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Abstract

The compatibility up to sign of the product structures in algebraic K-

theory and in topological K-theory of unital Banach algebras is established

in total degree ≤ 2 . This answers a question posed by Milnor.

1 Statement of the theorem and definition of the product struc -

tures in K-theories

As an application of the computations made in [7], we prove the following result.

1.1 Theorem. Let A and B be two unital Banach algebras. Then the diagram

Kalg
p (A) ⊗Kalg

q (B)
?
- Kalg

p+q(A⊗Z B)

Kp(A) ⊗Kq(B)

φp ⊗ φq

? ×
- Kp+q(A⊗̂B)

(−1)pqφ̂p+q

?

commutes for p, q ≥ 0 satisfying p + q ≤ 2 . In other words, the external product
structures in algebraic and in topological K-theory of unital Banach algebras are
compatible in total degree ≤ 2 , up to the sign (−1)pq . In particular, for commutative
unital Banach algebras, the internal product structures are also compatible in the
same range and up to the same sign.
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Let us explain the notations. For a unital Banach algebras A (always over C),
we denote by GL(A) the infinite matrix group with the usual direct limit topology,
by E(A) the group of infinite elementary matrices, which coincides with the com-
mutator subgroup [GL(A), GL(A)] of GL(A) , and by St(A) the infinite Steinberg
group of A with standard generators (xij(a))i6=j, a∈A . The algebraic and topological
K-theory groups are defined by :

• Kalg
0 (A) = K0(A) is the Grothendieck group of the underlying ring A ;

• Kalg
1 (A) := GL(A)ab = GL(A)/E(A) ;

• K1(A) := π0(GL(A)) = GL(A)/GL(A)0 , where GL(A)0 is the arc component
of the identity in GL(A) ;

• Kalg
2 (A) := Ker

(
St(A)

ϕ
�E(A)

)
, where the map St(A)

ϕ
�E(A) takes the stan-

dard generator xij(a) of St(A) to the elementary matrix eij(a) ;

• K2(A) := π1(GL(A)) .

By Bott periodicity, we have, for any Banach algebra A , K2(A) ∼= K0(A) . We now
depict the canonical and natural maps φA

i = φi : K
alg
i (A) −→ Ki(A) . For i = 0 ,

φA
0 is merely the identity of Kalg

0 (A) , and the well-known inclusion E(A) ⊆ GL(A)0

allows to define the map φA
1 taking, for u ∈ GL(A) , the class [u] in Kalg

1 (A) to
the class [u] in K1(A) . Let us now describe φA

2 . Let G̃L(A)0 be the universal
covering space of the topological group GL(A)0 . As usual, we see the group G̃L(A)0

as the set of homotopy classes (rel. to {0, 1}) of paths in GL(A)0 (parameterized
by t ∈ [0, 1]) emanating from 1I , with pointwise multiplication, and the projection
G̃L(A)0 � GL(A)0 is given by evaluation at t = 1 , and has its kernel equal to
π1(GL(A)0) = π1(GL(A)) = K2(A) . Consider the map St(A) −→ G̃L(A)0 defined
on the standard generators of St(A) by

ψ : xij(a) 7−→
[
t 7→ eij(t · a)

]
,

where a ∈ A , t ranges over [0, 1] , and the above brackets designate a homotopy
class. One can easily check that the images of the xij(a)’s satisfy all the defining
relations of St(A) , consequently, the map ψ is a well-defined homomorphism. Now,
the diagram

0 - Kalg
2 (A) - St(A)

ϕ
- E(A) - 0

0 - K2(A)

φA
2

?

- G̃L(A)0

ψ
?

- GL(A)0

?

∩

- 0

commutes. Therefore, by restriction, ψ induces a homomorphism φA
2 ; explicitly,

φA
2 : Kalg

2 (A)−→K2(A) = π1(GL(A)0)
∏

s xisjs
(as) 7−→ [e2πit 7→

∏
s eisjs

(t · as)] .
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1.2 Remark. Algebraic and topological K-groups in higher degree (p ≥ 1) can be
defined by

Kalg
p (A) := πp(BGLδ(A)+) and Kp(A) := πp−1(GL(A)) ∼= πp(BGL(A)) ,

where GLδ(A) stands for GL(A) made discrete.

