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Abstract

It is known that every 1-system of W5(q) is an SPG regulus and thus
defines a semipartial geometry. In this paper, the semipartial geometries
arising from locally hermitian 1-systems of W5(q), q even, will be investigated.
It will be shown that non-isomorphic locally hermitian 1-systems of W5(q)
yield non-isomorphic semipartial geometries, which implies the existence of
new semipartial geometries.

1 Definitions

1.1 1-systems of W5(q)

A 1-system of W5(q) is a set M of q3 + 1 lines L0, L1, . . . , Lq3 of W5(q) with the
property that every generator of W5(q) which contains an element Li ∈ M, is
disjoint from all lines Lj ∈ M \ {Li}. The set of all points on the lines of M will

be denoted by M̃; so M̃ is the union of the elements of M.
If q is odd, then the symplectic polar space W5(q) does not contain reguli of to-

tally isotropic lines, the opposite regulus of which entirely consists of totally isotropic
lines. If q is even, such reguli do exist, as can be seen as follows. For even values
of q, the polar spaces W5(q) and Q(6, q) are isomorphic, as one obtains W5(q) by
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projecting Q(6, q) from its nucleus n onto a PG(5, q), not containing the nucleus.
Consider two arbitrary skew lines M and N of W5(q), which are the projections
from n onto PG(5, q) of the disjoint lines M ′ and N ′ of Q(6, q). Then 〈M ′, N ′〉 is
3-dimensional and it intersects Q(6, q) in a hyperbolic quadric Q+(3, q), which con-
sists in fact of two opposite reguli. Hence it is projected from n onto a hyperbolic
quadric Q+(3, q) consisting of two opposite reguli of lines of W5(q).
In this paper, we will call a regulus of lines of W5(q) a strong regulus if and only if
its opposite regulus also consists entirely of totally isotropic lines of W5(q). From
the above, it follows that every two disjoint lines of W5(q), q even, determine a
unique strong regulus of lines of W5(q), containing both of them. Keeping these
observations in mind, one can define locally hermitian 1-systems of W5(q).

Definition
Let M be a 1-system of the symplectic polar space W5(q), q even, in PG(5, q). We
say that M is locally hermitian at some line L ∈ M if and only if for every line
M ∈ M \ {L}, the unique strong regulus of W5(q) which contains L and M , is
completely contained in M.

In [5], a class of locally hermitian 1-systems of W5(q) has been discovered for q
even and q > 2. Moreover, it is shown that this class contains q−2

2
elements which are

pairwise non-isomorphic for the stabilizer of W5(q) in PGL(6, q). Under the action
of the stabilizer of W5(q) in PΓL(6, q), the number of orbits in this set of 1-systems
of W5(q) equals the number of orbits of Aut(GF(q)) in the set of all elements of
GF(q) \ {0} with trace zero; see also [5].

1.2 Semipartial geometries

A semipartial geometry is an incidence structure Γ = (P ,L, I) of points and lines
satisfying the following axioms:

spg1 Each point is incident with t + 1 (t ≥ 1) lines and two distinct points are
incident with at most one line.

spg2 Each line is incident with s + 1 (s ≥ 1) points and two distinct lines are
incident with at most one point.

spg3 If two points are not collinear, then there are µ (µ > 0) points collinear with
both.

spg4 If a point x and a line L are not incident, then there are 0 or α (α ≥ 1) points
which are collinear with x and incident with L.

In [4], it is shown that every 1-system of W5(q) is an SPG regulus in PG(5, q)
with parameters m = 1, r = q3 +1, α = q, and θ = q+1, which means the following.
An SPG regulus of PG(n, q) is a set R of m-dimensional subspaces π1, π2, . . . , πr,
r > 1, of PG(n, q), satisfying:

SPG1 πi ∩ πj = ∅ for all i 6= j.
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SPG2 If PG(m + 1, q) contains πi ∈ R, then it has a point in common with
either 0 or α (α > 0) spaces in R\ {πi}. If PG(m + 1, q) has no point in
common with πj ∈ R for all j 6= i, then it is called a tangent (m + 1)-
space of R at πi.

SPG3 If the point x of PG(n, q) is not contained in an element of R, then it
is contained in a constant number θ (θ ≥ 0) of tangent (m + 1)-spaces
of R.

