Comparison of the product structures in algebraic and in topological K-theory

Michel Matthey* Hervé Oyono-Oyono ${ }^{\dagger}$

Abstract

The compatibility up to sign of the product structures in algebraic K theory and in topological K-theory of unital Banach algebras is established in total degree ≤ 2. This answers a question posed by Milnor.

1 Statement of the theorem and definition of the product structures in K-theories

As an application of the computations made in [7], we prove the following result.
1.1 Theorem. Let A and B be two unital Banach algebras. Then the diagram

commutes for $p, q \geq 0$ satisfying $p+q \leq 2$. In other words, the external product structures in algebraic and in topological K-theory of unital Banach algebras are compatible in total degree ≤ 2, up to the sign $(-1)^{p q}$. In particular, for commutative unital Banach algebras, the internal product structures are also compatible in the same range and up to the same sign.

[^0]Let us explain the notations. For a unital Banach algebras A (always over \mathbb{C}), we denote by $\mathrm{GL}(A)$ the infinite matrix group with the usual direct limit topology, by $E(A)$ the group of infinite elementary matrices, which coincides with the commutator subgroup $[\mathrm{GL}(A), \mathrm{GL}(A)]$ of $\mathrm{GL}(A)$, and by $\operatorname{St}(A)$ the infinite Steinberg group of A with standard generators $\left(x_{i j}(a)\right)_{i \neq j, a \in A}$. The algebraic and topological K-theory groups are defined by :

- $K_{0}^{\text {alg }}(A)=K_{0}(A)$ is the Grothendieck group of the underlying ring A;
- $K_{1}^{\text {alg }}(A):=\mathrm{GL}(A)^{a b}=\mathrm{GL}(A) / E(A)$;
- $K_{1}(A):=\pi_{0}(\mathrm{GL}(A))=\mathrm{GL}(A) / \mathrm{GL}(A)_{0}$, where $\mathrm{GL}(A)_{0}$ is the arc component of the identity in $\operatorname{GL}(A)$;
- $K_{2}^{\text {alg }}(A):=\operatorname{Ker}(\operatorname{St}(A) \xrightarrow{\varphi} E(A))$, where the $\operatorname{map} \operatorname{St}(A) \xrightarrow{\varphi} E(A)$ takes the standard generator $x_{i j}(a)$ of $\operatorname{St}(A)$ to the elementary matrix $e_{i j}(a)$;
- $K_{2}(A):=\pi_{1}(\mathrm{GL}(A))$.

By Bott periodicity, we have, for any Banach algebra $A, K_{2}(A) \cong K_{0}(A)$. We now depict the canonical and natural maps $\phi_{i}^{A}=\phi_{i}: K_{i}^{\text {alg }}(A) \longrightarrow K_{i}(A)$. For $i=0$, ϕ_{0}^{A} is merely the identity of $K_{0}^{\text {alg }}(A)$, and the well-known inclusion $E(A) \subseteq \operatorname{GL}(A)_{0}$ allows to define the map ϕ_{1}^{A} taking, for $u \in \mathrm{GL}(A)$, the class $[u]$ in $K_{1}^{\text {alg }}(A)$ to the class $[u]$ in $K_{1}(A)$. Let us now describe ϕ_{2}^{A}. Let $\widetilde{\mathrm{GL}}(A)_{0}$ be the universal covering space of the topological group $\mathrm{GL}(A)_{0}$. As usual, we see the group $\widetilde{\mathrm{GL}}(A)_{0}$ as the set of homotopy classes (rel. to $\{0,1\}$) of paths in $\operatorname{GL}(A)_{0}$ (parameterized by $t \in[0,1]$) emanating from \mathbb{I}, with pointwise multiplication, and the projection $\widetilde{\mathrm{GL}}(A)_{0} \rightarrow \mathrm{GL}(A)_{0}$ is given by evaluation at $t=1$, and has its kernel equal to $\pi_{1}\left(\mathrm{GL}(A)_{0}\right)=\pi_{1}(\mathrm{GL}(A))=K_{2}(A)$. Consider the map $\operatorname{St}(A) \longrightarrow \widetilde{\mathrm{GL}}(A)_{0}$ defined on the standard generators of $\operatorname{St}(A)$ by

$$
\psi: x_{i j}(a) \longmapsto\left[t \mapsto e_{i j}(t \cdot a)\right],
$$

where $a \in A, t$ ranges over $[0,1]$, and the above brackets designate a homotopy class. One can easily check that the images of the $x_{i j}(a)$'s satisfy all the defining relations of $\operatorname{St}(A)$, consequently, the map ψ is a well-defined homomorphism. Now, the diagram

commutes. Therefore, by restriction, ψ induces a homomorphism ϕ_{2}^{A}; explicitly,

$$
\begin{aligned}
& \phi_{2}^{A}: K_{2}^{\text {alg }}(A) \longrightarrow K_{2}(A)=\pi_{1}\left(\operatorname{GL}(A)_{0}\right) \\
& \prod_{s} x_{i_{s} j_{s}}\left(a_{s}\right) \longmapsto\left[e^{2 \pi i t} \longmapsto \prod_{s} e_{i_{s} j_{s}}\left(t \cdot a_{s}\right)\right] .
\end{aligned}
$$