(The definition of Kalg
p makes sense for any unital ring). The map B(Id) :

BGLδ(A) −→ BGL(A) induces at the level of fundamental groups a map taking
E(A) ⊆ GLδ(A) to zero, since π1(BGL(A)) = π0(GL(A)) = GL(A)/GL(A)0 and
E(R) ⊆ GL(A)0 . Consequently, B(Id) induces a map B(Id)+ : BGLδ(A)+ −→
BGL(A) . For any p ≥ 1 , this allows to define a canonical and natural map

φA
p := πp(B(Id)+) : Kalg

p (A) −→ Kp(A) .

These definitions extend functorially to the non-unital situation. One can check
that for p = 1 and 2 , all these definitions coincide with the ones given above.

For two rings A and B (not necessarily unital), the external product in algebraic
K-theory (see [6]) is denoted by

Kalg
p (A) ⊗Kalg

q (B)
?

−→ Kalg
p+q(A⊗Z B) .

The internal product is defined for A commutative by composing the external prod-
uct with the homomorphism Kalg

p+q(A ⊗Z A) −→ Kalg
p+q(A) , induced by the product

map µ : A ⊗Z A −→ A (which is an ring homomorphism, precisely because A is
commutative). It will be denoted by ?A or by ? . Note that this internal product is
graded-commutative (see Theorem 2.1.12 in [6]).

As noticed by Loday in [6], the internal product he defines at the level of the plus
construction (and of spectra) coincides, in total degree p+ q ≤ 2 , with the product
defined case by case by Milnor only up to sign. More precisely, both definitions
coincide, except for p = q = 1 , where Loday’s product is minus Milnor’s product
(see Proposition 2.2.3 in [6]) : for x, y ∈ Kalg

1 (A) with A commutative, the formula

x ?A y = −{x, y} ∈ Kalg
2 (A)

holds, where {x, y} is the Steinberg symbol of x by y .

Let A⊗̂B denote the completed projective tensor product (over C) of two Banach
algebras A and B . For a Banach algebra A and for p ≥ 1 , the p-fold suspension of
A is defined by SpA := S(Sp−1A) ∼= C0(R

p)⊗̂A ; note that it is not unital if so is A .
The p-fold suspension isomorphism is a natural isomorphism

σp : Kp(A)
∼=−→ K0(S

pA) .

(As a convenient notation, we also write S0A := A and σ0 := IdK0(A) .) The equality

of functors Kalg
0 = K0 and the suspension isomorphism uniquely define the external

cross product

Kp(A) ⊗Kq(B)
×

−→ Kp+q(A⊗̂B) ,
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in topological K-theory, by requiring commutativity in the diagram

Kp(A) ⊗Kq(B)
×

- Kp+q(A⊗̂B)

K0(S
pA) ⊗K0(S

qB)

∼= σp ⊗ σq

? ?
- K0(S

pA⊗Z S
qB)

ν∗
- K0(S

p+q(A⊗̂B))

σp+q ∼=
?

with ν : SpA ⊗Z S
qB −→ SpA ⊗C SqB ↪→ SpA⊗̂SqB ∼= Sp+q(A⊗̂B) (compare

with II.5.26 in [5]). As in the algebraic case, the internal product “∪”, called
cup product, is defined for A commutative by composing with the homomorphism
Kp+q(A⊗̂A) −→ Kp+q(A) , induced by the “completed product map” µ̂ : A⊗̂A −→
A (which is a Banach algebra morphism). Note that the cup product is graded-
commutative (compare with Propositions II.4.10 and II.5.27 in [5]). Finally, for
p ≥ 0 , φ̂p denotes the composition

Kalg
p (A⊗Z B) −→ Kalg

p (A⊗C B) −→ Kalg
p (A⊗̂B)

φp
−→ Kp(A⊗̂B) .

