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Abstract

This article presents a survey about balanced words. The balance property

comes from combinatorics on words and is used as a characteristic property of

the well-known Sturmian words. The main goal of this survey is to study var-

ious generalizations of this notion with applications and with open problems

in number theory and in theoretical computer science. We also prove a new

result about the generalized balance property of hypercubic billiard words.

1 Introduction

The balance property is a fine tool for studying words appearing in combinatorics
on words [12, 26, 15], in billiard theory [70] and dynamical systems [20]. Two finite
words of the same length on the alphabet {a, b} have the balance property if the
number of a’s in the two words is almost the same. More precisely the difference
between the number of a’s in the two words is bounded by 1. By definition, an
infinite word x is balanced if for any two finite words factors of x, the two words
have the balance property.

This survey is motivated by the increasing number of results on balanced words.
First of all, we have the following characterization. Infinite non-periodic balanced
words on a binary alphabet are exactly Sturmian words [52, 12]. Furthermore,
balanced words on more than two-letter alphabets appear in the statement of the
famous Fraenkel conjecture with links to Beatty sequences and to number theory
[36, 68]. Sometimes generalizations of Sturmian words are strongly non-balanced
(the difference between the number of letter a in the two words is not bounded) as
for a subclass of Arnoux-Rauzy words [26]. Conversely hypercubic billiards words
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(see [4, 70]) in dimension d are (d − 1)-balanced; that is the difference between the
number of a’s in the two words is bounded by d−1. We also investigate the balance
property for bidimensional words [16] and an alternative definition of the balance
property [53]. In addition to that the periodic or non-periodic infinite words play
an important role because of applications in optimization theory and discrete event
systems [38, 51].

This survey is organized as follows. In section 2 we study the balance property
of infinite words and the structure of balanced factors. In particular, we focus on
the balance property of Sturmian words and we also construct balanced words in a
geometrical way, namely the cutting words. We also state a theorem of Berstel and
Séébold about Sturmian morphisms. We study the generalized balance property of
Sturmian words and the balance property for words on alphabets of more than two
letters. We present the Fraenkel conjecture. In section 3 we study results on the
generalized balance property. We define the Arnoux-Rauzy words and the imbalance
property result. We also recall the construction of billiard words in square and cubic
tables. We show a new result of generalized balance property of hypercubic billiard
words. We construct an example of hypercubic billiard words with maximal balance
property. In the last subsection we show that the balance property in two dimensions
is very restrictive and we define an alternative definition of the balance property.
To close this survey, Section 4 is a presentation of heap of pieces and optimization
problems in relation with balanced words.

2 Balance property of infinite words

2.1 Sturmian words

An infinite word x over a finite alphabet A is a mapping from the positive integers
into A. We write x = x1x2 · · · where xi ∈ A is the ith letter of x. A factor of x is
word w such that w = xixi+1 · · ·xj for some i, j with i ≤ j and the length of w is
|w| = j− i+1. The empty word is the word of length 0.The set of factors is denoted
by L(x) and the set of factors of length n ≥ 0 is denoted by Ln(x).

Hedlund and Morse (see [52]) define the Sturmian words by the notion of (sub-
word) complexity :

Definition 1. An infinite word x is a Sturmian word if the complexity of x is given
by p(n) = n + 1 for all n ≥ 0.

Here the complexity function p : N → N counts the number of distinct factors of
length n of the infinite word x, i.e. p(n) = Card Ln(x) (see the survey [3]). That
is, a Sturmian word contains exactly n + 1 distinct factors of length n for all n. In
particular, this definition implies that the Sturmian words are built on an alphabet
with p(1) = 2 letters.

For example, here you find the beginning of a Sturmian word:

x = abaaabaabaaabaaabaabaaabaabaaabaaabaab · · ·
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It is easy to check the first values of the complexity function of x:

p(1) = Card {a, b} = 2,

p(2) = Card {ab, ba, aa} = 3,

p(3) = Card {aba, baa, aaa, aab} = 4,

p(4) = Card {abaa, baaa, aaab, aaba, baab} = 5 · · · .

This combinatorial definition of Sturmian words leads to many characterizations
[50, 10]. There are two synthesis references on Sturmian words, a chapter in the
Lothaire 2 [12] and the book of the Marseille group [20].