Comparison of the product structures in algebraic and in topological K-theory 527
1.2 Remark. Algebraic and topological K-groups in higher degree ($p \geq 1$) can be defined by

$$
K_{p}^{a l g}(A):=\pi_{p}\left(\operatorname{BGL}^{\delta}(A)^{+}\right) \text {and } K_{p}(A):=\pi_{p-1}(\operatorname{GL}(A)) \cong \pi_{p}(\operatorname{BGL}(A)),
$$

where $\mathrm{GL}^{\delta}(A)$ stands for $\mathrm{GL}(A)$ made discrete.
(The definition of $K_{p}^{\text {alg }}$ makes sense for any unital ring). The map $\mathrm{B}(I d)$: $\mathrm{BGL}^{\delta}(A) \longrightarrow \mathrm{BGL}(A)$ induces at the level of fundamental groups a map taking $E(A) \subseteq \mathrm{GL}^{\delta}(A)$ to zero, since $\pi_{1}(\mathrm{BGL}(A))=\pi_{0}(\mathrm{GL}(A))=\mathrm{GL}(A) / \mathrm{GL}(A)_{0}$ and $E(R) \subseteq \mathrm{GL}(A)_{0}$. Consequently, $\mathrm{B}(I d)$ induces a map $\mathrm{B}(I d)^{+}: \mathrm{BGL}^{\delta}(A)^{+} \longrightarrow$ $\operatorname{BGL}(A)$. For any $p \geq 1$, this allows to define a canonical and natural map

$$
\phi_{p}^{A}:=\pi_{p}\left(\mathrm{~B}(I d)^{+}\right): K_{p}^{a l g}(A) \longrightarrow K_{p}(A) .
$$

These definitions extend functorially to the non-unital situation. One can check that for $p=1$ and 2 , all these definitions coincide with the ones given above.

For two rings A and B (not necessarily unital), the external product in algebraic K-theory (see [6]) is denoted by

$$
K_{p}^{a l g}(A) \otimes K_{q}^{a l g}(B) \xrightarrow{\star} K_{p+q}^{a l g}\left(A \otimes_{\mathbb{Z}} B\right) .
$$

The internal product is defined for A commutative by composing the external product with the homomorphism $K_{p+q}^{\text {alg }}\left(A \otimes_{\mathbb{Z}} A\right) \longrightarrow K_{p+q}^{\text {alg }}(A)$, induced by the product map $\mu: A \otimes_{\mathbb{Z}} A \longrightarrow A$ (which is an ring homomorphism, precisely because A is commutative). It will be denoted by \star_{A} or by \star. Note that this internal product is graded-commutative (see Theorem 2.1.12 in [6]).

As noticed by Loday in [6], the internal product he defines at the level of the plus construction (and of spectra) coincides, in total degree $p+q \leq 2$, with the product defined case by case by Milnor only up to sign. More precisely, both definitions coincide, except for $p=q=1$, where Loday's product is minus Milnor's product (see Proposition 2.2.3 in [6]) : for $x, y \in K_{1}^{a l g}(A)$ with A commutative, the formula

$$
x \star_{A} y=-\{x, y\} \in K_{2}^{a l g}(A)
$$

holds, where $\{x, y\}$ is the Steinberg symbol of x by y.
Let $A \hat{\otimes} B$ denote the completed projective tensor product (over \mathbb{C}) of two Banach algebras A and B. For a Banach algebra A and for $p \geq 1$, the p-fold suspension of A is defined by $S^{p} A:=S\left(S^{p-1} A\right) \cong C_{0}\left(\mathbb{R}^{p}\right) \hat{\otimes} A$; note that it is not unital if so is A. The p-fold suspension isomorphism is a natural isomorphism

$$
\sigma^{p}: K_{p}(A) \xrightarrow{\cong} K_{0}\left(S^{p} A\right) .
$$

(As a convenient notation, we also write $S^{0} A:=A$ and $\sigma^{0}:=I d_{K_{0}(A)}$.) The equality of functors $K_{0}^{a l g}=K_{0}$ and the suspension isomorphism uniquely define the external cross product

$$
K_{p}(A) \otimes K_{q}(B) \xrightarrow{\times} K_{p+q}(A \hat{\otimes} B),
$$

in topological K-theory, by requiring commutativity in the diagram

$$
\begin{aligned}
& K_{p}(A) \otimes K_{q}(B) \cdots \\
& \cong \mid \sigma^{p} \otimes \sigma^{q} \times \\
& K_{0}\left(S^{p} A\right) \otimes K_{0}\left(S^{q} B\right) \xrightarrow{\star+q} \mid \cong \\
& \sigma_{0}\left(S^{p} A \otimes_{\mathbb{Z}} S^{q} B\right) \xrightarrow{\nu_{*}} K_{0}\left(S^{p+q}(A \hat{\otimes} B)\right)
\end{aligned}
$$

with $\nu: S^{p} A \otimes_{\mathbb{Z}} S^{q} B \longrightarrow S^{p} A \otimes_{\mathbb{C}} S^{q} B \hookrightarrow S^{p} A \hat{\otimes} S^{q} B \cong S^{p+q}(A \hat{\otimes} B)$ (compare with II.5.26 in [5]). As in the algebraic case, the internal product " \cup ", called cup product, is defined for A commutative by composing with the homomorphism $K_{p+q}(A \hat{\otimes} A) \longrightarrow K_{p+q}(A)$, induced by the "completed product map" $\hat{\mu}: A \hat{\otimes} A \longrightarrow$ A (which is a Banach algebra morphism). Note that the cup product is gradedcommutative (compare with Propositions II.4.10 and II.5.27 in [5]). Finally, for $p \geq 0, \hat{\phi}_{p}$ denotes the composition

$$
K_{p}^{a l g}\left(A \otimes_{\mathbb{Z}} B\right) \longrightarrow K_{p}^{a l g}\left(A \otimes_{\mathbb{C}} B\right) \longrightarrow K_{p}^{\text {alg }}(A \hat{\otimes} B) \xrightarrow{\phi_{p}} K_{p}(A \hat{\otimes} B) .
$$

