polar space $W_{5}(q)$ in $\mathrm{PG}(5, q):=H$, with q even and $q>2$. If θ is an isomorphism between $\operatorname{SPG}\left(\mathcal{M}_{1}\right)$ and $\operatorname{SPG}\left(\mathcal{M}_{2}\right)$, then θ is induced by an element $\vartheta \in \operatorname{P\Gamma L}(7, q)$ which maps \mathcal{M}_{1} onto \mathcal{M}_{2}.

Proof.

As \mathcal{M}_{1} and \mathcal{M}_{2} are locally hermitian, they both consist of q^{2} strong reguli through some line, say $L_{1} \in \mathcal{M}_{1}$, respectively $L_{2} \in \mathcal{M}_{2}$. Every such strong regulus defines a collection of subnets of order q^{2} and degree $q+1$ in $\operatorname{SPG}\left(\mathcal{M}_{i}\right), i=1,2$. Clearly, θ must map a subnet \mathcal{N}_{1} of order q^{2} and degree $q+1$ of $\operatorname{SPG}\left(\mathcal{M}_{1}\right)$ onto a subnet \mathcal{N}_{2} of the same order and degree in $\operatorname{SPG}\left(\mathcal{M}_{2}\right)$. Suppose that \mathcal{N}_{1} is a regulus net, determined by a regulus R of lines of \mathcal{M}_{1}. Then by Lemma 1.1, the net $\mathcal{N}_{2}=\mathcal{N}_{1}^{\theta}$ is the subgeometry of $\operatorname{SPG}\left(\mathcal{M}_{2}\right)$, induced in a $\mathrm{PG}(4, q)$ which intersects H in a $\mathrm{PG}(3, q)$, containing $q+1$ lines of \mathcal{M}_{2}. Now, since \mathcal{N}_{2} is isomorphic to the regulus net \mathcal{N}_{1} by assumption, a result of Johnson, see [2], implies that these $q+1$ lines of \mathcal{M}_{2} must be the lines of a regulus R^{\prime} in $\operatorname{PG}(3, q)$. Hence \mathcal{N}_{2} is also a regulus net and we know that θ maps every regulus subnet of $\operatorname{SPG}\left(\mathcal{M}_{1}\right)$ onto a regulus subnet of $\operatorname{SPG}\left(\mathcal{M}_{2}\right)$.

Let \mathcal{N}_{1} be an arbitrary regulus subnet of $\operatorname{SPG}\left(\mathcal{M}_{1}\right)$ and set $\mathcal{N}_{2}:=\mathcal{N}_{1}^{\theta}$. As has been mentioned in Section 1.2, the net \mathcal{N}_{1} is isomorphic to a co-dimension 2 net H_{q}^{3}, which we consider to be embedded in a $\mathrm{PG}(3, q) \backslash N$ as described in Section 1.2. By Theorem 11.1 of Johnson [3], the full collineation group of H_{q}^{3} is isomorphic to the
stabilizer $\mathrm{P} \Gamma \mathrm{L}(4, q)_{N}$ of the line N in $\mathrm{P} \Gamma \mathrm{L}(4, q)$.
If $\mathcal{N}_{i}, i=1,2$, is the subgeometry of $\operatorname{SPG}\left(\mathcal{M}_{i}\right)$, induced in the 4-dimensional subspace δ_{i} of $\mathrm{PG}(6, q)$, where $\delta_{i} \cap H$ contains a regulus $R^{(i)}$ of lines of \mathcal{M}_{i}, then every element ζ of $\operatorname{P\Gamma L}(7, q)$ which maps δ_{1} onto δ_{2} and $R^{(1)}$ onto $R^{(2)}$, clearly induces an isomorphism between \mathcal{N}_{1} and \mathcal{N}_{2}. Now the number of such elements ζ equals the number of elements of $\operatorname{P\Gamma L}(7, q)$ stabilizing a given 4 -dimensional subspace of $\mathrm{PG}(6, q)$, multiplied with the number of collineations of $\mathrm{PG}(4, q)$, stabilizing a regulus of lines in some hyperplane of $\mathrm{PG}(4, q)$. This last number can easily be calculated; it is equal to $h q^{6}(q-1)\left(q^{2}-1\right)^{2}$, where $q=p^{h}$ with p prime. But $h q^{6}(q-1)\left(q^{2}-1\right)^{2}$ is also the order of the group $\mathrm{P} \Gamma \mathrm{L}(4, q)_{N}$, which implies that every isomorphism between \mathcal{N}_{1} and \mathcal{N}_{2} must be induced by an element $\zeta \in \operatorname{P\Gamma L}(7, q)$ which maps δ_{1} onto δ_{2} and $R^{(1)}$ onto $R^{(2)}$.
Let $R_{1}, R_{2}, \ldots, R_{q^{2}}$ be the q^{2} strong reguli of \mathcal{M}_{1} through L_{1}. It then follows from the previous paragraph that θ maps all lines of $\mathrm{AG}(6, q)=\mathrm{PG}(6, q) \backslash H$, the extension of which to $\operatorname{PG}(6, q)$ meets H in a point of some $\left\langle R_{i}\right\rangle, i \in\left\{1,2, \ldots, q^{2}\right\}$, onto lines of $\mathrm{AG}(6, q)$.

