The Bundle Structure of Noncommutative Tori over UHF-Algebras*

Chun-Gil Park

Abstract

The noncommutative torus $C^*(\mathbb{Z}^n, \omega)$ of rank n is realized as the C^* algebra of sections of a locally trivial continuous C^* -algebra bundle over \widehat{S}_{ω} with fibres $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ for some totally skew multiplier ω_1 on \mathbb{Z}^n/S_{ω} . It is shown that $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ is isomorphic to $A_{\varphi} \otimes M_k(\mathbb{C})$ for some completely irrational noncommutative torus A_{φ} and some positive integer k, and that $A_{\omega} \otimes M_{l^{\infty}}$ has the trivial bundle structure if and only if the set of prime factors of k is a subset of the set of prime factors of l. This is applied to understand the bundle structure of the tensor products of Cuntz algebras with noncommutative tori.

Introduction

Given a locally compact abelian group G and a multiplier ω on G, one can associate to them the twisted group C^* -algebra $C^*(G, \omega)$, which is the universal object for unitary ω -representations of G. The twisted group C^* -algebra $C^*(\mathbb{Z}^n, \omega)$ is called a noncommutative torus of rank n and denoted by A_{ω} .

Received by the editors February 2002 - In revised form in April 2002.

Bull. Belg. Math. Soc. 10 (2003), 321–328

^{*}This paper was written while the author was a graduate student at the University of Maryland working under the direction of Professor Jonathan M. Rosenberg. This work was supported by grant No. 1999-2-102-001-3 from the interdisciplinary Research program year of the KOSEF. The author would also like to thank the referee for a number of valuable suggestions to a previous version of this paper.

Communicated by A. Valette.

²⁰⁰⁰ Mathematics Subject Classification : 46L87, 46L05.

Key words and phrases : C*-algebra bundle, twisted group C*-algebra, K-theory, Cuntz algebra.

Now the multiplier ω determines a subgroup

$$S_{\omega} = \{g \in G : \omega(g,h) = \omega(h,g), \ \forall h \in G\}$$

of G, called its symmetry group. A multiplier ω on an abelian group G is called totally skew if the symmetry group S_{ω} is trivial. A noncommutative torus A_{ω} is said to be a completely irrational noncommutative torus if $S_{\omega} \cong \{0\}$. Baggett and Kleppner [1] showed that if G is a locally compact abelian group and ω is a totally skew multiplier on G, then $C^*(G, \omega)$ is a simple C^* -algebra. So $C^*(\mathbb{Z}^n, \omega)$ is simple if ω is totally skew.

Baggett and Kleppner [1] also showed that even when ω is not totally skew on a locally compact abelian group G, the restriction of ω -representations from G to S_{ω} induces a canonical homeomorphism of $\operatorname{Prim}(C^*(G,\omega))$ with \widehat{S}_{ω} , and that there is a totally skew multiplier ω_1 on \mathbb{Z}^n/S_{ω} such that ω is similar to the pull-back of ω_1 . Furthermore, it is known (see [1, 7, 10, 11]) that $C^*(G,\omega)$ may be realized as the C^* -algebra $\Gamma(\zeta)$ of sections of a locally trivial continuous C^* -algebra bundle ζ over $\widehat{S}_{\omega} = \operatorname{Prim}(C^*(G,\omega))$ with fibres $C^*(G,\omega)/P$ for $P \in \operatorname{Prim}(C^*(G,\omega))$ and all $C^*(G,\omega)/P$ turn out to be the simple twisted group C^* -algebra $C^*(G/S_{\omega},\omega_1)$.

D. Poguntke showed in [10] that any primitive quotient of the group C^* -algebra $C^*(G)$ of a locally compact two step nilpotent group G is isomorphic to a tensor product of a completely irrational noncommutative torus A_{φ} with the algebra $\mathcal{K}(\mathcal{H})$ of compact operators on a separable (possibly finite-dimensional) Hilbert space \mathcal{H} . Since $C^*(G/S_{\omega}, \omega_1)$ is a primitive quotient of $C^*(G/S_{\omega}(\omega_1))$, $C^*(G/S_{\omega}, \omega_1)$ is isomorphic to $A_{\varphi} \otimes \mathcal{K}(\mathcal{H})$, where $G/S_{\omega}(\omega_1)$ is the extension group of G/S_{ω} by \mathbb{T}^1 defined by ω_1 .