(Notice that ν_{*} in the above diagram is just $\hat{\phi}_{0}$.) This makes all the notations used in Theorem 1.1 meaningful. Note that the statement amounts to the formula

$$
\sigma^{p+q} \circ \hat{\phi}_{p+q}(x \star y)=(-1)^{p q}\left(\sigma^{p} \circ \phi_{p}(x)\right) \times\left(\sigma^{q} \circ \phi_{q}(y)\right) \in K_{0}\left(S^{p+q}(A \hat{\otimes} B)\right)
$$

for all $x \in K_{p}^{\text {alg }}(A)$ and $y \in K_{q}^{\text {alg }}(B)$.
Before stating an important corollary of Theorem 1.1, for a compact Hausdorff space X, we let

$$
\theta_{*}: K_{*}(C(X)) \stackrel{\cong}{\Longrightarrow} K^{-*}(X)
$$

be the Swan-Serre isomorphism, where $C(X)$ is the commutative unital C^{*}-algebra of continuous complex valued functions on X, with the norm of uniform convergence.
1.3 Corollary. For a compact Hausdorff space X, the diagram

$$
\begin{aligned}
& K_{p}^{\text {alg }}(C(X)) \otimes K_{q}^{a l g}(C(X)) \xrightarrow{\star} K_{p+q}^{a l g}(C(X))
\end{aligned}
$$

commutes, for $p, q \geq 0$ satisfying $p+q \leq 2$, where the bottom horizontal map is the usual cup product in K-theory.

Proof. The product $\mu: C(X) \otimes_{\mathbb{Z}} C(X) \longrightarrow C(X)$ yields a commutative diagram

$$
\begin{gathered}
K_{p+q}^{a l g}\left(C(X) \otimes_{\mathbb{Z}} C(X)\right) \xrightarrow{K_{p+q}^{a l g}(\mu)} K_{p+q}^{a l g}(C(X)) \\
\hat{\phi}_{p+q} \downarrow_{\text {a }}^{\text {ald }}+\phi_{p+q} \\
K_{p+q}(C(X) \hat{\otimes} C(X)) \xrightarrow{K_{p+q}(\hat{\mu})} K_{p+q}(C(X))
\end{gathered}
$$

Comparison of the product structures in algebraic and in topological K-theory 529

Consequently, commutativity of the upper square follows from Theorem 1.1. The bottom square commutes, since the Swan-Serre isomorphism is a ring map.
1.4 Remark. i) Theorem 1.1 easily extends to the case of non-unital Banach algebras, and Corollary 1.3 to the more general situation of Hausdorff locally compact spaces, using the commutative C^{*}-algebra $C_{0}(X)$.
ii) For the external cross product $K^{-p}(X) \otimes K^{-q}(Y) \xrightarrow{\times} K^{-(p+q)}(X \times Y)$, the result corresponding to Corollary 1.3 obviously holds (for Hausdorff locally compact spaces).
iii) Corollary 1.3 was an open question in Milnor's book [8] (see p. 67).

For the proof of Theorem 1.1, we can assume that $p \leq q$.
This paper is organized as follows. In Section 2, we prove Theorem 1.1 for $p=0$. The most difficult case, namely $p=q=1$, is dealt with in Section 3, applying results of [7] (coping with the C^{*}-algebra $C^{*} \mathbb{Z}^{2} \cong C\left(\mathbb{T}^{2}\right)$).

2 The cases $p=0$

By direct computation, we prove Theorem 1.1 for $p=0$.
Recall that the algebraic and the topological K-theory groups are Morita invariant: for $i \geq 0$ and $n \geq 1$, there are isomorphisms

$$
K_{i}^{\text {alg }}(A) \cong K_{i}^{\text {alg }}\left(M_{n}(A)\right) \text { and } K_{i}(A) \cong K_{i}\left(M_{n}(A)\right),
$$

induced by the (non-unital) inclusion $A \hookrightarrow M_{n}(A), a \longmapsto\left(\begin{array}{cc}a & \mathbb{0} \\ \mathbb{O} & \mathbb{O}\end{array}\right)$. In particular, the products being natural, they are compatible with Morita equivalence. We can therefore reduce to the case of idempotent (1×1)-matrices and invertible (1×1) matrices. Let $x \in K_{0}^{\text {alg }}(A)$ and $y \in K_{q}^{\text {alg }}(B)$. We have to show that

$$
\sigma^{q} \circ \hat{\phi}_{q}(x \star y)=x \times\left(\sigma^{q} \circ \phi_{q}(y)\right) \in K_{0}\left(S^{q}(A \hat{\otimes} B)\right) .
$$

Let x be the class of an idempotent $\varepsilon \in A$. For $q=0$, there is nothing to prove. For $q=1$, suppose that y is the class of an invertible element $u \in B$. By definition of the \star-product (see [8]), one has

$$
x \star y=[\varepsilon \otimes u+(1-\varepsilon) \otimes 1] \in K_{1}^{a l g}\left(A \otimes_{\mathbb{Z}} B\right) .
$$