Next, we determine how many points of H are contained in some $\left\langle R_{i}\right\rangle, i \in$ $\left\{1,2, \ldots, q^{2}\right\}$. If two 3 -spaces $\left\langle R_{i}\right\rangle$ and $\left\langle R_{j}\right\rangle, i \neq j$, have a plane in common, then this must be a plane through L_{1}. Hence this plane contains a transversal of R_{i} and also one of R_{j}. In case these two transversals coincide, it follows that the elements of \mathcal{M}_{1} are not pairwise disjoint, a contradiction. On the other hand, if the two transversals are distinct, then the plane $\left\langle R_{i}\right\rangle \cap\left\langle R_{j}\right\rangle$ contains a line of \mathcal{M}_{1} and at least $2 q-1$ points of $\widetilde{\mathcal{M}}_{1}$, not on this line. The latter contradicts Axiom SPG2 and the fact that \mathcal{M}_{1} is an SPG regulus with $\alpha=q$. Consequently, $\left\langle R_{i}\right\rangle \cap\left\langle R_{j}\right\rangle$ is the line L_{1} for all $i \neq j$. Thus the union of the 3 -spaces $\left\langle R_{i}\right\rangle, i=1,2, \ldots, q^{2}$, contains exactly $q^{5}+q^{4}+q+1$ points of H. The 3-space L_{1}^{\perp}, with \perp the polarity of $W_{5}(q)$, intersects every $\left\langle R_{i}\right\rangle, i \in\left\{1,2, \ldots, q^{2}\right\}$, in the line L_{1}, and as such it yields $q^{3}+q^{2}$ additional points of H. We conclude that a point of H is either contained in some $\left\langle R_{i}\right\rangle, i \in\left\{1,2, \ldots, q^{2}\right\}$, or it is a point of the 3 -space L_{1}^{\perp}.

Let π be a plane of $\mathrm{PG}(6, q)$, not in H, and assume that π intersects H in a line K which has exactly one point z in common with L_{1}^{\perp}. Then, by considering all lines of π through two distinct points of $\pi \backslash K$ not on a common line through z, and taken into account that the q affine points of every line of π not through z, are mapped by θ onto the q points of an affine line, it is evident that all points of $\pi \backslash K$ are mapped by θ onto the q^{2} points of a plane of $\operatorname{AG}(6, q)$. Now, let M be any line of $\mathrm{PG}(6, q) \backslash H$ through a point $z \in L_{1}^{\perp}$. If π and π^{\prime} are two distinct planes of $\mathrm{PG}(6, q)$ through M, which meet H in distinct lines K and K^{\prime} through z, but not contained in L_{1}^{\perp}, then the points of $M \backslash\{z\}$ must be mapped by θ onto the points of the intersection of the affine planes $(\pi \backslash K)^{\theta}$ and $\left(\pi^{\prime} \backslash K^{\prime}\right)^{\theta}$, which form a line of $\mathrm{AG}(6, q)$. It follows that θ maps all lines of $\mathrm{AG}(6, q)$ onto lines of $\mathrm{AG}(6, q)$.