2.2 Balance property

The following characterization of Sturmian words is important because it leads to
many generalizations used in computer science.

Theorem 1 (Hedlund, Morse). A non-periodic infinite word x is a Sturmian
word if and only if for all factors w, w′ of x of the same length, the difference
between the number of a in w and the number of a in w′ is bounded by 1.

More formally, ∀n ∈ N, ∀w, w′ ∈ Ln(x) ||w|a − |w′|a| ≤ 1 where |w|a denotes the
number of distinct occurrences of the letter a in the word w. This characterization
is based on the balance property of the infinite word x. By definition a finite or
infinite word u is balanced if for all factors w and w′ of same length of u we have
||w|a − |w′|a| ≤ 1.

Recent results of Jenkinson and Zamboni present three characterizations of finite
balanced words w that can be extended on an infinite periodic balanced word wω in
terms of ordering of an orbit either lexicographically or with respect to a norm [44].
In an article of O’Bryant there is a fine study of Sturmian words using algebraic
properties of permutation that orders fractional parts [23]. This paper extends the
results in [66, 2] on the three-distance theorem.

A geometrical method of producing balanced words is via cutting words. Cutting
words on regular tilings are codings of natural geometrical objects appearing in
billiard theory [4, 70], combinatorics on words [11, 28, 43] and dynamical systems
[20]. The simplest case is given by a half-line with slope α in a unit square grid.
This geometrical object is coded in order to build an infinite word u called a cutting
word: we code the intersection of a given half-line with the unit square grid by the
letter a (resp. b) if the intersection follows in vertical (resp. horizontal) line (see
Figure 1).

Note that this coding is not well-defined on points with both integer coordinates.
On these points we could choose either the coding ab or the coding ba. But in order
to have balanced words we must code each intersection of the half-line and integer
points by the same coding ([38, 51, 12]). For example, if we take the half-line D
y = x, x ≥ 0 then D intersects the unit grid only at integer points. We have to make
the same choice for each intersection of D with integer points. If we choose ab then
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Figure 1: Cutting word.

the cutting word is (ab)ω and if we choose ba then the cutting word is (ba)ω. And
we can check that both infinite words are balanced words.

Of course, if α is rational then the preceding construction gives periodic balanced
words. In order to construct non-periodic balanced words, we take α irrational and
then the coding gives exactly the Sturmian words.

2.3 Iterated morphisms and balance property

A classical method of generating infinite words in computer science and in mathe-
matics is the use of iterated morphisms (or substitutions in mathematician vocabu-
lary) (see [29, 64, 55]). A morphism letter to word associates to each letter a word on
a given alphabet. For example, the Fibonacci morphism on the two letter alphabet
A = {a, b} is defined by σ(a) = ab and σ(b) = a (see for example [8]). The following
rule is used to apply the morphism: if w is a finite word on L(x) and w = w1w2 · · ·wn

where the wi’s are letters then σ(w) = σ(w1w2 · · ·wn) = σ(w1)σ(w2) · · ·σ(wn)). In
addition to that, one denotes by σn(a), n iterations of the morphism applied to the
letter a. To illustrate this definition, σ2(a) is equal to σ(σ(a)) = σ(ab) = aba.

The Fibonacci word is defined as the fixed point of σ, that is the infinite word x
such that σ(x) = x [9, 64]. Here you find the beginning of the Fibonacci word:

x = abaababaabaababaababaabaabab · · ·

In fact, this morphism is called the Fibonacci morphism because the length of
the finite word σn(a) is equal to the Fibonacci number Fn. Note that the σn(a) are
prefixes of the Fibonacci word for all n. This morphism is then related to the linear
recurrence Fn+2 = Fn+1 + Fn with F−1 = 1 and F0 = 1.

Sturmian morphisms are morphisms which leave invariant the class of Sturmian
words [11]. That is a Sturmian morphism applied to any Sturmian word gives
another Sturmian word. It is remarkable that we can check if a morphism is a
Sturmian morphism by studying the balance property of the image of a finite word.

Theorem 2 (Berstel, Séébold). A morphism φ is a Sturmian morphism if and
only if the image of W = abbabbababbaba by φ is a balanced word.

