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Abstract

We derive necessary and sufficient conditions for the existence of a least
and a greatest fixed point of an operator which satisfies the hypothesis of
Schauder’s theorem. The so obtained results are applied to prove existence of
extremal solutions for some initial and boundary value problems.

1 Introduction

In an ordered normed space it is well know that a nondecreasing com-
pletely continuous selfmap of a given order interval has a least and a greatest
fixed point. In general, this result is not true if we do not assume any mono-
tonicity condition. The aim of this paper is to characterize the existence of the
extremal fixed points for a completely continuous operator T which satisfies
Schauder’s theorem. The statement of this result, which is given in section 2,
is as follows: T has a greatest fixed point if and only if the set of fixed points
of T is upward directed (i.e. for any pair of fixed points there exists another
one which is greater than both of them). We point out that in recent years
the directness has played a crucial role to prove the existence of extremal so-
lutions in the framework of nonlinear elliptic and parabolic problems (see the
monograph [1]).

In section 3 we present two illustrative applications of our results. The
first one is a new and shorter proof of the existence of extremal solutions for
the scalar first order initial value problem with Carathéodory functions. In

Received by the editors February 2003.
Communicated by J. Mawhin.
1991 Mathematics Subject Classification : 06Axx, 47H10, 34Bxx.
Key words and phrases : Directed set, Schauder’s fixed point theorem, extremal fixed points,

extremal solutions for boundary value problems.

Bull. Belg. Math. Soc. 11 (2004), 15–20
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the second one we give a proof which is simpler than that obtained in the
monograph [3] for the existence of extremal solutions, between assumed lower
and upper solutions, for a second order periodic boundary value problem.

2 Abstract results

We say that a subset Y of a partially ordered set (poset) X is upward
directed if for each pair y1, y2 ∈ Y there exists y3 ∈ Y such that y1 ≤ y3 and
y2 ≤ y3. Analogously, Y is downward directed if for each pair y1, y2 ∈ Y there
exists y3 ∈ Y such that y3 ≤ y1 and y3 ≤ y2.

A poset X is a lattice if x1∨x2 := sup{x1, x2} and x1∧x2 := inf{x1, x2},
exist for all x1, x2 ∈ X. Every totally ordered set is a lattice and every lat-
tice is upward and downward directed. A lattice X is complete when each
non empty subset B ⊂ X has supremum, denoted by

∨
B, and infimum, de-

noted by
∧

B. In particular, every complete lattice has the maximum and the
minimum.

Let N be a normed space. A subset K ⊂ N is a cone if it is closed,
K + K ⊂ K, λK ⊂ K for all λ ≥ 0 and K ∩ (−K) = {0}. A cone K yields
a partial ordering in N given by x ≤ y if and only if y − x ∈ K. N is an
ordered normed space if N is ordered by a cone.

In an ordered normed space N we have that the intervals

(x] := {z ∈ X : z ≤ x} and [x) := {z ∈ X : x ≤ z}

are closed for all x ∈ N , because (x] = x−K and [x) = x + K.
An operator T : D ⊂ N → N is called completely continuous if it is

continuous and moreover T (M) is a compact set whenever M ⊂ D is bounded.
We say that x∗ ∈ D is the greatest fixed point of T if x∗ is a fixed point of T
and if x ≤ x∗ for any other fixed point x ∈ D. The least fixed point is defined
similarly by reversing the inequality. When both, the least and the greatest
fixed point of T , exist we call them extremal fixed points.

The following theorem is our main result.

Theorem 2.1. Let N be an ordered normed space, D ⊂ N a non empty,
bounded, closed and convex subset and T : D → D a completely continuous
operator. Then the set of fixed points of T

P = {x ∈ D : Tx = x},

is compact and non empty. Moreover the following claims hold:

i) T has a greatest (least) fixed point if and only if P is upward (downward)
directed.

ii) If P is a lattice then P is a complete lattice.