As SPG reguli yield semipartial geometries by Thas [7], it is clear that every 1-system
of W5(q) defines a semipartial geometry. This semipartial geometry is constructed
as follows. Let M be a 1-system of a symplectic polar space W5(q) in PG(5, q) and
embed PG(5, q) := H as a hyperplane in PG(6, q). Define an incidence geometry
Γ = (P ,L, I) with the set of all points of PG(6, q) \H as point set P , the set of all
planes of PG(6, q) not in H which meet H in a line of M as line set L, and with the
natural incidence I. Then Γ is a semipartial geometry with parameters s = q2 − 1,
t = q3, α = q and µ = q2(q2− 1). This semipartial geometry will further be denoted
by SPG(M). Since the semipartial geometries SPG(M), with M locally hermitian,
will appear to have many subnets as subgeometries, we also mention the definition
of a net.

A net of order s + 1 and degree t + 1 is an incidence geometry Γ = (P ,L, I) of
points and lines satisfying the axioms spg1 and spg2 above and the following third
axiom:

N If a point x and a line L are not incident, then there exists exactly one line
which is incident with x and not concurrent with L.

In a net of order s + 1 and degree t + 1, two distinct lines are called parallel if
and only if they have no point in common. For every non-incident point-line pair
(x, L), the unique line through x and not concurrent with L is then the unique line
incident with x and parallel to L.

For later purposes, we give two constructions of a net of order q2 and degree
q + 1.

Consider a regulus R of lines in PG(3, q), embed PG(3, q) as a hyperplane in a
projective space PG(4, q), and let AG(4, q) denote the affine space PG(4, q)\PG(3, q).
Suppose that P is the set of all points of AG(4, q), let L consist of the planes of
AG(4, q), the extensions of which to PG(4, q) meet PG(3, q) in a line of R, and let
incidence be the incidence of AG(4, q). Then N := (P ,L, I) is a net of order q2 and
degree q + 1. In Johnson [3], a net of this kind is called a regulus net.

Consider the 3-dimensional projective space PG(3, q) and let N be a fixed line of
PG(3, q). Define P to be the set of all lines of PG(3, q), skew to N , and let L be the
set of points of PG(3, q), not on N . Then N := (P ,L, I), where I is the incidence of
PG(3, q), is a net of order q2 and degree q + 1. A net of this kind is denoted by H3

q

and called a co-dimension 2 net in Johnson [3].
In the book “Subplane covered nets” by Johnson ([3]), in which the reader can

find a wealth of information concerning nets and related topics, it is shown that
every regulus net is isomorphic to a co-dimension 2 net and conversely.
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Suppose that M is a locally hermitian 1-system of W5(q), q even. Then M
consists of q2 strong reguli R1, R2, . . . , Rq2 through a common line L ∈M. Consider
an arbitrary point x of SPG(M). For every regulus Ri, i ∈ {1, 2, . . . , q2}, it then
holds that the subgeometry of SPG(M), induced in 〈Ri, x〉, is a subnet of order q2

and degree q + 1 of SPG(M). In particular, it is a regulus subnet of SPG(M). We
conclude that SPG(M) contains a lot of (regulus) subnets of order q2 and degree
q + 1.

The following lemma, which has been shown in [6], gives information on the
structure of subnets of SPG(M) of order q2 and degree q + 1. It will play an
important role in the next section.

Lemma 1.1. Let M be a 1-system of a symplectic polar space W5(q), q > 2, in
PG(5, q) := H. A subnet of order q2 and degree q + 1 in SPG(M) is always the
subgeometry induced by SPG(M) in a subspace PG(4, q) of the ambient space PG(6, q)
of SPG(M), where PG(4, q) meets H in a PG(3, q) containing exactly q + 1 lines of
M.

2 Non-isomorphic locally hermitian 1-systems yield non-isomor-

phic semipartial geometries

In this section, we focus on the question whether the semipartial geometries that
arise from non-isomorphic, locally hermitian 1-systems M1, respectively M2, of
W5(q) with q even, are isomorphic or not. We first show that an isomorphism
between SPG(M1) and SPG(M2) is induced by an element of PΓL(7, q) which maps
M1 onto M2.