This means that Berstel and Séébold check a property for an infinite class of
morphisms on a word of length 14 (see [11]).



Balanced words 791

For example, the morphism of Fibonacci σ(a) = ab and σ(b) = a is a Sturmian
morphism. Indeed σ(W ) = abaaabaaabaabaaabaab is a balanced word. To verify
this property, it is sufficient to take all factors two by two with the same length (for
instance w = baaabaa and w′ = baabaab) and to check that ||w|a − |w′|a| ≤ 1 (with
the preceding choice of words, we compute |baaabaa|a = 5 and |baabaab|a = 4 in
accordance with the formula).

3 Balance property with a word

With Fagnot [33], we study the balance property of Sturmian word not only with a
single letter but with factors of x. We show that for a Sturmian word x the difference
between the number of occurrences of a factor u of x in two factors of x of the same
length is bounded by the length of u.

Theorem 3 (Fagnot, Vuillon). If x is a Sturmian word then

∀u ∈ L(x) with |u| ≥ 1, ∀n ∈ N, ∀w, w′ ∈ Ln(x),

||w|u − |w′|u| ≤ |u|

where |w|u denotes the number of distinct occurrences of the word u in the word w.

We fulfil the balance property of Sturmian word by taking for u a word of length
1 (that is a letter of the alphabet). The article precises that if the continued fraction
expansion of the slope α of the cutting word has bounded partial quotients then we
find that the difference ||w|u − |w′|u| is uniformly bounded on the length of w.

The main interest of this approach is to understand well the structure of Sturmian
words. This notion of balance property should be extended to more complicated
phenomena like the balance property on infinite words in alphabets of more than a
two letters.

In an article of Adamczewski, we find a deep link between generalized balance
property of infinite words given by iterated morphisms and discrepancy function
[1, 55]. More precisely, in the case of fixed points of primitive substitutions (primitive
means that there exists an integer k such that all letters of the alphabet A appear
in σk(a), ∀a ∈ A) the maximal balance (maxw,w′∈Ln(x)(||w|a − |w′|a|) [1, 33]) is in
part ruled by the spectrum of the incidence matrix associated with the substitution.
The article presents also an interesting catalogue of substitutions and their spectra.
In particular Adamczewski shows that the two notions of balance and discrepancy
are strongly connected in case of linearly recurrent words (a word is said linearly
recurrent if there exists an integer K such that for any of its factor w the difference
between two successive occurrences of w is bounded by K|w| see [31]). He gives also
a link between bounded remainder sets that appear on the works of Rauzy and on
the famous Rauzy fractal [59, 58] and generalized balance property.
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4 Balance property for an alphabet of more than two letters

The preceding generalization of the balance property is defined on Sturmian words
and then gives a definition for a two-letter alphabet. A natural way to extend the
balance property is to consider words on an alphabet of more than two letters. By
definition a word is balanced on each letter if for all letters of the alphabet A = L1(x)
we have

∀a ∈ L1(x), ∀n ∈ N, ∀w, w′ ∈ Ln(x), ||w|a − |w′|a| ≤ 1.

A result of Graham [40] on covering of integers by sequences and a result of
Hubert [42] using combinatorics on words show that infinite non-periodical words
balanced on each letter are constructed by a modification of Sturmian words. The
main idea is to periodically replace the occurrences of the letter a of the Sturmian
word by a periodic word on an alphabet A and to replace the occurrences of b by a
periodic word on another alphabet B. The conditions in order to have non-periodic
words balanced on each letter are firstly that A and B are disjoint and secondly
that the words (a1, a2, · · ·ak1

)ω with ai ∈ A and (b1, b2, · · · bk2
)ω with bi ∈ B are

with constant gaps. An infinite periodic word wω has constant gaps if the number
of letters between two occurrences of successive letter ai of wω is constant for each
i). For example (abac)ω is a constant gap word and (abaac)ω is not with constant
gaps.

As an example we build a non-periodic word on a four-letter alphabet by modi-
fication of the Fibonacci word:

x = abaababaabaababaababaabaabab · · ·

To do this, we replace periodically the occurrences of the letter a by the constant
gap word (cdce)ω :

cbdcbebcdbcebcbdcbebcdbcebcb · · ·

By construction, the word is balanced on the letter b, because the Fibonacci
word is balanced. It remains as an exercise for the reader to check that the word is
balanced on the letter c, d and e.