(Notice that ν∗ in the above diagram is just φ̂0 .) This makes all the notations used
in Theorem 1.1 meaningful. Note that the statement amounts to the formula

σp+q ◦ φ̂p+q(x ? y) = (−1)pq
(
σp ◦ φp(x)

)
×

(
σq ◦ φq(y)

)
∈ K0(S

p+q(A⊗̂B)) ,

for all x ∈ Kalg
p (A) and y ∈ Kalg

q (B) .
Before stating an important corollary of Theorem 1.1, for a compact Hausdorff

space X , we let

θ∗ : K∗(C(X))
∼=−→ K−∗(X)

be the Swan-Serre isomorphism, where C(X) is the commutative unital C∗-algebra
of continuous complex valued functions onX , with the norm of uniform convergence.

1.3 Corollary. For a compact Hausdorff space X , the diagram

Kalg
p (C(X)) ⊗Kalg

q (C(X))
?
- Kalg

p+q(C(X))

Kp(C(X)) ⊗Kq(C(X))

φp ⊗ φq

? ∪
- Kp+q(C(X))

(−1)pqφp+q

?

K−p(X) ⊗K−q(X)

θp ⊗ θq
∼=
? ∪

- K−(p+q)(X)

∼= θp+q
?

commutes, for p, q ≥ 0 satisfying p + q ≤ 2 , where the bottom horizontal map is
the usual cup product in K-theory.

Proof. The product µ : C(X)⊗ZC(X) −→ C(X) yields a commutative diagram

Kalg
p+q(C(X) ⊗Z C(X))

Kalg
p+q(µ)

- Kalg
p+q(C(X))

Kp+q(C(X)⊗̂C(X))

φ̂p+q

? Kp+q(µ̂)
- Kp+q(C(X))

φp+q

?
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Consequently, commutativity of the upper square follows from Theorem 1.1. The
bottom square commutes, since the Swan-Serre isomorphism is a ring map. �

1.4 Remark. i) Theorem 1.1 easily extends to the case of non-unital Banach
algebras, and Corollary 1.3 to the more general situation of Hausdorff locally
compact spaces, using the commutative C∗-algebra C0(X) .

ii) For the external cross product K−p(X) ⊗K−q(Y )
×

−→ K−(p+q)(X × Y ) , the
result corresponding to Corollary 1.3 obviously holds (for Hausdorff locally
compact spaces).

iii) Corollary 1.3 was an open question in Milnor’s book [8] (see p. 67).

For the proof of Theorem 1.1, we can assume that p ≤ q .
This paper is organized as follows. In Section 2, we prove Theorem 1.1 for p = 0 .

The most difficult case, namely p = q = 1 , is dealt with in Section 3, applying results
of [7] (coping with the C∗-algebra C∗Z2 ∼= C(T2)).

2 The cases p = 0

By direct computation, we prove Theorem 1.1 for p = 0 .
Recall that the algebraic and the topological K-theory groups are Morita invari-

ant : for i ≥ 0 and n ≥ 1 , there are isomorphisms

Kalg
i (A) ∼= Kalg

i (Mn(A)) and Ki(A) ∼= Ki(Mn(A)) ,

induced by the (non-unital) inclusion A ↪→ Mn(A) , a 7−→
(

a O
O O

)
. In particular,

the products being natural, they are compatible with Morita equivalence. We can
therefore reduce to the case of idempotent (1 × 1)-matrices and invertible (1 × 1)-
matrices. Let x ∈ Kalg

0 (A) and y ∈ Kalg
q (B) . We have to show that

σq ◦ φ̂q(x ? y) = x× (σq ◦ φq(y)) ∈ K0(S
q(A⊗̂B)) .

Let x be the class of an idempotent ε ∈ A . For q = 0 , there is nothing to prove.
For q = 1 , suppose that y is the class of an invertible element u ∈ B . By definition
of the ?-product (see [8]), one has

x ? y =
[
ε⊗ u+ (1 − ε) ⊗ 1

]
∈ Kalg

1 (A⊗Z B) .