From the foregoing and as $q>2$, we conclude that θ is an element of $\mathrm{A} \Gamma \mathrm{L}(7, q)$, which implies that it can be extended to an element $\vartheta \in \operatorname{P\Gamma L}(7, q)$. Obviously, ϑ must then map \mathcal{M}_{1} onto \mathcal{M}_{2}. This proves the theorem.

Remarks

1. There are several possible ways to show that θ preserves the collinearity of $\mathrm{AG}(6, q)$ within regulus subnets of $\operatorname{SPG}\left(\mathcal{M}_{1}\right)$.
An alternative proof also relies on the fact that the full collineation group of H_{q}^{3} is isomorphic to $\mathrm{P} \Gamma \mathrm{L}(4, q)_{N}$, but it would be valid over an infinite field as well. By investigating the isomorphism between a regulus net and the co-dimension 2 net H_{q}^{3} in its representation in $\mathrm{PG}(3, q) \backslash N$, one easily sees that q collinear points in a regulus net which are also collinear in the affine space in which the regulus net is represented, correspond to q lines, disjoint from N, through a point p of $\mathrm{PG}(3, q) \backslash N$, and in a plane π of $\mathrm{PG}(3, q)$ not containing N. Also, q points of the regulus net which are collinear in the affine space but not in the net, correspond to the q lines of a regulus of $\mathrm{PG}(3, q)$ through the special line N. Since every element of $\mathrm{P} \Gamma \mathrm{L}(4, q)_{N}$ preserves both types of configurations of q lines of $\operatorname{PG}(3, q)$, every isomorphism between two regulus nets must preserve the collinearity of the affine space containing the first regulus net.
A second possible proof does not use the collineation group of H_{q}^{3}, but relies on straightforward properties of a regulus net. Let \mathcal{N} be a regulus net of order q^{2} and degree $q+1$, embedded in an affine space $\mathrm{AG}(4, q)$ as usually. If a, b and c are three collinear points of \mathcal{N}, then one easily sees that there exist $2 q^{2}-q-3$ points of $\mathcal{N} \backslash\{a, b, c\}$, which are collinear in \mathcal{N} with a, b and c, provided that $a b c$ is a line of $\operatorname{AG}(4, q)$. If a, b and c are not collinear in $\operatorname{AG}(4, q)$ however, there exist only $q^{2}-3$ points of $\mathcal{N} \backslash\{a, b, c\}$, which are collinear in \mathcal{N} with a, b and c. So if $a b c$ is a line of $\operatorname{AG}(4, q)$, then the same must hold for $a^{\theta} b^{\theta} c^{\theta}$.
Similarly, let a, b and c be distinct points of \mathcal{N} and suppose that they are pairwise not collinear in \mathcal{N}. If $a b c$ is a line of $\mathrm{AG}(4, q)$, then no point of $\mathcal{N} \backslash\{a, b, c\}$ is collinear in \mathcal{N} with a, b and c. If a, b and c are not collinear in $\operatorname{AG}(4, q)$, then it can be shown that there always exists at least one point of $\mathcal{N} \backslash\{a, b, c\}$, collinear in \mathcal{N} with all three of a, b and c. Hence in this case as well, θ must map the line $a b c$ of $\operatorname{AG}(4, q)$ onto an affine line.
2. The proof of Theorem 2.1 is not valid if $q=2$. Still, we can draw some conclusions. By the classification of the 1-systems of $W_{5}(2)$, carried out by Hamilton and Mathon [1], the symplectic polar space $W_{5}(2)$ has exactly two non-isomorphic 1-systems. One of them is the hermitian spread of a $Q^{-}(5,2)$ and the other one is obtained from the hermitian spread by reversing a regulus, so it is not locally hermitian by [6, Theorem 2.2]. Since Theorem 2.1 deals with two distinct locally hermitian 1 -systems of $W_{5}(q)$, it does not make sense for $q=2$. Moreover, the fact that the semipartial geometries, arising from the two non-isomorphic 1 -systems of $W_{5}(2)$ are not isomorphic, follows from [6 , Theorem 4.4].