In fact, Graham presents is result using covering of integers by Beatty of the
form dαn + βe. He extends the following Theorem [65, 36, 68]:

Theorem 4 (Skolem-Fraenkel). The Beatty sequences dα1n+β1e and dα2n+β2e
cover the integer if and only if

1

α1

+
1

α2

= 1 and
β1

α1

+
β2

α2

∈ Z.

Skolem proves the theorem for α1 irrational (for non-periodic balanced words)
and Fraenkel for α1 rational (periodic balanced words). The link between Beatty
sequences and Sturmian words is simple. Indeed, the first Beatty sequence gives
the indices of occurrence of the letter a and the second Beatty sequence gives the
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indices of occurrence of the letter b in the associated Sturmian word. For example,
the Fibonacci word is given by

x = abaababaabaababaababaabaabab · · · ,

and the first Beatty sequence gives the following set of indices

{1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19 · · ·}

and the second
{2, 5, 7, 10, 13, 15, 18 · · ·}.

The union of the two sets is the positive integers N∗. That is the two Beatty
sequences cover the integers. Note that the theorem of Skolem-Fraenkel gives Beatty
sequences associated with Sturmian words if α1 is irrational and associated with
periodic balanced words if α1 is rational.

Now, if we cover the integers by three or more Beatty sequences dαin + βie
with i = 1, 2, · · ·k, k ≥ 3 with all distinct frequencies of letters (i.e. αi two by two
distinct), then Graham shows that the coefficients αi remains rational. This implies
in particular that the associated infinite word is periodic and balanced.

In computer science, this kind of balance property appears in optimization prob-
lems and in particular for job-shops. If we consider k tasks that share the same
machine, we can find a solution in order to minimize the utilization of the machine
by using a periodic word on k letters to dispatch the information on the k tasks.
Gaujal [39] studies this problem by using a discrete version of convexity, namely the
multi-modularity property.

A conjecture of Fraenkel [36, 68, 69, 39] says that this problem is very constrained.
First we define the frequency of the letter a ∈ A in the infinite word x is defined by
limn→∞ |x1x2 · · ·xn|a/n when the limit exists.

Conjecture 1 (Fraenkel). The unique solution (up to a permutation of letters)
of balanced word on each the k ≥ 3 letters with all distinct frequencies of letters is
(FRk)

ω = (FRk−1kFRk−1)
ω where FR3 = 1213121.

This conjecture is true for k = 3, 4, 5, 6 [68, 69, 39]. In particular for k = 3
the unique word is (1213121)ω and the frequencies are all different, the frequency
of the letter 1 is 4

7
because there are 4 occurrences of the letter 1 in the period, the

frequency of the letter 2 is 2
7

and the frequency of the letter 3 is 1
7
.

5 Generalizations of balance property

5.1 Infinite words with complexity p(n) = 2n + 1

The infinite words with complexity p(n) = 2n + 1 are a well studied generalization
of Sturmian words [10]. Numerous constructions exist for building these words by
coding of rotations [60, 35, 13], interval exchange transformations [5, 47, 34, 57],
combinatorics on words [27, 30, 26] or by iterated morphisms [5, 54]. Remark that
to find a complete characterization of infinite words with complexity p(n) = 2n +
1, ∀n ≥ 0 is still an open problem.
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A Sturmian word has complexity p(n) = n+1 and then the first difference of the
complexity function p(n+1)−p(n) is equal to 1 for all n. In terms of combinatorics
on words, for each length n there exists a unique word with two right prolongations
i.e. for all n there exists w with |w| = n such that wa and wb are factors of x and a
unique word with two left prolongations i.e. for all n there exists w′ with |w′| = n
such that aw′ and bw′ are factors of x.

The Arnoux-Rauzy words are built using this property on a three-letter alphabet:
for each length there exists a unique word with three right prolongations and a unique
word with three left prolongations. Thus the complexity function for Arnoux-Rauzy
words is p(n) = 2n + 1. This generalization can also be seen as a coding of interval
exchange transformation on 6 intervals [5].