(The inverse of this matrix is ε⊗ u−1 + (1 − ε) ⊗ 1 .) The suspension isomorphism
is given by

σ = σ1 : K1(A)
∼=−→ K0(SA) , [v] 7−→

[
t 7→ Rt · P ·R−1

t

]
−

[
P

]
,

where v ∈ GLn(A) , P := Diag(1In, On) , and Rt = Rt(v) is a homotopy (i.e. a path)
in GL2n(A) from 1I2n to the matrix Diag(v, v−1) which, by the Whitehead Lemma,
belongs to the arc component of 1I2n in GL2n(A) . The suspension isomorphism is
independent of the chosen homotopy. If Rt is a path from 1I2 to Diag(u, u−1) , then
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St := ε⊗̂Rt(u) + (1 − ε)⊗̂1I2 (tensor product of matrices) is a path from 1⊗̂1I2 = 1I2
to Diag

(
ε⊗̂u+ (1 − ε)⊗̂1, ε⊗̂u−1 + (1 − ε)⊗̂1

)
, so that

σ ◦ φ̂1(x ? y) =
[
t 7→ St ·Q · S−1

t

]
−

[
Q

]
,

with Q := Diag(1⊗̂1, 0⊗̂0) . On the other hand, letting P := Diag(1, 0) ,

x× (σ ◦ φ1(y))=
[
t 7→ ε⊗̂(Rt · P · R−1

t )
]
−

[
ε⊗̂P

]

=
[
t 7→ ε⊗̂(Rt · P · R−1

t ) + (1 − ε)⊗̂P
]
−

[
Q

]

holds. Now, observe that the matrices St ·Q ·S−1
t and ε⊗̂(Rt ·P ·R−1

t ) + (1− ε)⊗̂P
are equal (and not just equivalent). This proves Theorem 1.1 for p = 0 and q = 1 .

2.1 Remark. We deduce from this computation that

× : K0(A) ⊗K1(B) −→ K1(A⊗̂B) , [ε] ⊗ [u] 7−→
[
ε⊗̂u+ (1Im − ε)⊗̂1In

]
,

provided that ε = ε2 ∈Mm(A) and u ∈ GLn(B) .

Now, let us prove Theorem 1.1 for p = 0 and q = 2 . Let x ∈ Kalg
0 (A) ; using

Morita invariance, we can assume that x is represented by an idempotent ε ∈ A .
First, we give explicit formulas for the corresponding products by x in algebraic
and in topological K2-theory. If A is commutative, following the definition given by
Milnor (see [8], p. 67), one easily checks that the product

x? : Kalg
2 (A) −→ Kalg

2 (A) , y 7−→ x ? y

is given by the endomorphism (γx)∗ of H2(E(R); Z) ∼= Kalg
2 (A) induced by

γx : E(A) −→ E(A) , En(A) 3 X 7−→ ε ·X + (1 − ε) · 1In .

We need to express the map (γx)∗ explicitly on Kalg
2 (A) considered as the kernel

in the universal central extension 0 −→ Kalg
2 (A) −→ St(A)

ϕ
−→ E(A) −→ 0 . Let

X =
∏

s eisjs
(as) ∈ En(A) (a finite product of elementary matrices). Since ε = ε2 ,

one has clearly

ε ·X + (1 − ε) · 1In =
∏

s

(
ε · eisjs

(as) + (1 − ε) · 1In
)

=
∏

s

eisjs
(εas) .

This means that the map γx is simply given by eij(a) 7−→ eij(εa) . We can therefore
lift this map to St(A) by defining

γ̄x : St(A) −→ St(A) , xij(a) 7−→ xij(εa) .

We obtain a commutative diagram

0 - Kalg
2 (A) - St(A)

ϕ
- E(A) - 0

0 - Kalg
2 (A)

(γx)∗
?

- St(A)

γ̄x

? ϕ
- E(A)

γx

?

- 0
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This shows that (γx)∗ = γ̄x|Kalg
2

(A) , and gives a satisfactory description of the

product in question, namely

x? : Kalg
2 (A) −→ Kalg

2 (A) ,
∏

s

xisjs
(as) 7−→

∏

s

xisjs
(εas) .