(The inverse of this matrix is $\varepsilon \otimes u^{-1}+(1-\varepsilon) \otimes 1$.) The suspension isomorphism is given by

$$
\sigma=\sigma^{1}: K_{1}(A) \xrightarrow{\cong} K_{0}(S A),[v] \longmapsto\left[t \mapsto R_{t} \cdot P \cdot R_{t}^{-1}\right]-[P],
$$

where $v \in \operatorname{GL}_{n}(A), P:=\operatorname{Diag}\left(\mathbb{I}_{n}, \mathbb{O}_{n}\right)$, and $R_{t}=R_{t}(v)$ is a homotopy (i.e. a path) in $\mathrm{GL}_{2 n}(A)$ from $\mathbb{I}_{2 n}$ to the matrix $\operatorname{Diag}\left(v, v^{-1}\right)$ which, by the Whitehead Lemma, belongs to the arc component of $\mathbb{I}_{2 n}$ in $\mathrm{GL}_{2 n}(A)$. The suspension isomorphism is independent of the chosen homotopy. If R_{t} is a path from \mathbb{I}_{2} to $\operatorname{Diag}\left(u, u^{-1}\right)$, then
$S_{t}:=\varepsilon \hat{\otimes} R_{t}(u)+(1-\varepsilon) \hat{\otimes} \mathbb{I}_{2}$ (tensor product of matrices) is a path from $1 \hat{\otimes} \mathbb{I}_{2}=\mathbb{I}_{2}$ to $\operatorname{Diag}\left(\varepsilon \hat{\otimes} u+(1-\varepsilon) \hat{\otimes} 1, \varepsilon \hat{\otimes} u^{-1}+(1-\varepsilon) \hat{\otimes} 1\right)$, so that

$$
\sigma \circ \hat{\phi}_{1}(x \star y)=\left[t \mapsto S_{t} \cdot Q \cdot S_{t}^{-1}\right]-[Q],
$$

with $Q:=\operatorname{Diag}(1 \hat{\otimes} 1,0 \hat{\otimes} 0)$. On the other hand, letting $P:=\operatorname{Diag}(1,0)$,

$$
\begin{aligned}
x \times\left(\sigma \circ \phi_{1}(y)\right) & =\left[t \mapsto \varepsilon \hat{\otimes}\left(R_{t} \cdot P \cdot R_{t}^{-1}\right)\right]-[\varepsilon \hat{\otimes} P] \\
& =\left[t \mapsto \varepsilon \hat{\otimes}\left(R_{t} \cdot P \cdot R_{t}^{-1}\right)+(1-\varepsilon) \hat{\otimes} P\right]-[Q]
\end{aligned}
$$

holds. Now, observe that the matrices $S_{t} \cdot Q \cdot S_{t}^{-1}$ and $\varepsilon \hat{\otimes}\left(R_{t} \cdot P \cdot R_{t}^{-1}\right)+(1-\varepsilon) \hat{\otimes} P$ are equal (and not just equivalent). This proves Theorem 1.1 for $p=0$ and $q=1$.
2.1 Remark. We deduce from this computation that

$$
\times: K_{0}(A) \otimes K_{1}(B) \longrightarrow K_{1}(A \hat{\otimes} B),[\varepsilon] \otimes[u] \longmapsto\left[\varepsilon \hat{\otimes} u+\left(\mathbb{I}_{m}-\varepsilon\right) \hat{\otimes} \mathbb{I}_{n}\right],
$$

provided that $\varepsilon=\varepsilon^{2} \in M_{m}(A)$ and $u \in \mathrm{GL}_{n}(B)$.
Now, let us prove Theorem 1.1 for $p=0$ and $q=2$. Let $x \in K_{0}^{\text {alg }}(A)$; using Morita invariance, we can assume that x is represented by an idempotent $\varepsilon \in A$. First, we give explicit formulas for the corresponding products by x in algebraic and in topological K_{2}-theory. If A is commutative, following the definition given by Milnor (see [8], p. 67), one easily checks that the product

$$
x \star: K_{2}^{a l g}(A) \longrightarrow K_{2}^{a l g}(A), y \longmapsto x \star y
$$

is given by the endomorphism $\left(\gamma_{x}\right)_{*}$ of $H_{2}(E(R) ; \mathbb{Z}) \cong K_{2}^{\text {alg }}(A)$ induced by

$$
\gamma_{x}: E(A) \longrightarrow E(A), E_{n}(A) \ni X \longmapsto \varepsilon \cdot X+(1-\varepsilon) \cdot \mathbb{I}_{n} .
$$

We need to express the map $\left(\gamma_{x}\right)_{*}$ explicitly on $K_{2}^{a l g}(A)$ considered as the kernel in the universal central extension $0 \longrightarrow K_{2}^{\text {alg }}(A) \longrightarrow \operatorname{St}(A) \xrightarrow{\varphi} E(A) \longrightarrow 0$. Let $X=\prod_{s} e_{i_{s} j_{s}}\left(a_{s}\right) \in E_{n}(A)$ (a finite product of elementary matrices). Since $\varepsilon=\varepsilon^{2}$, one has clearly

$$
\varepsilon \cdot X+(1-\varepsilon) \cdot \mathbb{I}_{n}=\prod_{s}\left(\varepsilon \cdot e_{i_{s} j_{s}}\left(a_{s}\right)+(1-\varepsilon) \cdot \mathbb{1}_{n}\right)=\prod_{s} e_{i_{s} j_{s}}\left(\varepsilon a_{s}\right) .
$$