The prototypical Arnoux-Rauzy word is given by the following iterated mor-
phism: σ(a) = ab, σ(b) = ac, σ(c) = a with the beginning

x = abacabaabacababacabaabacabacaba · · ·

We can check that this word is not balanced but is 2-balanced on each letter.

Definition 2. An infinite word x is a c-balanced word on each letter if ∀a ∈ A, ∀n ∈
N, ∀w, w′ ∈ Ln(x) ||w|a − |w′|a| ≤ c.

Unfortunately, one can find Arnoux-Rauzy words which are not c-balanced for
any c.

Theorem 5 (Cassaigne, Ferenczi, Zamboni). There exist Arnoux-Rauzy words
that are not c-balanced, that is for each integer c, there exist factors w and w′ with
same length of an Arnoux-Rauzy word x such that ||w|a − |w′|a| ≥ c for some letter
a.

Furthermore, if the Arnoux-Rauzy word x is linearly recurrent (if there exists
an integer k such that for any factors w the difference between the indices of two
successive occurrences of w in x is bounded by k|w|) then x is c-balanced for some
c. Justin and his co-authors also give a combinatorial study of Arnoux-Rauzy words
and of a natural generalization of these words, namely the Episturmian words [30,
45, 46].

5.2 Billiards

Now, we investigate the world of billiards [70]. Indeed, Sturmian words are char-
acterized by coding of square billiard words with irrational slope. Let us consider
a square billiard table and a trajectory of a point along an irrational slope. Each
time that the point touches the border of the billiard table , it bounces according to
the reflection laws (the angles of reflection of the trajectory with the normal at the
border are equal before and after the reflection). Notice that with this definition the
trajectory is not defined at corner points. Now, if we code by a (resp. by b) when
the point touches the horizontal (resp. vertical) sides then the infinite word given
by the coding of the trajectory is a Sturmian word.

A natural generalization of square billiards is cubic billiards. We play billiard
on a cube with trajectory along a totally irrational direction (a direction (a1, a2, a3)
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such that for bj integers we have b1a1+b2a2+b3a3 = 0 if and only if b1 = b2 = b3 = 0).
We code by i when the trajectory bounces on the side normal to ei. By this coding
we build cubic billiard words [4].

Theorem 6 (Arnoux, Mauduit, Shiokawa, Tamura). The complexity function
of a billiard word is p(n) = n2 + n + 1.

Each cubic billiard word is a mix of three Sturmian words and also a cutting
word in the unit cubic grid. Indeed, cubic billiard words are words on a three-letter
alphabet {1, 2, 3}. Now, if we erase all letters 1 on a cubic billiard word (or letter
2 or 3), then it remains a Sturmian word (geometrically, a trajectory on a cubic
billiard seen in a direction normal to one side is a square billiard trajectory).

For example, this is the beginning of a billiard sequence:

231232132312321322312312321323123213223123 · · ·

And here you find the three associated Sturmian words:

23232323232322323232323232322323 · · ·

3131331313313131331313313 · · ·

212212122122121221212212212 · · ·

Conversely, if we consider three Sturmian words S1 in the alphabet {2, 3}, S2 in
the alphabet {1, 3} and S3 in the alphabet {1, 2} there is an easy pseudo algorithm
to check and to construct the associated cubic billiard word C. At each step we
choose the two letters equal in two of the Sturmian words and we add this letter to
the cubic billiard word C. Here you find the pseudo algorithm that is to have a cubic
billiard word, it must stay infinitely many time on the repeat-until loop. Indeed, as
we have three Sturmian words, Si is the coding of the line Di for i = 1, 2, 3. The
Sturmian word S1 (resp. S2, S3) is the coding of a geometrical object on the plane
D1Oz (resp. D2Ox ,D3Oy). If the algorithm does not stop then the remaining
geometrical object is at the intersection of the three planes D1Oz , D2Ox and D3Oy
and must be a line. Thus this is a cutting word in dimension 3 with totally irrational
direction and then a cubic billiard.

i := 1, j := 1, k := 1, ` := 1;

repeat

if S1(i) == S2(j) then C(`) := 3, i := i + 1, j := j + 1, ` := ` + 1;

if S1(i) == S3(k) then C(`) := 2, i := i + 1, k := k + 1, ` := ` + 1;

if S2(j) == S3(k) then C(`) := 1, j := j + 1, k := k + 1, ` := ` + 1;

until S1(i) 6= S2(j) and S1(i) 6= S3(k) and S2(j) 6= S3(k);

failure this is not a cubic billiard word.