For A and B two unital rings, this generalizes to give

x? : Kalg
2 (B) −→ Kalg

2 (A⊗Z B) ,
∏

s

xisjs
(bs) 7−→

∏

s

xisjs
(ε⊗ bs) .

Now, for a unital commutative Banach algebra A , we would like to describe the
product x∪ : K2(A) −→ K2(A) . First, observe that by definition of the cup product
and naturality of the suspension isomorphism, the diagram

K0(A) ×K2(A)
∪

- K2(A⊗̂A)
K2(µ̂)

- K2(A)

K0(A) ×K1(SA)

∼=
? ∪

- K1(S(A⊗̂A))

∼=
? K1(Sµ̂)

- K1(SA)

∼=
?

K0(A) ×K0(S
2A)

∼=
? ∪

- K0(S
2(A⊗̂A))

∼=
?

commutes, where Sµ̂ is induced by µ̂ : A⊗̂A −→ A and is explicitly given by

Sµ̂ : S(A⊗̂A) −→ SA ,
(
t 7→ a(t)⊗̂b(t)

)
7−→

(
t 7→ a(t) · b(t)

)
.

The map K2(A) = π1(GL(A))
∼=−→ K1(SA) ,

[
e2πit 7→ v(t)

]
7−→

[
t 7→ v(t)

]
is the

isomorphism indicated on the right above. This explicit description and the one of
the product K0 ×K1 −→ K1 given in Remark 2.1, allows to compute

x∪ : K2(A)−→K2(A)[
e2πit 7→

∏
s eisjs

(t · as)
]
7−→

[
e2πit 7→

∏
s eisjs

(t · εas)
]
.

For two unital Banach algebras A and B , this generalizes to yield

x× : K2(B)−→K2(A⊗̂B)[
e2πit 7→

∏
s eisjs

(t · bs)
]
7−→

[
e2πit 7→

∏
s eisjs

(t · ε⊗̂bs)
]
.

We are now in position to prove Theorem 1.1 for p = 0 and q = 2 . For an
element y =

∏
s xisjs

(bs) ∈ Kalg
2 (B) , one has φ2(y) =

[
e2πit 7→

∏
s eisjs

(t · bs)
]

(see

Section 1 for the explicit description of φ2). For x = [ε] ∈ Kalg
0 (A) , with ε = ε2 ∈ A ,

we deduce from the above considerations that

φ̂2 : Kalg
2 (A⊗Z B)−→ Kalg

2 (A⊗̂B)
φ2

−→K2(A⊗̂B)
∏

s xisjs
(ε⊗ bs)︸ ︷︷ ︸

=x?y

7−→
∏

s xisjs
(ε⊗̂bs) 7−→

[
e2πit 7→

∏
s eisjs

(t · ε⊗̂bs)
]

︸ ︷︷ ︸
=x×φ2(y)

,

i.e. φ̂2(x ? y) = x× φ2(y) , as was to be shown.
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3 The case p = q = 1

In this section, we prove Theorem 1.1 for p = q = 1 . It is the most difficult
case, although the difficulty is not conspicuous here, since it is almost completely
contained in the lengthy computations of [7].

Here, we use the same notation for an invertible matrix and for its Kalg
1 -theory

class. Roughly speaking, the following lemma tells us that we can restrict to the
commutative case and the internal products ?A and ∪ .

3.1 Lemma. Let A and B be two unital Banach algebras, and let x ∈ GL1(A) and
y ∈ GL1(B) be two invertibles. Consider C := 〈1, x̂, ŷ〉 the unital Banach sub-
algebra of A⊗̂B generated by x̂ := x⊗̂1 and ŷ := 1⊗̂y . Denote by i the inclusion
of C in A⊗̂B , and by j : A ⊗Z B −→ A⊗̂B the canonical map. Then, C is a
commutative unital Banach algebra and the following formulas hold :

i) j∗(x ? y) = i∗(x̂ ?C ŷ) ∈ Kalg
2 (A⊗̂B) ;

ii) φ1(x) × φ1(y) = i∗
(
φ1(x̂) ∪ φ1(ŷ)

)
∈ K2(A⊗̂B) .