Proof. Schauder’s fixed point theorem ensures that P is non empty. More-
over, P is closed, because P = (T − Id)−1(0), and since T (D) is a compact
set and P = T (P ) ⊂ T (D) we deduce that P is also compact.

Proof of i). If T has a greatest fixed point then obviously P is upward
directed. Conversely, suppose that P is upward directed. Then the following
family of closed subsets of P

F1 = {[x) ∩ P : x ∈ P}
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has the finite intersection property. Since P is compact we have that
⋂

x∈P

([x) ∩ P )

contains a point x∗, which is a greatest fixed point of T because x∗ ∈ P and
x∗ ∈ [x), i.e. x∗ ≥ x, for all x ∈ P . By using dual arguments we prove that T
has a least fixed point if and only if P is downward directed.

Proof of ii). Suppose that P is a lattice and let B ⊂ P be a non empty
subset. Since P is upward directed we know, by claim i), that T has a greatest
fixed point x∗. Therefore the following family of closed subsets of P

F2 = {[x, u] ∩ P : x ∈ B, u ∈ P is an upper bound of B},

is non empty, because x∗ ∈ P is an upper bound of B. Moreover F2 has the
finite intersection property because

∨
{xi : i = 1, . . . , n} ∈

n⋂
i=1

([xi, ui] ∩ P ),

for any [xi, ui] ∩ P ∈ F2, i ∈ {1, . . . , n}. Then, since P is compact, the
intersection of all sets of the family F2 contains a point, which by construction
is the supremum of B in P . By using dual arguments we prove that there
exists the infimum of B in P and thus P is a complete lattice. �

A list of different general conditions which imply that an upward directed
set has the maximum can be founded in section 5 in [4].

3 Applications: existence of extremal solutions of dif-

ferential equations

3.1 A first order initial value problem

Let I = [0, T ], with T > 0. We say that f : I × R → R is a Carathéodory
function if for all x ∈ R the function f(·, x) is measurable, for a.a. t ∈ I the
function f(t, ·) is continuous and moreover there exists m ∈ L1(I) such that

|f(t, x)| ≤ m(t) for a.a. t ∈ I and for all x ∈ R.

In case f : I×R → R is a Carathéodory function by a solution of problem

x′(t) = f(t, x(t)) for a.a. t ∈ I, x(0) = x0, (3.1)

we mean an absolutely continuous function x : I → R such that x(0) = x0

and that satisfies the differential equation for almost all t ∈ I. If xmax is a
solution of (3.1) and for any other solution x we have that

x(t) ≤ xmax(t) for all t ∈ I,

we say that xmax is the maximal solution of (3.1). The concept of minimal so-
lution xmin is defined in a similar way by reversing the inequality. When both
the maximal and the minimal solution, exist we call them extremal solutions
of (3.1).

It is well known that problem (3.1) has extremal solutions (see [2]). Next
we give a new and shorter proof of this fact using theorem 2.1.
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Theorem 3.1. Suppose f : I ×R → R is a Carathéodory function. Then the
solution set

S = {x : I → R : x is a solution of (3.1)},

is a non empty compact subset of C(I). Moreover S is a complete lattice and
in particular problem (3.1) has extremal solutions.

Proof. Clearly S matches up the set of fixed points P of operator T : C(I) →
C(I) defined for each x ∈ C(I) as

Tx(t) = x0 +
∫ t

t0
f(s, x(s))ds for all t ∈ I.

It is easy to prove that T is completely continuous and bounded. Therefore
it follows from theorem 2.1 that P = S is a non empty compact subset of
C(I). Moreover, C(I) with the cone of all nonnegative functions is an ordered
normed space and S = P is a lattice because the maximum and the minimum
(pointwise) of solutions of (3.1) is also a solution of (3.1). Therefore, from
theorem 2.1 ii) it follows that P = S is a complete lattice and in particular
the extremal solutions of (3.1) exist. �

3.2 A periodic boundary value problem

We consider the second order periodic problem

u′′(t) = f(t, u(t)), u(a) = u(b), u′(a) = u′(b), (3.2)

where a < b and f is continuous.
We define the concept of lower and upper C2-solutions of problem (3.2)

following [3]: a function α ∈ C([a, b]) such that α(a) = α(b) is a C2-lower
solution of problem (3.2) if its periodic extension on R, defined by α(t) =
α(t + b− a), is such that for any t0 ∈ R
either D−α(t0) < D+α(t0),
or there exist an open interval I0 with t0 ∈ I0 and a function α0 ∈ C1(I0, R)
such that:

(i) α(t0) = α0(t0) and α(t) ≥ α0(t) for all t ∈ I0;

(ii) α′′
0(t0) exists and α′′

0(t0) ≥ f(t0, α0(t0)).

A function β ∈ C([a, b]) such that β(a) = β(b) is a C2-upper solution of
problem (3.2) if its periodic extension on R is such that for any t0 ∈ R
either D−β(t0) > D+β(t0),
or there exist an open interval I0 with t0 ∈ I0 and a function β0 ∈ C1(I0, R)
such that:

(i) β(t0) = β0(t0) and β(t) ≤ β0(t) for all t ∈ I0;

(ii) β′′0 (t0) exists and β′′0 (t0) ≤ f(t0, β0(t0)).

The following result concerning lower and upper C2-solutions holds (propo-
sitions 2.1 and 2.2 in [3]).
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Proposition 3.2. Let α1 and α2 be C2-lower solutions. Then

α(t) = α1 ∨ α2(t) := max{α1(t), α2(t)} for all t ∈ [a, b],

is a C2-lower solution.
Let β1 and β2 be C2-upper solutions. Then

β(t) = β1 ∧ β2(t) = min{β1(t), β2(t)} for all t ∈ [a, b],

is a C2-upper solution.

Habets and De Coster prove the existence of extremal solutions of (3.2)
between α and β (theorem 2.4 of [3]) by using Akô’s method. We are going
to give a simpler and shorter proof based on theorem 2.1.

Theorem 3.3. Let α and β be C2-lower and upper solutions of (3.2), such
that α ≤ β, define E = {(t, u) ∈ [a, b] × R : α(t) ≤ u ≤ β(t))} and assume
that f is continuous on E.

Then the solution set

S = {u ∈ C2([a, b]) : α ≤ u ≤ β, u is a solution of (3.2)},

is a non empty compact subset of C([a, b]). Moreover, there exist the maximal,
umax, and the minimal, umin, solutions of problem (3.2) between α and β,
that is, if u ∈ S then

umin(t) ≤ u(t) ≤ umax(t) for all t ∈ [a, b].

Proof. In theorem 2.3 in [3] the authors prove that S equals the set of fixed
points P of operator T : C([a, b]) → C([a, b]) defined for each u ∈ C([a, b]) as

Tu(t) =
∫ b

a
G(t, s)(f(t, γ(s, u(s)))− γ(s, u(s)))ds,

where G(t, s) is the Green function that corresponds to problem

u′′(t)− u(t) = f(t), u(a) = u(b), u′(a) = u′(b),

and where γ : [a, b]× R → R is defined by

γ(t, u) =


β(t), if u > β(t),
u, if α(t) ≤ u ≤ β(t),
α(t), if u < α(t).

Since T is completely continuous and bounded, we deduce by theorem 2.1
that P = S is a non empty compact subset of C([a, b]).

Now, we are going to prove that S = P is upward directed with respect
to the order induced in C([a, b]) by the cone of nonnegative functions. For
given u1, u2 ∈ S proposition 3.2 ensures that α1 := u1 ∨ u2 ≤ β is a C2-
lower solution of (3.2) and then, repeating the above argument, there exists
a solution u3 of (3.2) between α1 and β. Then, since u3 ∈ S, u1 ≤ u3 and
u2 ≤ u3, it follows that S = P is upward directed.

Now, from theorem 2.1 i), we deduce the existence of a greatest fixed point
umax of T , which is the maximal solution of (3.2) in the sector enclosed by
α and β. By using a dual argument we prove that problem (3.2) has the
minimal solution between α and β. �
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