In the article [4], the authors conjecture an elegant formula. Baryshnikov shows
that this conjecture is true in any dimension and for any length of words [6].
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Theorem 7 (Baryshnikov). The complexity function of hypercubic billiard words
of dimension s + 1 and for factors of length n is:

p(n, s) =
inf(n,s)

∑

i=0

n!s!

(n − i)!i!(s − i)!
.

We have to notice the symmetric role in the formula between the dimension of
the space and the length of the words. An open problem proposed by Mauduit is
to find a combinatorial proof of this fact p(n, s) = p(s, n), ∀(n, s) ∈ N2.

6 Generalized balance property of hypercubic billiards

We now prove a new balance property for hypercubic billiard words.
A way to define hypercubic billiards is to unfold the trajectory and to consider

cutting words on a hypercubic grid. We define a word x associated with hyper-
cubic billiard in dimension d of angle vector α = (α1, α2, · · ·αd) with rationally
independent values (i.e. the unique solution of b1α1 + b2α2 + · · ·+ bdαd = 0 with bi

integers is b1 = b2 = · · · = bd = 0) and of starting point β = (β1, β2, · · · , βd) where
0 ≤ βi < αi, ∀i.

A hypercubic billiard word x is an infinite word on the alphabet A = {1, 2, · · · , d}
given by

∪d
i=1{nαi + βi|n ∈ N}

in its natural order and the corresponding sequence of labels read from the origin.
Note that for d = 2 we have Sturmian words (see Figure 2) and for d = 3 we have
cubic billiard words.

a

α1 2α

ab b b b b b bba a

γ

Figure 2: Cutting word.

Theorem 8. Let x be an infinite word associated with hypercubic billiards in dimen-
sion d of angle α and starting point β. Then the infinite word x is (d − 1)-balanced
on each letter (i.e. ∀i ∈ A, ∀n ∈ N, ∀w, w′ ∈ Ln(x), ||w|i − |w′|i| ≤ d − 1).

Proof. Let bal be a positive integer. Let (w, w′) a pair of words such that w and
w′ are factors of same length of x and such that |w|i − |w′|i = bal.

We suppose also that the length of w and w′ is the smallest integer such that a
pair of words of same length is bal-balanced.

Without loss of generality, we can suppose that w = izi and w′ = cz′d where c, d
are letters of the alphabet A and c, d 6= i. Indeed, in general form w = azb, w′ = cz′d
and since n is the smallest integer for the balance property then |zb|i−|z′d|i = bal−1
implies a = i, c 6= i and |az|i − |cz′|i = bal − 1 implies b = i, d 6= i.
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The number of i in the finite word w is equal to |izi|i = ni ≥ 2. The distance on
the line between the position of the point labelled by the first i and the position of
the point labelled by the last i of the word izi is equal to

di = (ni − 1)αi.

For the angle αj with j 6= i the number of points labelled by the letter aj on a
half open interval of length di takes two consecutive values:

nj =

⌊

di

αj

⌋

and nj =

⌈

di

αj

⌉

.

Obviously nj + 1 = nj . As αi and αj are rationally independent then both
values are taken. On a word beginning and ending by i with |izi|i = ni the minimal
number of letters distinct from i is

∑

j 6=i nj(such word is called wmin and has length
minlength = ni +

∑

j 6=i nj) and the maximal number of letters distinct from i is
∑

j 6=i nj (such word is called wmax and has length maxlength = ni +
∑

j 6=i nj). Then
the maximal difference is

∑

j 6=i

nj −
∑

j 6=i

nj =
∑

j 6=i

(nj + 1) −
∑

j 6=i

nj = d − 1.