Theorem 2.1. Let M1 and M2 be locally hermitian 1-systems of a symplectic polar
space W5(q) in PG(5, q) := H, with q even and q > 2. If θ is an isomorphism between
SPG(M1) and SPG(M2), then θ is induced by an element ϑ ∈ PΓL(7, q) which maps
M1 onto M2.

Proof.
As M1 and M2 are locally hermitian, they both consist of q2 strong reguli through
some line, say L1 ∈ M1, respectively L2 ∈ M2. Every such strong regulus defines
a collection of subnets of order q2 and degree q + 1 in SPG(Mi), i = 1, 2. Clearly,
θ must map a subnet N1 of order q2 and degree q + 1 of SPG(M1) onto a subnet
N2 of the same order and degree in SPG(M2). Suppose that N1 is a regulus net,
determined by a regulus R of lines of M1. Then by Lemma 1.1, the net N2 = N θ

1 is
the subgeometry of SPG(M2), induced in a PG(4, q) which intersects H in a PG(3, q),
containing q + 1 lines of M2. Now, since N2 is isomorphic to the regulus net N1 by
assumption, a result of Johnson, see [2], implies that these q + 1 lines of M2 must
be the lines of a regulus R′ in PG(3, q). Hence N2 is also a regulus net and we know
that θ maps every regulus subnet of SPG(M1) onto a regulus subnet of SPG(M2).

Let N1 be an arbitrary regulus subnet of SPG(M1) and set N2 := N θ
1 . As has

been mentioned in Section 1.2, the net N1 is isomorphic to a co-dimension 2 net H3
q ,

which we consider to be embedded in a PG(3, q) \N as described in Section 1.2. By
Theorem 11.1 of Johnson [3], the full collineation group of H3

q is isomorphic to the
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stabilizer PΓL(4, q)N of the line N in PΓL(4, q).
If Ni, i = 1, 2, is the subgeometry of SPG(Mi), induced in the 4-dimensional sub-
space δi of PG(6, q), where δi ∩H contains a regulus R(i) of lines of Mi, then every
element ζ of PΓL(7, q) which maps δ1 onto δ2 and R(1) onto R(2), clearly induces
an isomorphism between N1 and N2. Now the number of such elements ζ equals
the number of elements of PΓL(7, q) stabilizing a given 4-dimensional subspace of
PG(6, q), multiplied with the number of collineations of PG(4, q), stabilizing a regulus
of lines in some hyperplane of PG(4, q). This last number can easily be calculated;
it is equal to hq6(q−1)(q2−1)2, where q = ph with p prime. But hq6(q−1)(q2−1)2

is also the order of the group PΓL(4, q)N , which implies that every isomorphism
between N1 and N2 must be induced by an element ζ ∈ PΓL(7, q) which maps δ1

onto δ2 and R(1) onto R(2).
Let R1, R2, . . . , Rq2 be the q2 strong reguli of M1 through L1. It then follows from
the previous paragraph that θ maps all lines of AG(6, q) = PG(6, q)\H, the extension
of which to PG(6, q) meets H in a point of some 〈Ri〉, i ∈ {1, 2, . . . , q2}, onto lines
of AG(6, q).

Next, we determine how many points of H are contained in some 〈Ri〉, i ∈
{1, 2, . . . , q2}. If two 3-spaces 〈Ri〉 and 〈Rj〉, i 6= j, have a plane in common, then
this must be a plane through L1. Hence this plane contains a transversal of Ri and
also one of Rj. In case these two transversals coincide, it follows that the elements
of M1 are not pairwise disjoint, a contradiction. On the other hand, if the two
transversals are distinct, then the plane 〈Ri〉 ∩ 〈Rj〉 contains a line of M1 and at

least 2q−1 points of M̃1, not on this line. The latter contradicts Axiom SPG2 and
the fact that M1 is an SPG regulus with α = q. Consequently, 〈Ri〉 ∩ 〈Rj〉 is the
line L1 for all i 6= j. Thus the union of the 3-spaces 〈Ri〉, i = 1, 2, . . . , q2, contains
exactly q5 + q4 + q + 1 points of H. The 3-space L⊥

1 , with ⊥ the polarity of W5(q),
intersects every 〈Ri〉, i ∈ {1, 2, . . . , q2}, in the line L1, and as such it yields q3 + q2

additional points of H. We conclude that a point of H is either contained in some
〈Ri〉, i ∈ {1, 2, . . . , q2}, or it is a point of the 3-space L⊥