Proof. Recall that the products for algebraic K1-theory are given by

x ? y = −{x⊗ 1, 1 ⊗ y} and x̂ ?C ŷ = −{x̂, ŷ} .

Naturality of the Steinberg symbol yields

j∗
(
{x⊗ 1, 1 ⊗ y}

)
= {j∗(x⊗ 1), j∗(1 ⊗ y)} = {i∗(x̂), i∗(ŷ)} = i∗({x̂, ŷ}) ,

establishing i). Using the suspension isomorphism (for x) and Remark 2.1, the
product φ1(x) × φ1(y) equals the homotopy class of the map taking e2πit to

Xt :=
(
(Rt · P ·R−1

t )⊗̂y + (1I2 −Rt · P ·R−1
t )⊗̂1

)
·
(
P ⊗̂y + (1I2 − P )⊗̂1

)−1
,

where P := Diag(1, 0) , and Rt = Rt(x) is a homotopy in GL2(A) from 1I2 to
Diag(x, x−1) . Similarly, φ1(x̂) ∪ φ1(ŷ) is determined by

(
Rt(x̂) ·Q · Rt(x̂)

−1 · ŷ + (1I2 −Rt(x̂) ·Q · Rt(x̂))
−1

)
·
(
Q · ŷ + (1I2 −Q)

)−1
,

where Q := Diag(1⊗̂1, 0⊗̂0) . Since i∗ takes this element to Xt , ii) follows. �

The final lemma deals with the case of internal products.

3.2 Lemma. Let A be a commutative unital Banach algebra. Then, for two in-
vertibles x, y ∈ GL1(A) , one has

φ2(x ?A y) = −φ2({x, y}) = −φ1(x) ∪ φ1(y) ∈ K2(A) .

Proof. The lemma is a consequence of the computations we made to prove the
main result in [7]. In fact, Proposition 6.1 in loc. cit. is precisely the content of
Lemma 3.2 for the particular Banach algebra C∗Z2 ∼= C(T2) and for the product
a ?C∗Z2 b , where a and b are prescribed generators of Z2 , viewed as unitaries in
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C∗
Z

2 . (Indeed, φ1(a)∪φ1(b) is well-known to be the Bott element δ̂ of K2(C
∗
Z

2) ∼=
K0(T2) .) Now, we claim that by naturality and by classical results on the K-theory
of commutative Banach algebras, the general case follows. To prove this, we first
consider the sub-algebra

Aρ :=



(λn)n∈Z ∈ C

Z

∣∣∣∣∣∣

∑

n∈Z

ρ|n| · |λn| <∞





of `1Z , where ρ ≥ 1 is a real number. In other words, Aρ is the completion of the
algebra C[Z] for the norm

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

n∈Z

λn · an

∣∣∣∣∣∣

∣∣∣∣∣∣
ρ

:=
∑

n∈Z

ρ|n| · |λn| ,

where a is a prescribed generator of the group Z . So, Aρ is a unital Banach algebra
for this norm, with the following “universal property” : given u ∈ GL1(A) , where
A is any unital Banach algebra, one has 1 = ||1||A ≤ ||u||A · ||u−1||A , therefore
ρu := max{||u−1||A, ||u||A} is ≥ 1 , and the inequalities

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

n∈Z

λn · un

∣∣∣∣∣∣

∣∣∣∣∣∣
A

≤
∑

n<0

|λn| · ||u
−1||

|n|
A +

∑

n≥0

|λn| · ||u||
n
A ≤

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

n∈Z

λn · an

∣∣∣∣∣∣

∣∣∣∣∣∣
ρu

imply that the algebra map νu : C[Z] −→ A , a 7−→ u extends uniquely to a uni-
tal Banach algebra morphism ν̄u : Aρu

−→ A . Applying this result twice, by the
universal property of the projective tensor product of Banach algebras, we obtain a
unital Banach algebra morphism

ν̄x, y : Aρx
⊗̂Aρy

−→ A , ξ ⊗ η 7−→ ν̄x(ξ) · ν̄y(η) .