In other words in the best case if wmax contains a factor w′ of length |wmin| =
minlength with exactly ni−d+1 letters i then the difference |wmin|i−|w′|i is d−1,
otherwise the difference |wmin|i − |w′|i for w′ factor of wmax and |w′| = |wmin|is less
than d − 1. Thus 0 ≤ bal ≤ d − 1.

6.1 Hypercubic billiards with maximal generalized balance property

We now construct an example where the bound for the d − 1-balance property is
reached.

Take the angles αj , j = 1, · · · , d with the order αj < αj′ ⇔ j < j′ and α1 <
α2

d
. We construct a hypercubic billiard word in dimension d with maximal balance

property. Let x be a hypercubic billiard word in dimension d such that βi = 0, ∀i =
1, · · · , d then by definition of cutting words we can choose that the infinite word
begins by the finite word 12 · · ·d. As the infinite word is recurrent (i.e. each factor
appears infinitely many times because the trajectory is dense on the hypercubic
billiard, indeed the vector α is totally irrational) the word 12 · · ·d appears infinitely
many times in x. Furthermore the condition α1 < αj

d
for each j 6= 1 implies that

between two consecutive occurrences of the letter j in x the number of 1’s is at
least d. In particular words 12 · · ·dw12 · · ·d ∈ L(x) can be continued by 1d. Then
12 · · ·dw12 · · ·d1d is a factor of x. Thus |w12 · · ·d1d| = |12 · · ·dw12 · · ·d| and the
balance on the letter 1 is

|w12 · · ·d1d|1 − |12 · · ·dw12 · · ·d|1 = d − 1.

To summarize for each length |12 · · ·dw12 · · ·d| with 12 · · ·dw12 · · ·d ∈ L(x) the
maximal balance is attained.
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6.2 Balance property in double sequences

Another generalization of Sturmian words is to consider bidimensional words on a
finite alphabet A = {0, 1} with various Sturmian like properties [17, 18, 19, 24, 25,
32, 61, 62, 63, 72].

Berthé and Tijdeman [16] show that balanced double sequences on a two-letter
alphabet are very rare. A double sequence is a sequence indexed by Z2. The set of
rectangular factors of length m and height n of a double sequence x is noted Lm,n(x).
A double sequence x is balanced if ∀m, n ∈ N, ∀w, w′ ∈ Lm,n(x) ||w|1 − |w′|1| ≤ 1.
Define also the frequency α of the letter 1 to be the limit (if it exists) of the number
of ones in an m × n word centered at the origin divided by mn.

Theorem 9 (Berthé, Tijdeman). For balanced double sequences on a two-letter
alphabet the frequency α of the letter 1 is an element of the following finite set:

α ∈
{

0,
1

5
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
4

5
, 1

}

.

In the article, they give some examples of double sequences that illustrate the
following conjecture:

Conjecture 2 (Berthé, Tijdeman). Let U be a double sequence on the alphabet
{0, 1} such that the frequencies of letters exist and are irrational (f(1) = α /∈ Q)
then the double sequence U is imbalanced ∀N∃n∃w, w′ ∈ L(n, n)s.t.||w|1−|w′|1| > N.

The balanced property drastically restricts the number of solutions in two dimen-
sions than in one dimension. An alternative definition is to impose very restricted
conditions on bidimensional words not for each length and height but for certain
m × n words.

Nivat defines a double sequence on a finite alphabet A = {0, 1} to be k-homogeneous
for a m×n window F if whatever the position of the window in the double sequence
exactly k ones appear in the window. In other words, ∀w ∈ Lm,n(x), |w|1 = k
and in a balanced form ∀w, w′ ∈ Lm,n(x), ||w|1 − |w′|1| = 0. There is an interesting
decomposition theorem (see [53]):

Theorem 10 (Nivat). Each k-homogeneous double sequence is the disjoint union
of k 1-homogeneous double sequences.

In addition to that, there is a remarkable link between 1-homogeneous double
sequences and tilings of the plane [7]. Let F be a finite subset of Z2. A double
sequence is 1-homogeneous for the window F if what ever the position of the window
there is exactly 1 ones on it. We have the following theorem (see [53]):

Theorem 11 (Nivat). A double sequence is 1-homogeneous for F if and only if F
tiles the plane.
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7 Application to optimization problems

This model is based on pieces piling up according to a Tetris game. The main
problem is to study the behavior of a class of discrete event systems. In particular,
this model allows one to build a heap of pieces associated with certain Petri nets.
From a theoretical computer science point of view this domain is at the confluence
between trace monoid, Petri nets and discrete event systems [37]. The works of
Bacelli, Mairesse, Gaubert and Gaujal show the wealth of this domain by using
discrete, probabilistic or dynamical system approaches [39]. This area is also close
to heap of pieces of Viennot [71].