This means that the map γ_{x} is simply given by $e_{i j}(a) \longmapsto e_{i j}(\varepsilon a)$. We can therefore lift this map to $\operatorname{St}(A)$ by defining

$$
\bar{\gamma}_{x}: \operatorname{St}(A) \longrightarrow \operatorname{St}(A), x_{i j}(a) \longmapsto x_{i j}(\varepsilon a) .
$$

We obtain a commutative diagram

Comparison of the product structures in algebraic and in topological K-theory 531

This shows that $\left(\gamma_{x}\right)_{*}=\bar{\gamma}_{x \mid K_{2}^{a l g}(A)}$, and gives a satisfactory description of the product in question, namely

$$
x \star: K_{2}^{a l g}(A) \longrightarrow K_{2}^{a l g}(A), \prod_{s} x_{i_{s} j_{s}}\left(a_{s}\right) \longmapsto \prod_{s} x_{i_{s} j_{s}}\left(\varepsilon a_{s}\right) .
$$

For A and B two unital rings, this generalizes to give

$$
x \star: K_{2}^{a l g}(B) \longrightarrow K_{2}^{a l g}\left(A \otimes_{\mathbb{Z}} B\right), \prod_{s} x_{i_{s} j_{s}}\left(b_{s}\right) \longmapsto \prod_{s} x_{i_{s} j_{s}}\left(\varepsilon \otimes b_{s}\right) .
$$

Now, for a unital commutative Banach algebra A, we would like to describe the product $x \cup: K_{2}(A) \longrightarrow K_{2}(A)$. First, observe that by definition of the cup product and naturality of the suspension isomorphism, the diagram

commutes, where $S \hat{\mu}$ is induced by $\hat{\mu}: A \hat{\otimes} A \longrightarrow A$ and is explicitly given by

$$
S \hat{\mu}: S(A \hat{\otimes} A) \longrightarrow S A, \quad(t \mapsto a(t) \hat{\otimes} b(t)) \longmapsto(t \mapsto a(t) \cdot b(t)) .
$$

The map $K_{2}(A)=\pi_{1}(\mathrm{GL}(A)) \xrightarrow{\cong} K_{1}(S A),\left[e^{2 \pi i t} \mapsto v(t)\right] \longmapsto[t \mapsto v(t)]$ is the isomorphism indicated on the right above. This explicit description and the one of the product $K_{0} \times K_{1} \longrightarrow K_{1}$ given in Remark 2.1, allows to compute

$$
\begin{aligned}
x \cup: K_{2}(A) & \longrightarrow K_{2}(A) \\
{\left[e^{2 \pi i t} \mapsto \Pi_{s} e_{i_{s} j_{s}}\left(t \cdot a_{s}\right)\right] } & \longmapsto\left[e^{2 \pi i t} \mapsto \Pi_{s} e_{i_{s} j_{s}}\left(t \cdot \varepsilon a_{s}\right)\right] .
\end{aligned}
$$

For two unital Banach algebras A and B, this generalizes to yield

$$
\begin{aligned}
x \times: K_{2}(B) & \longrightarrow K_{2}(A \hat{\otimes} B) \\
{\left[e^{2 \pi i t} \mapsto \prod_{s} e_{i_{s} j_{s}}\left(t \cdot b_{s}\right)\right] } & \longmapsto\left[e^{2 \pi i t} \mapsto \prod_{s} e_{i_{s} j_{s}}\left(t \cdot \varepsilon \hat{\otimes} b_{s}\right)\right] .
\end{aligned}
$$

We are now in position to prove Theorem 1.1 for $p=0$ and $q=2$. For an element $y=\prod_{s} x_{i_{s} j_{s}}\left(b_{s}\right) \in K_{2}^{\text {alg }}(B)$, one has $\phi_{2}(y)=\left[e^{2 \pi i t} \mapsto \Pi_{s} e_{i_{s} j_{s}}\left(t \cdot b_{s}\right)\right]$ (see Section 1 for the explicit description of $\left.\phi_{2}\right)$. For $x=[\varepsilon] \in K_{0}^{\text {alg }}(A)$, with $\varepsilon=\varepsilon^{2} \in A$, we deduce from the above considerations that

$$
\begin{aligned}
& \hat{\phi}_{2}: K_{2}^{\text {alg }}\left(A \otimes_{\mathbb{Z}} B\right) \longrightarrow K_{2}^{\text {alg }}(A \hat{\otimes} B) \stackrel{\phi_{2}}{\longrightarrow} K_{2}(A \hat{\otimes} B) \\
& \underbrace{\prod_{s} x_{i_{s} j_{s}}\left(\varepsilon \otimes b_{s}\right)}_{=x \star y} \longmapsto \prod_{s} x_{i_{s} j_{s}}\left(\varepsilon \hat{\otimes} b_{s}\right) \longmapsto \underbrace{\left[e^{2 \pi i t} \mapsto \prod_{s} e_{i_{s} j_{s}}\left(t \cdot \varepsilon \hat{\otimes} b_{s}\right)\right]}_{=x \times \phi_{2}(y)},
\end{aligned}
$$

i.e. $\hat{\phi}_{2}(x \star y)=x \times \phi_{2}(y)$, as was to be shown.