It was shown in [9, 11] that $C^*(\mathbb{Z}^n, \omega) \otimes \mathcal{K}(\mathcal{H})$ has the trivial bundle structure when \mathcal{H} is infinite dimensional.

In this paper, we study the bundle structure of $A_{\omega} \otimes M_{l^{\infty}}$.

Let A_{ω} be a noncommutative torus which is isomorphic to the C^* -algebra of sections of a locally trivial continuous C^* -algebra bundle over \widehat{S}_{ω} with fibres $A_{\varphi} \otimes M_k(\mathbb{C})$. Here A_{φ} is a completely irrational noncommutative torus. We prove that $A_{\omega} \otimes M_{l^{\infty}}$ has the trivial bundle structure if and only if the set of prime factors of k is a subset of the set of prime factors of l.

Let \mathcal{O}_u be a Cuntz algebra. It is shown that $A_\omega \otimes \mathcal{O}_{2u}$ has the trivial bundle structure if and only if k and 2u - 1 are relatively prime.

1 Preliminaries

Let ω be a multiplier on a locally compact abelian group G. Define a homomorphism $h_{\omega}: G \to \widehat{G}$ by $h_{\omega}(x)(y) = \omega(x, y)\omega(y, x)^{-1}$ for all $x, y \in G$.

We introduce the concept of C^* -algebra bundle over a locally compact Hausdorff space. Let $Prim(C^*(G, \omega))$ be the primitive ideal space of the twisted group C^* algebra $C^*(G, \omega)$ of a locally compact abelian group G defined by a multiplier ω .

PROPOSITION 1.1 ([1, 7]). Let G be a locally compact abelian group and ω a multiplier on G. Then

- (i) there is a totally skew multiplier ω_1 on G/S_{ω} such that $C^*(G, \omega)/P$ is isomorphic to $C^*(G/S_{\omega}, \omega_1)$ for any $P \in \text{Prim}(C^*(G, \omega))$ and ω is similar to the pull-back of ω_1 ;
- (ii) the restriction of ω -representations from G to S_{ω} induces a canonical homeomorphism of $\operatorname{Prim}(C^*(G,\omega))$ with \widehat{S}_{ω} .

THEOREM 1.2 ([8]). Let A be a C^* -algebra and T a locally compact Hausdorff space. Then A is isomorphic to the C^* -algebra of sections of a continuous C^* -algebra bundle over T if and only if there is a continuous open surjection of Prim(A) onto T.

Here the C^* -algebra bundle is not necessarily locally trivial.

But it is known (see [7, 11]) that if A is a twisted group C^* -algebra of a locally compact abelian group by a multiplier, then its C^* -algebra bundle is locally trivial continuous. In particular, $A_{\omega} \cong C^*(\mathbb{Z}^n, \omega)$ is realized as the C^* -algebra of sections of a locally trivial continuous C^* -algebra bundle over \widehat{S}_{ω} with fibres the simple twisted group C^* -algebra $C^*(\mathbb{Z}^n/S_{\omega}, \omega_1)$ of a finitely generated discrete abelian group \mathbb{Z}^n/S_{ω} defined by a totally skew multiplier ω_1 on \mathbb{Z}^n/S_{ω} , where ω is similar to the pull-back of ω_1 .

The following result of Poguntke clarifies the structure of the fibres $C^*(\mathbb{Z}^n/S_\omega, \omega_1)$ of the canonical bundle associated to a noncommutative torus A_ω .

THEOREM 1.3 ([10, THEOREM 1]). Let G be a compactly generated locally compact abelian group and ω_1 a totally skew multiplier on G. Let K be the maximal compact subgroup of $E := G(\omega_1)$, and E_{ρ} the stabilizer of an irreducible unitary representation ρ of K restricting on \mathbb{T}^1 to the identity. Then

$$C^*(G, \omega_1) \cong C^*(E_{\rho}/K, m) \otimes \mathcal{K}(\mathcal{L}^2(E/E_{\rho})) \otimes M_{\dim(\rho)}(\mathbb{C}),$$

where m is the associated Mackey obstruction.