Heap of pieces allow us to solve particular optimization problems. Let us consider
two tasks sharing the same machine. The tasks can be done in parallel under
temporal constraints. The main goal is to minimize the occupation time of the
machine. To do that a Gantt diagram shows the execution time of each task and
can be seen after rotation as a heap of pieces [37]. In this heap the pieces represent
the execution time of each task. The heap of pieces is constructed by piling up each
piece according to finite or infinite words (see Figure 3). In fact, the minimization
of the execution time of the machine is equivalent to constructing the more compact
heap of pieces with given pieces.

b

a

a

b

a

a

ba

a
b

Figure 3: Heap of pieces.

In mathematical terms, we study Liapunov exponents associated with the growth
of the heap. More precisely, if we note by y(w) the height of the heap of pieces
associated with the finite word w then the optimal growth is given by the following
limit ρmin = lim infn minw∈An

y(w)
n

. An infinite word u will be optimal if limn
y(u[n])

n

where u[n] is the prefix of length n of u, is equal to ρmin.
Gaujal studies the following job-shop problem : Consider two different tasks, the

first one uses a time α1 + α2 to be done and the second one a time β1 + β2. The
constraint is that if we do the task 1, we have to wait a time α1 before beginning the
task 2 and a time α1 +α2 before beginning the task 1. Conversely, if we do the task
2, we have to wait a time β1 before beginning the task 1 and a time β1 + β2 before
beginning the task 2. These constraints are given by a Petri net and can be coded
on pieces (see the Figure 4). Gaujal shows that the optimal schedule is obtained by
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pilling up the pieces according to a balanced word (see [38]). We can also construct
a Sturmian word (see the Figure 5) by taking α1 and β1 rationally independent and
α2 = β2 = 0.

a

b

β1

β
1

+
β
2

α
1

+
α

2

β2α1 β1

a b

α1

α2

Figure 4: Petri net and pieces.

a
b

b

b

b

a

a

b

a

b

a

b

b

a

Figure 5: Pieces and Sturmian word.

In fact the result is true for general type of pieces [51].

Theorem 12 (Mairesse, Vuillon). Let consider a heap of pieces with two pieces.
An optimal schedule is obtained by piling up the pieces either by a balanced periodic
word or by a balanced non-periodic word.

Bousch and Mairesse in [21] give another demonstration of this result by us-
ing topical forms and Sturmian measures. Furthermore, a result of Gaubert and
Mairesse shows that if the pieces are polyominoes with rational heights then the
optimal schedule is always periodic (see [37]).

The heaps of pieces are more than the mathematical study of the Tetris game. It
can model job-shop problems and also gives geometrical intuition for infinite product
of matrices in the (max, +) algebra. In the same spirit the mathematical techniques
of Bousch and Mairesse [21] are powerful and led to the refutation of the Lagarias
and Wang conjecture [48] which claims that the spectral radius of a usual product of
matrices is always reached by the spectral radius of a periodic product of matrices.
Once again
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b

cγ

aα

β

Figure 6: Pieces for cubic billiard.

the existence of the spectral radius of a product of matrices according to a non-
periodic balanced word has been the crucial element to refute the conjecture [21].

It remains many works to understand heap of pieces with more than three pieces.
For instance, we can build cubic billiard words by piling the pieces in order to have
the more compact heap of pieces with the following pieces in Figure 6 and with α, β
and γ rationally independent. But the general problem of the behavior of optimal
schedule of heap with three pieces is still open.
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[17] V. Berthé and L. Vuillon, A two-dimensional generalization of Sturmian se-
quences: tilings and rotations, Discrete Math., 223 (2000), 27–53.

[18] V. Berthé and L. Vuillon, Suites doubles de basse complexité, J. Théor. des
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