The result obtained in Theorem 2.1 will now be used to show that for nonisomorphic locally hermitian 1-systems \mathcal{M}_{1} and \mathcal{M}_{2} of $W_{5}(q), q$ even and $q>2$, the corresponding semipartial geometries $\operatorname{SPG}\left(\mathcal{M}_{1}\right)$ and $\operatorname{SPG}\left(\mathcal{M}_{2}\right)$ are also nonisomorphic.

Theorem 2.2. Suppose that \mathcal{M}_{1} and \mathcal{M}_{2} are two locally hermitian 1-systems of $W_{5}(q), q$ even and $q>2$. Then the corresponding semipartial geometries $\operatorname{SPG}\left(\mathcal{M}_{1}\right)$ and $\operatorname{SPG}\left(\mathcal{M}_{2}\right)$ are isomorphic if and only if \mathcal{M}_{1} and \mathcal{M}_{2} are isomorphic for the stabilizer of $W_{5}(q)$ in $\mathrm{P} Г \mathrm{~L}(6, q)$.

Proof.
Denote the line at which \mathcal{M}_{i} is locally hermitian by L_{i}, for $i=1,2$.
If \mathcal{M}_{1} and \mathcal{M}_{2} are isomorphic for the stabilizer of $W_{5}(q)$ in $\mathrm{P}\lceil\mathrm{L}(6, q)$, with isomorphism α, then it is clear that α can be extended to an element $\beta \in \operatorname{P\Gamma L}(7, q)$ which induces an isomorphism between $\operatorname{SPG}\left(\mathcal{M}_{1}\right)$ and $\operatorname{SPG}\left(\mathcal{M}_{2}\right)$.

Conversely, suppose that θ is an isomorphism between the semipartial geometries $\operatorname{SPG}\left(\mathcal{M}_{1}\right)$ and $\operatorname{SPG}\left(\mathcal{M}_{2}\right)$. Then by Theorem 2.1, θ is induced by an element $\vartheta \in$ $\mathrm{P} \Gamma \mathrm{L}(7, q)$, which maps \mathcal{M}_{1} onto \mathcal{M}_{2}. Without loss of generality, we may assume that $L_{1}^{\vartheta}=L_{2}$. If ϑ stabilizes the symplectic polar space $W_{5}(q)$, then the claim is obviously true. Therefore we assume that ϑ does not stabilize $W_{5}(q)$, which implies that $\mathcal{M}_{2}=\mathcal{M}_{1}^{\vartheta}$ must be a 1 -system of two distinct symplectic polar spaces $W_{5}(q)$ and $W_{5}(q)^{\prime}$, with $W_{5}(q)^{\prime}$ the image of $W_{5}(q)$ under ϑ. Denote the polarity of $W_{5}(q)$ by ζ and the polarity of $W_{5}(q)^{\prime}$ by ξ. We shall prove that $\zeta=\xi$, so that $W_{5}(q)$ and $W_{5}(q)^{\prime}$ coincide and the assumption is false.
For every line $M \in \mathcal{M}_{2}, M^{\xi}$ is a 3 -dimensional subspace and contains no points of $\widetilde{\mathcal{M}}_{2}$, except for the ones on M. Since the union of the tangent planes at M of the SPG regulus \mathcal{M}_{2} contains $\frac{q^{4}-1}{q-1}$ points, M^{ξ} must coincide with the union of these tangent planes. But the same holds for M^{ζ}, so that $M^{\xi}=M^{\zeta}$ for all lines $M \in \mathcal{M}_{2}$. If x is a point of the line L_{2} (at which \mathcal{M}_{2} is locally hermitian), then x^{ξ} is 4 dimensional and it must contain L_{2}^{ξ} and all totally isotropic lines of $W_{5}(q)^{\prime}$ through x. Now the lines of \mathcal{M}_{2} are totally isotropic for both ζ and ξ and as q is even, this implies that also the transversals of the q^{2} strong reguli of \mathcal{M}_{2} through L_{2} are totally isotropic for ζ and ξ. Thus x^{ξ}, as well as x^{ζ}, contains $L_{2}^{\xi}=L_{2}^{\zeta}$ and all transversals on x of the q^{2} strong reguli of \mathcal{M}_{2} through L_{2}, and it follows that $x^{\xi}=x^{\zeta}$.
For a point $y \in \widetilde{\mathcal{M}}_{2}, y$ on some line $M \in \mathcal{M}_{2} \backslash\left\{L_{2}\right\}$, it holds similarly that y^{ξ} contains $M^{\xi}=M^{\zeta}$ and the unique transversal through y of the strong regulus of lines of \mathcal{M}_{2}, determined by L_{2} and M. But this transversal is also contained in y^{ζ} and does not lie in $M^{\xi}=M^{\zeta}$, and consequently we may again conclude that $y^{\xi}=y^{\zeta}$.
Finally, let r be a point of $\mathrm{PG}(5, q)$, not in $\widetilde{\mathcal{M}}_{2}$. Then there exist $q+1$ tangent planes of the SPG regulus \mathcal{M}_{2} through the point r. These $q+1$ tangent planes are totally isotropic for both ζ and ξ and must hence be contained in r^{ζ} and r^{ξ}. Two such tangent planes through r cannot have a line in common, because in that case the first tangent plane would meet the line of \mathcal{M}_{2} in the second tangent plane in a point, and vice versa, a contradiction. As a consequence, these $q+1$ tangent planes span at least a 4-dimensional subspace of $\mathrm{PG}(5, q)$. On the other hand, all $q+1$ tangent planes must be contained in r^{ζ} and r^{ξ}, which are both 4-dimensional, so that the subspace generated by the $q+1$ tangent planes of the SPG regulus \mathcal{M}_{2} through r must be 4-dimensional and coincide with r^{ζ} and r^{ξ}. This yields that $r^{\xi}=r^{\zeta}$ and we can now conclude that the symplectic polarities ζ and ξ are identical.