It is clear that ν̄x, y(a) = x and ν̄x, y(b) = y , where a and b designate the prescribed
generators of Z2 , considered as elements of GL1(Aρx

⊗̂Aρy
) via the map Z[Z2] ∼=

Z[Z] ⊗Z Z[Z] ↪→ Aρx
⊗̂Aρy

.
In our context, the second important feature of the algebra Aρ is that it is dense

in `1Z and that the inclusions

Aρ
incl
↪→ `1Z ↪→ C∗

Z

induce isomorphisms in topological K-theory, for any ρ ≥ 1 . For the second inclu-
sion, this follows from the Wiener Lemma (see [9], 11.6) and the Density Theorem
(see [3], Proposition 3, pp. 285–286), and the first is a consequence of the Oka Prin-
ciple in K-theory established by Bost in [2] (see Theorem 1.1.1 and Example 1.1.3
therein). This also follows from a theorem of Arens, Eidlin and Novodvorskii : let
B be a commutative unital Banach algebra, and let Spec(B) be its spectrum (it is
a compact Hausdorff space); then, the Gelfand transform

G
B : B −→ C(Spec(B))

is a natural morphism and induces an isomorphism in topological K-theory (see [2],
Theorem 1.3.2). It is clear that Spec(`1Z) identifies with the unit circle S1 and is
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included in Spec(Aρ) , that correspondingly identifies with the closed annulus with
radii ρ−1 and ρ . This inclusion is a homotopy equivalence, hence the isomorphism

incl∗ = (G `1Z

∗ )−1 ◦ G
Aρ
∗ : K∗(Aρ)

∼=−→ K∗(`
1Z) . Similarly, the inclusions Aρx

⊗̂Aρy
↪→

`1Z⊗̂`1Z ∼= `1Z2 ↪→ C∗Z2 induce isomorphisms

K∗(Aρx
⊗̂Aρy

)
∼=−→ K∗(`

1
Z

2)
∼=−→ K∗(C

∗
Z

2) ,

since for two commutative unital Banach algebras B1 and B2 , there is a canonical
homeomorphism ([4], Proposition IV.1.20)

Spec(B1⊗̂B2) ∼= Spec(B1) × Spec(B2) .

We denote Aρx
⊗̂Aρy

simply by A . By naturality of the internal ?-product, of
the cup product and of the maps φ1 and φ2 , we deduce from this argument that

φA
2 (a ?A b) = −φA

1 (a) ∪ φA
1 (b) .

By naturality, φA
2 (x ?A y) = −φA

1 (x) ∪ φA
1 (y) holds, as was to be shown. �

We thank Paul Jolissaint for pointing out a problem in a previous proof, and
Nigel Higson for suggesting to use the Banach algebra Aρ and for indicating Bost’s
article [2].

We now prove Theorem 1.1 for p = q = 1 . Let x ∈ Kalg
1 (A) and y ∈ Kalg

1 (B) .
We have to establish that φ̂2(x ? y) = −φ1(x) × φ1(y) . By Morita invariance of the
products, we can assume that x ∈ GL1(A) and y ∈ GL1(B) . We have, with the
notations of Lemma 3.1,

φ̂2(x ? y)=φA⊗̂B
2 ◦ j∗(x ? y) = φA⊗̂B

2 ◦ i∗(x̂ ?C ŷ) = i∗ ◦ φ
C
2 (x̂ ?C ŷ) =

=−i∗
(
φ1(x̂) ∪ φ1(ŷ)

)
= −φ1(x) × φ1(y) ,

where the first equality follows from the definition of φ̂2 , the second from Lemma
3.1, the third from naturality of φ2 , the fourth from Lemma 3.2 for C , and the last
one from Lemma 3.1 again.

Now, the proof of Theorem 1.1 is complete. �
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