This theorem implies that the simple twisted group C^* -algebra $C^*(\mathbb{Z}^n/S_\omega, \omega_1)$ is isomorphic to $A_{\varphi} \otimes M_k(\mathbb{C})$, where A_{φ} is a completely irrational noncommutative torus and $M_k(\mathbb{C})$ is a matrix algebra. So A_ω is realized as the C^* -algebra of sections of a locally trivial continuous C^* -algebra bundle over \widehat{S}_{ω} with fibres $A_{\varphi} \otimes M_k(\mathbb{C})$.

Note that if $M_k(\mathbb{C})$ is trivial, then \mathbb{Z}^n/S_ω is torsion-free. The torsion-free group \mathbb{Z}^n is isomorphic to $S_\omega \oplus F$, where $F(\cong \mathbb{Z}^n/S_\omega)$ is a torsion-free subgroup of \mathbb{Z}^n , and ω splits as the trivial multiplier on S_ω and a totally skew multiplier on F up to similarity. So A_ω is isomorphic to $C(\widehat{S}_\omega) \otimes A_\varphi$. Now if $M_k(\mathbb{C})$ is not trivial and A_ω is isomorphic to $C(\widehat{S}_\omega) \otimes A_\varphi \otimes M_k(\mathbb{C})$, then $M_k(\mathbb{C})$ is factored out of A_ω , which implies $[1_{A_\omega}] = k[p]$ for some $[p] \in K_0(A_\omega)$, where $[1_{A_\omega}]$ is the class of the unit 1_{A_ω} of A_ω . This contradicts the fact that $[1_{A_\omega}] \in K_0(A_\omega)$ is primitive ([5, Theorem 2.2]). So if $M_k(\mathbb{C})$ is not trivial, then A_ω is not isomorphic to $C(\widehat{S}_\omega) \otimes A_\varphi \otimes M_k(\mathbb{C})$. Hence A_ω has the trivial bundle structure if and only if $M_k(\mathbb{C})$ is trivial.

LEMMA 1.4. For $l \in \mathbb{N}$ let $\mathbb{Z}_l := \mathbb{Z}/l\mathbb{Z}$. Let ω be a multiplier on \mathbb{Z}^n and α a multiplier on $\mathbb{Z}^n \oplus \mathbb{Z}_l^n$ whose restriction to \mathbb{Z}^n is similar to ω . Assume that $\alpha|_{\mathbb{Z}_l^n}$ is

trivial, and that S_{α} is torsion-free with $(\mathbb{Z}^n \oplus \mathbb{Z}_l^n)/S_{\alpha} \cong \mathbb{Z}_l^n \oplus \mathbb{Z}_l^n$. Then $C^*(\mathbb{Z}^n \oplus \mathbb{Z}_l^n, \alpha)$ is isomorphic to $A_{l^2\omega} \otimes M_{l^n}(\mathbb{C})$, where $A_{l^2\omega}$ is identified with $C^*((l\mathbb{Z})^n, \omega|_{(l\mathbb{Z})^n})$.

PROOF: By assumption, \mathbb{Z}^n acts transitively on \mathbb{Z}_l^n . So by the Mackey machine for twisted crossed products, $C^*(\mathbb{Z}^n \oplus \mathbb{Z}_l^n, \alpha)$ is induced from a twisted crossed product of \mathbb{C} by $(l\mathbb{Z})^n$, where $(l\mathbb{Z})^n$ is the stabilizer in $\mathbb{Z}^n \oplus \mathbb{Z}_l^n$ of the identity in \mathbb{Z}_l^n . Since every C^* -algebra automorphism of \mathbb{C} is trivial, this twisted crossed product is of the form $C^*((l\mathbb{Z})^n, \alpha|_{(l\mathbb{Z})^n})$. So

$$C^*(\mathbb{Z}^n \oplus \mathbb{Z}_l^n, \alpha) \cong C^*((l\mathbb{Z})^n, \alpha|_{(l\mathbb{Z})^n}) \otimes M_{l^n}(\mathbb{C}) \cong A_{l^2\omega} \otimes M_{l^n}(\mathbb{C}).$$

2 Tensor products of noncommutative tori with *UHF*-algebras and Cuntz algebras

Let us apply the previous results to understand the bundle structure of the tensor products of noncommutative tori with UHF-algebras.