3 The case $p=q=1$

In this section, we prove Theorem 1.1 for $p=q=1$. It is the most difficult case, although the difficulty is not conspicuous here, since it is almost completely contained in the lengthy computations of [7].

Here, we use the same notation for an invertible matrix and for its $K_{1}^{\text {alg }}$-theory class. Roughly speaking, the following lemma tells us that we can restrict to the commutative case and the internal products \star_{A} and \cup.
3.1 Lemma. Let A and B be two unital Banach algebras, and let $x \in \mathrm{GL}_{1}(A)$ and $y \in \mathrm{GL}_{1}(B)$ be two invertibles. Consider $C:=\overline{\langle 1, \hat{x}, \hat{y}\rangle}$ the unital Banach subalgebra of $A \hat{\otimes} B$ generated by $\hat{x}:=x \hat{\otimes} 1$ and $\hat{y}:=1 \hat{\otimes} y$. Denote by i the inclusion of C in $A \hat{\otimes} B$, and by $j: A \otimes_{\mathbb{Z}} B \longrightarrow A \hat{\otimes} B$ the canonical map. Then, C is a commutative unital Banach algebra and the following formulas hold:

$$
\begin{aligned}
& \text { i) } j_{*}(x \star y)=i_{*}\left(\hat{x} \star_{C} \hat{y}\right) \in K_{2}^{a l g}(A \hat{\otimes} B) \text {; } \\
& \text { ii) } \phi_{1}(x) \times \phi_{1}(y)=i_{*}\left(\phi_{1}(\hat{x}) \cup \phi_{1}(\hat{y})\right) \in K_{2}(A \hat{\otimes} B) .
\end{aligned}
$$

Proof. Recall that the products for algebraic K_{1}-theory are given by

$$
x \star y=-\{x \otimes 1,1 \otimes y\} \text { and } \hat{x} \star_{C} \hat{y}=-\{\hat{x}, \hat{y}\} .
$$

Naturality of the Steinberg symbol yields

$$
j_{*}(\{x \otimes 1,1 \otimes y\})=\left\{j_{*}(x \otimes 1), j_{*}(1 \otimes y)\right\}=\left\{i_{*}(\hat{x}), i_{*}(\hat{y})\right\}=i_{*}(\{\hat{x}, \hat{y}\})
$$

establishing i). Using the suspension isomorphism (for x) and Remark 2.1, the product $\phi_{1}(x) \times \phi_{1}(y)$ equals the homotopy class of the map taking $e^{2 \pi i t}$ to

$$
X_{t}:=\left(\left(R_{t} \cdot P \cdot R_{t}^{-1}\right) \hat{\otimes} y+\left(\mathbb{I}_{2}-R_{t} \cdot P \cdot R_{t}^{-1}\right) \hat{\otimes} 1\right) \cdot\left(P \hat{\otimes} y+\left(\mathbb{I}_{2}-P\right) \hat{\otimes} 1\right)^{-1}
$$

where $P:=\operatorname{Diag}(1,0)$, and $R_{t}=R_{t}(x)$ is a homotopy in $\mathrm{GL}_{2}(A)$ from $\mathbb{1}_{2}$ to $\operatorname{Diag}\left(x, x^{-1}\right)$. Similarly, $\phi_{1}(\hat{x}) \cup \phi_{1}(\hat{y})$ is determined by

$$
\left(R_{t}(\hat{x}) \cdot Q \cdot R_{t}(\hat{x})^{-1} \cdot \hat{y}+\left(\mathbb{I}_{2}-R_{t}(\hat{x}) \cdot Q \cdot R_{t}(\hat{x})\right)^{-1}\right) \cdot\left(Q \cdot \hat{y}+\left(\mathbb{I}_{2}-Q\right)\right)^{-1}
$$

where $Q:=\operatorname{Diag}(1 \hat{\otimes} 1,0 \hat{\otimes} 0)$. Since i_{*} takes this element to X_{t}, ii) follows.
The final lemma deals with the case of internal products.
3.2 Lemma. Let A be a commutative unital Banach algebra. Then, for two invertibles $x, y \in \mathrm{GL}_{1}(A)$, one has

$$
\phi_{2}\left(x \star_{A} y\right)=-\phi_{2}(\{x, y\})=-\phi_{1}(x) \cup \phi_{1}(y) \in K_{2}(A) .
$$

Proof. The lemma is a consequence of the computations we made to prove the main result in [7]. In fact, Proposition 6.1 in loc. cit. is precisely the content of Lemma 3.2 for the particular Banach algebra $C^{*} \mathbb{Z}^{2} \cong C\left(\mathbb{T}^{2}\right)$ and for the product $a \star_{C^{*} \mathbb{Z}^{2}} b$, where a and b are prescribed generators of \mathbb{Z}^{2}, viewed as unitaries in
$C^{*} \mathbb{Z}^{2}$. (Indeed, $\phi_{1}(a) \cup \phi_{1}(b)$ is well-known to be the Bott element $\hat{\delta}$ of $K_{2}\left(C^{*} \mathbb{Z}^{2}\right) \cong$ $K^{0}\left(\mathbb{T}^{2}\right)$.) Now, we claim that by naturality and by classical results on the K-theory of commutative Banach algebras, the general case follows. To prove this, we first consider the sub-algebra