1 .
Let π be a plane of PG(6, q), not in H, and assume that π intersects H in a

line K which has exactly one point z in common with L⊥
1 . Then, by considering

all lines of π through two distinct points of π \ K not on a common line through
z, and taken into account that the q affine points of every line of π not through z,
are mapped by θ onto the q points of an affine line, it is evident that all points of
π \K are mapped by θ onto the q2 points of a plane of AG(6, q). Now, let M be any
line of PG(6, q) \H through a point z ∈ L⊥

1 . If π and π′ are two distinct planes of
PG(6, q) through M , which meet H in distinct lines K and K ′ through z, but not
contained in L⊥

1 , then the points of M \ {z} must be mapped by θ onto the points
of the intersection of the affine planes (π \K)θ and (π′ \K ′)θ, which form a line of
AG(6, q). It follows that θ maps all lines of AG(6, q) onto lines of AG(6, q).

From the foregoing and as q > 2, we conclude that θ is an element of AΓL(7, q),
which implies that it can be extended to an element ϑ ∈ PΓL(7, q). Obviously, ϑ
must then map M1 onto M2. This proves the theorem. �
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Remarks

1. There are several possible ways to show that θ preserves the collinearity of
AG(6, q) within regulus subnets of SPG(M1).

An alternative proof also relies on the fact that the full collineation group of H3
q

is isomorphic to PΓL(4, q)N , but it would be valid over an infinite field as well.
By investigating the isomorphism between a regulus net and the co-dimension
2 net H3

q in its representation in PG(3, q) \N , one easily sees that q collinear
points in a regulus net which are also collinear in the affine space in which the
regulus net is represented, correspond to q lines, disjoint from N , through a
point p of PG(3, q) \N , and in a plane π of PG(3, q) not containing N . Also, q
points of the regulus net which are collinear in the affine space but not in the
net, correspond to the q lines of a regulus of PG(3, q) through the special line
N . Since every element of PΓL(4, q)N preserves both types of configurations of
q lines of PG(3, q), every isomorphism between two regulus nets must preserve
the collinearity of the affine space containing the first regulus net.

A second possible proof does not use the collineation group of H3
q , but relies

on straightforward properties of a regulus net. Let N be a regulus net of order
q2 and degree q + 1, embedded in an affine space AG(4, q) as usually. If a,
b and c are three collinear points of N , then one easily sees that there exist
2q2 − q − 3 points of N \ {a, b, c}, which are collinear in N with a, b and c,
provided that abc is a line of AG(4, q). If a, b and c are not collinear in AG(4, q)
however, there exist only q2 − 3 points of N \ {a, b, c}, which are collinear in
N with a, b and c. So if abc is a line of AG(4, q), then the same must hold for
aθbθcθ.
Similarly, let a, b and c be distinct points of N and suppose that they are
pairwise not collinear in N . If abc is a line of AG(4, q), then no point of
N \ {a, b, c} is collinear in N with a, b and c. If a, b and c are not collinear
in AG(4, q), then it can be shown that there always exists at least one point of
N \ {a, b, c}, collinear in N with all three of a, b and c. Hence in this case as
well, θ must map the line abc of AG(4, q) onto an affine line.

2. The proof of Theorem 2.1 is not valid if q = 2. Still, we can draw some
conclusions. By the classification of the 1-systems of W5(2), carried out by
Hamilton and Mathon [1], the symplectic polar space W5(2) has exactly two
non-isomorphic 1-systems. One of them is the hermitian spread of a Q−(5, 2)
and the other one is obtained from the hermitian spread by reversing a regulus,
so it is not locally hermitian by [6, Theorem 2.2]. Since Theorem 2.1 deals
with two distinct locally hermitian 1-systems of W5(q), it does not make sense
for q = 2. Moreover, the fact that the semipartial geometries, arising from the
two non-isomorphic 1-systems of W5(2) are not isomorphic, follows from [6,
Theorem 4.4].