This proves the theorem.

In combination with the results from [5], Theorem 2.2 implies that there exist d non-isomorphic semipartial geometries $\operatorname{SPG}(\mathcal{M})$, with \mathcal{M} a locally hermitian 1system of $W_{5}(q), q>2$ and even, belonging to the class discovered in [5], and which is not a spread of an elliptic quadric $Q^{-}(5, q)$. Here d stands for the number of orbits of the automorphism group of $\operatorname{GF}(q)$ in the set of elements of $\mathrm{GF}(q) \backslash\{0\}$ with trace zero. Since none of the considered 1-systems is a spread of a $Q^{-}(5, q)$ and taking account of the results in [6], the semipartial geometries they yield are new.

References

[1] N. Hamilton and R. Mathon. Existence and non-existence of m-systems of polar spaces. European J. Combin., 22(1):51-61, 2001.
[2] N. L. Johnson. Foulser's covering theorem. Note Mat., 5(1):139-145, 1985.
[3] N. L. Johnson. Subplane Covered Nets. Marcel Dekker Inc., New York, 2000.
[4] D. Luyckx. m-systems of polar spaces and SPG reguli. Bull. Belg. Math. Soc., 9(2):177-183, 2002.
[5] D. Luyckx and J. A. Thas. On 1-systems of $Q(6, q), q$ even. Des., Codes and Crypt., 29:179-197, 2003.
[6] D. Luyckx and J. A. Thas. Derivation of m-systems. European J. Combin., 24(2):137-147, 2003.
[7] J. A. Thas. Semi-Partial Geometries and Spreads of Classical Polar Spaces. J. Combin. Theory Ser. A, 35(1):58-66, 1983.

Department of Pure Mathematics and Computer Algebra
Ghent University
Galglaan 2
B-9000 Gent
Belgium
e-mail: dluyckx@cage.ugent.be, jat@cage.ugent.be

[^0]: *The first author is Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.).

 Received by the editors November 2002.
 Communicated by H. Van Maldeghem.
 1991 Mathematics Subject Classification : 51A45, 51A50, 51E14, 51E20, 51E30.
 Key words and phrases : semipartial geometries, SPG reguli, m-systems, polar spaces.