$$
\mathcal{A}_{\rho}:=\left\{\left(\lambda_{n}\right)_{n \in \mathbb{Z}} \in \mathbb{C}^{\mathbb{Z}}\left|\sum_{n \in \mathbb{Z}} \rho^{|n|} \cdot\right| \lambda_{n} \mid<\infty\right\}
$$

of $\ell^{1} \mathbb{Z}$, where $\rho \geq 1$ is a real number. In other words, \mathcal{A}_{ρ} is the completion of the algebra $\mathbb{C}[\mathbb{Z}]$ for the norm

$$
\left\|\sum_{n \in \mathbb{Z}} \lambda_{n} \cdot a^{n}\right\|_{\rho}:=\sum_{n \in \mathbb{Z}} \rho^{|n|} \cdot\left|\lambda_{n}\right|,
$$

where a is a prescribed generator of the group \mathbb{Z}. So, \mathcal{A}_{ρ} is a unital Banach algebra for this norm, with the following "universal property": given $u \in \mathrm{GL}_{1}(A)$, where A is any unital Banach algebra, one has $1=\|1\|_{A} \leq\|u\|_{A} \cdot\left\|u^{-1}\right\|_{A}$, therefore $\rho_{u}:=\max \left\{\left\|u^{-1}\right\|_{A},\|u\|_{A}\right\}$ is ≥ 1, and the inequalities

$$
\left\|\sum_{n \in \mathbb{Z}} \lambda_{n} \cdot u^{n}\right\|_{A} \leq \sum_{n<0}\left|\lambda_{n}\right| \cdot\left\|u^{-1}\right\|_{A}^{|n|}+\sum_{n \geq 0}\left|\lambda_{n}\right| \cdot\|u\|_{A}^{n} \leq\left\|\sum_{n \in \mathbb{Z}} \lambda_{n} \cdot a^{n}\right\|_{\rho_{u}}
$$

imply that the algebra map $\nu_{u}: \mathbb{C}[\mathbb{Z}] \longrightarrow A, a \longmapsto u$ extends uniquely to a unital Banach algebra morphism $\bar{\nu}_{u}: \mathcal{A}_{\rho_{u}} \longrightarrow A$. Applying this result twice, by the universal property of the projective tensor product of Banach algebras, we obtain a unital Banach algebra morphism

$$
\bar{\nu}_{x, y}: \mathcal{A}_{\rho_{x}} \hat{\otimes} \mathcal{A}_{\rho_{y}} \longrightarrow A, \xi \otimes \eta \longmapsto \bar{\nu}_{x}(\xi) \cdot \bar{\nu}_{y}(\eta) .
$$

It is clear that $\bar{\nu}_{x, y}(a)=x$ and $\bar{\nu}_{x, y}(b)=y$, where a and b designate the prescribed generators of \mathbb{Z}^{2}, considered as elements of $\mathrm{GL}_{1}\left(\mathcal{A}_{\rho_{x}} \hat{\otimes} \mathcal{A}_{\rho_{y}}\right)$ via the map $\mathbb{Z}\left[\mathbb{Z}^{2}\right] \cong$ $\mathbb{Z}[\mathbb{Z}] \otimes_{\mathbb{Z}} \mathbb{Z}[\mathbb{Z}] \hookrightarrow \mathcal{A}_{\rho_{x}} \hat{\otimes} \mathcal{A}_{\rho_{y}}$.

In our context, the second important feature of the algebra \mathcal{A}_{ρ} is that it is dense in $\ell^{1} \mathbb{Z}$ and that the inclusions

$$
\mathcal{A}_{\rho} \stackrel{\text { incl }}{\hookrightarrow} \ell^{1} \mathbb{Z} \hookrightarrow C^{*} \mathbb{Z}
$$

induce isomorphisms in topological K-theory, for any $\rho \geq 1$. For the second inclusion, this follows from the Wiener Lemma (see [9], 11.6) and the Density Theorem (see [3], Proposition 3, pp. 285-286), and the first is a consequence of the Oka Principle in K-theory established by Bost in [2] (see Theorem 1.1.1 and Example 1.1.3 therein). This also follows from a theorem of Arens, Eidlin and Novodvorskii: let B be a commutative unital Banach algebra, and let $\operatorname{Spec}(B)$ be its spectrum (it is a compact Hausdorff space); then, the Gelfand transform

$$
\mathscr{G}^{B}: B \longrightarrow C(\operatorname{Spec}(B))
$$

is a natural morphism and induces an isomorphism in topological K-theory (see [2], Theorem 1.3.2). It is clear that $\operatorname{Spec}\left(\ell^{1} \mathbb{Z}\right)$ identifies with the unit circle S^{1} and is
included in $\operatorname{Spec}\left(\mathcal{A}_{\rho}\right)$, that correspondingly identifies with the closed annulus with radii ρ^{-1} and ρ. This inclusion is a homotopy equivalence, hence the isomorphism $\operatorname{incl}_{*}=\left(\mathscr{G}_{*}^{\ell^{1} \mathbb{Z}}\right)^{-1} \circ \mathscr{G}_{*}^{\mathcal{A}_{\rho}}: K_{*}\left(\mathcal{A}_{\rho}\right) \xrightarrow{\cong} K_{*}\left(\ell^{1} \mathbb{Z}\right)$. Similarly, the inclusions $\mathcal{A}_{\rho_{x}} \hat{\otimes} \mathcal{A}_{\rho_{y}} \hookrightarrow$ $\ell^{1} \mathbb{Z} \hat{\otimes} \ell^{1} \mathbb{Z} \cong \ell^{1} \mathbb{Z}^{2} \hookrightarrow C^{*} \mathbb{Z}^{2}$ induce isomorphisms