The result obtained in Theorem 2.1 will now be used to show that for non-
isomorphic locally hermitian 1-systems M1 and M2 of W5(q), q even and q > 2,
the corresponding semipartial geometries SPG(M1) and SPG(M2) are also non-
isomorphic.
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Theorem 2.2. Suppose that M1 and M2 are two locally hermitian 1-systems of
W5(q), q even and q > 2. Then the corresponding semipartial geometries SPG(M1)
and SPG(M2) are isomorphic if and only if M1 and M2 are isomorphic for the
stabilizer of W5(q) in PΓL(6, q).

Proof.
Denote the line at which Mi is locally hermitian by Li, for i = 1, 2.

If M1 and M2 are isomorphic for the stabilizer of W5(q) in PΓL(6, q), with
isomorphism α, then it is clear that α can be extended to an element β ∈ PΓL(7, q)
which induces an isomorphism between SPG(M1) and SPG(M2).

Conversely, suppose that θ is an isomorphism between the semipartial geometries
SPG(M1) and SPG(M2). Then by Theorem 2.1, θ is induced by an element ϑ ∈
PΓL(7, q), which maps M1 onto M2. Without loss of generality, we may assume
that Lϑ

1 = L2. If ϑ stabilizes the symplectic polar space W5(q), then the claim is
obviously true. Therefore we assume that ϑ does not stabilize W5(q), which implies
that M2 = Mϑ

1 must be a 1-system of two distinct symplectic polar spaces W5(q)
and W5(q)

′, with W5(q)
′ the image of W5(q) under ϑ. Denote the polarity of W5(q)

by ζ and the polarity of W5(q)
′ by ξ. We shall prove that ζ = ξ, so that W5(q) and

W5(q)
′ coincide and the assumption is false.

For every line M ∈ M2, M ξ is a 3-dimensional subspace and contains no points of
M̃2, except for the ones on M . Since the union of the tangent planes at M of the
SPG regulus M2 contains q4−1

q−1
points, M ξ must coincide with the union of these

tangent planes. But the same holds for M ζ , so that M ξ = M ζ for all lines M ∈M2.
If x is a point of the line L2 (at which M2 is locally hermitian), then xξ is 4-
dimensional and it must contain Lξ

2 and all totally isotropic lines of W5(q)
′ through

x. Now the lines of M2 are totally isotropic for both ζ and ξ and as q is even, this
implies that also the transversals of the q2 strong reguli of M2 through L2 are totally
isotropic for ζ and ξ. Thus xξ, as well as xζ , contains Lξ

2 = Lζ
2 and all transversals

on x of the q2 strong reguli of M2 through L2, and it follows that xξ = xζ .
For a point y ∈ M̃2, y on some line M ∈ M2 \ {L2}, it holds similarly that yξ

contains M ξ = M ζ and the unique transversal through y of the strong regulus of
lines of M2, determined by L2 and M . But this transversal is also contained in
yζ and does not lie in M ξ = M ζ , and consequently we may again conclude that
yξ = yζ .
Finally, let r be a point of PG(5, q), not in M̃2. Then there exist q+1 tangent planes
of the SPG regulus M2 through the point r. These q + 1 tangent planes are totally
isotropic for both ζ and ξ and must hence be contained in rζ and rξ. Two such
tangent planes through r cannot have a line in common, because in that case the
first tangent plane would meet the line of M2 in the second tangent plane in a point,
and vice versa, a contradiction. As a consequence, these q + 1 tangent planes span
at least a 4-dimensional subspace of PG(5, q). On the other hand, all q + 1 tangent
planes must be contained in rζ and rξ, which are both 4-dimensional, so that the
subspace generated by the q + 1 tangent planes of the SPG regulus M2 through r
must be 4-dimensional and coincide with rζ and rξ. This yields that rξ = rζ and we
can now conclude that the symplectic polarities ζ and ξ are identical.

This proves the theorem. �
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In combination with the results from [5], Theorem 2.2 implies that there exist
d non-isomorphic semipartial geometries SPG(M), with M a locally hermitian 1-
system of W5(q), q > 2 and even, belonging to the class discovered in [5], and which
is not a spread of an elliptic quadric Q−(5, q). Here d stands for the number of orbits
of the automorphism group of GF(q) in the set of elements of GF(q) \ {0} with trace
zero. Since none of the considered 1-systems is a spread of a Q−(5, q) and taking
account of the results in [6], the semipartial geometries they yield are new.
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