$$
K_{*}\left(\mathcal{A}_{\rho_{x}} \hat{\otimes} \mathcal{A}_{\rho_{y}}\right) \xrightarrow{\cong} K_{*}\left(\ell^{1} \mathbb{Z}^{2}\right) \xrightarrow{\cong} K_{*}\left(C^{*} \mathbb{Z}^{2}\right),
$$

since for two commutative unital Banach algebras B_{1} and B_{2}, there is a canonical homeomorphism ([4], Proposition IV.1.20)

$$
\operatorname{Spec}\left(B_{1} \hat{\otimes} B_{2}\right) \cong \operatorname{Spec}\left(B_{1}\right) \times \operatorname{Spec}\left(B_{2}\right)
$$

We denote $\mathcal{A}_{\rho_{x}} \hat{\otimes} \mathcal{A}_{\rho_{y}}$ simply by \mathcal{A}. By naturality of the internal \star-product, of the cup product and of the maps ϕ_{1} and ϕ_{2}, we deduce from this argument that

$$
\phi_{2}^{\mathcal{A}}\left(a \star_{\mathcal{A}} b\right)=-\phi_{1}^{\mathcal{A}}(a) \cup \phi_{1}^{\mathcal{A}}(b) .
$$

By naturality, $\phi_{2}^{A}\left(x \star_{A} y\right)=-\phi_{1}^{A}(x) \cup \phi_{1}^{A}(y)$ holds, as was to be shown.
We thank Paul Jolissaint for pointing out a problem in a previous proof, and Nigel Higson for suggesting to use the Banach algebra \mathcal{A}_{ρ} and for indicating Bost's article [2].

We now prove Theorem 1.1 for $p=q=1$. Let $x \in K_{1}^{a l g}(A)$ and $y \in K_{1}^{a l g}(B)$. We have to establish that $\hat{\phi}_{2}(x \star y)=-\phi_{1}(x) \times \phi_{1}(y)$. By Morita invariance of the products, we can assume that $x \in \mathrm{GL}_{1}(A)$ and $y \in \mathrm{GL}_{1}(B)$. We have, with the notations of Lemma 3.1,

$$
\begin{aligned}
\hat{\phi}_{2}(x \star y) & =\phi_{2}^{A \hat{\otimes} B} \circ j_{*}(x \star y)=\phi_{2}^{A \hat{\otimes} B} \circ i_{*}\left(\hat{x} \star_{C} \hat{y}\right)=i_{*} \circ \phi_{2}^{C}\left(\hat{x} \star_{C} \hat{y}\right)= \\
& =-i_{*}\left(\phi_{1}(\hat{x}) \cup \phi_{1}(\hat{y})\right)=-\phi_{1}(x) \times \phi_{1}(y),
\end{aligned}
$$

where the first equality follows from the definition of $\hat{\phi}_{2}$, the second from Lemma 3.1, the third from naturality of ϕ_{2}, the fourth from Lemma 3.2 for C, and the last one from Lemma 3.1 again.

Now, the proof of Theorem 1.1 is complete.

References

[1] B. BLACKADAR, K-theory for operator algebras (2nd edition, Cambridge University Press, Mathematical Sciences Research Institute Publications 5, 1998).
[2] J.-B. BOST, 'Principe d'Oka, K-théorie et systèmes dynamiques non commutatifs', Invent. Math. 101 (1990) 261-333.
[3] A. CONNES, Noncommutative geometry (Academic Press, 1994).
[4] A. Ya. HELEMSKII, Banach and locally convex algebras (Clarendon Press, Oxford Science Publications, 1993).

Comparison of the product structures in algebraic and in topological K-theory 535
[5] M. KAROUBI, K-theory, an introduction (Grundlehren der mathematischen Wissenschaften 226, Springer Verlag, 1978).
[6] J.-L. LODAY, ' K-théorie algébrique et représentations de groupes', Ann. Sci. École Norm. Sup. 9 (1976) 309-377.
[7] M. MATTHEY and H. OYONO-OYONO, 'Algebraic K-theory in low degree and the Novikov assembly map', Proc. London Math. Soc. 85 (2002) 43-61.
[8] J. W. MILNOR, Introduction to algebraic K-theory (Princeton, Annals of Math. Studies 72, 1971).
[9] W. RUDIN, Functional analysis (Tata McGraw-Hill Publishing Company LTD., TMH Edition, 1974).

Michel Matthey
Institute for Geometry, Topology and Algebra
Chemistry Building
EPFL
CH-1015 Lausanne
Switzerland
Hervé Oyono-Oyono
Université Blaise Pascal, Clermont-Ferrand, Département de Mathématiques, Complexe Scientifique des Cézeaux, F-63177 Aubière Cedex, France
e-mail: oyono@math.univ-bpclermont.fr

[^0]: *Research supported by Swiss National Fund for Scientific Research grant no. 20-56816.99
 ${ }^{\dagger}$ Research supported by Swiss National Fund for Scientific Research grant no. 20-50575.97 Received by the editors May 2002 - In revised form June 2002.
 Communicated by A. Valette.
 2000 Mathematics Subject Classification : 19B99, 19C99,19K99.
 Key words and phrases : K-theory, product structures and Banach algebras.