We can construct inductive systems for tensor products of noncommutative tori with matrix algebras to obtain inductive limit C^* -algebras $A_{\omega} \otimes M_{l^{\infty}}$ and $A_{l^2\omega} \otimes M_{l^{\infty}}$ for $M_{l^{\infty}}$ a *UHF*-algebra of type l^{∞} , and we are going to show that they are isomorphic.

The twisted group C^* -algebra of \mathbb{Z}^n defined by a multiplier ω on \mathbb{Z}^n is the universal C^* -algebra generated by n unitaries u_1, u_2, \ldots, u_n with $u_i u_j = \rho_{ij} u_j u_i$ where $\rho_{ij} = e^{2\pi i \theta_{ij}}$ is a scalar for each pair i, j. Let $A_{\omega} = C^*(u_1, \cdots, u_n | u_i u_j = e^{2\pi i \theta_{ij}} u_j u_i)$, and identify $A_{l^2\omega}$ with $C^*(u_1^l, \cdots, u_n^l)$. Then from Lemma 1.4, one obtains the following.

THEOREM 2.1. $A_{l^2\omega} \otimes M_{l^{\infty}}$ is isomorphic to $A_{\omega} \otimes M_{l^{\infty}}$.

PROOF: Let

$$g_r := \iota \otimes id_{M_{l^r}(\mathbb{C})} : A_{l^2\omega} \otimes M_{l^r}(\mathbb{C}) \to A_\omega \otimes M_{l^r}(\mathbb{C}),$$

where ι is the canonical injection of $A_{l^2\omega}$ into A_{ω} , and $id_{M_{l^r}(\mathbb{C})}$ is the identity map of $M_{l^r}(\mathbb{C})$.

Let D be a finitely generated discrete abelian group such that $D \cong \mathbb{Z}^n \oplus \mathbb{Z}_l^n$. Let α be a multiplier on D such that A_{ω} is isomorphic to $C^*(\mathbb{Z}^n, \alpha|_{\mathbb{Z}^n}), \alpha|_{\mathbb{Z}_l^n}$ is trivial, and S_{α} is torsion-free. Let μ be the isomorphism of A_{ω} to $C^*(\mathbb{Z}^n, \alpha|_{\mathbb{Z}^n}) \hookrightarrow C^*(D, \alpha)$. By Lemma 1.4, $C^*(D, \alpha)$ is isomorphic to $A_{l^2\omega} \otimes M_{l^n}(\mathbb{C})$. Let ν be the isomorphism of $C^*(D, \alpha)$ to $A_{l^2\omega} \otimes M_{l^n}(\mathbb{C})$. And let

$$\varphi_r := \nu \otimes id_{M_{l^r}(\mathbb{C})} : C^*(D, \alpha) \otimes M_{l^r}(\mathbb{C}) \to A_{l^2\omega} \otimes M_{l^n}(\mathbb{C}) \otimes M_{l^r}(\mathbb{C}).$$

Let

$$\psi_r := \mu \otimes id_{M_{l^r}(\mathbb{C})} : A_\omega \otimes M_{l^r}(\mathbb{C}) \to C^*(D, \alpha) \otimes M_{l^r}(\mathbb{C}),$$

$$\phi_r := \varphi_r \circ \psi_r : A_\omega \otimes M_{l^r}(\mathbb{C}) \to A_{l^2\omega} \otimes M_{l^n}(\mathbb{C}) \otimes M_{l^r}(\mathbb{C}).$$

Now look at the sequence

$$\cdots \to A_{l^{2}\omega} \quad \otimes M_{l^{r}}(\mathbb{C}) \xrightarrow{g_{r}} A_{\omega} \otimes M_{l^{r}}(\mathbb{C}) \xrightarrow{\phi_{r}} A_{l^{2}\omega} \otimes M_{l^{r+n}}(\mathbb{C}) \xrightarrow{g_{r+n}} \quad A_{\omega} \otimes M_{l^{r+n}}(\mathbb{C}) \xrightarrow{\phi_{r+n}} A_{l^{2}\omega} \otimes M_{l^{r+2n}}(\mathbb{C}) \xrightarrow{g_{r+2n}} \cdots .$$

Then by definition one has an intertwining sequence. The inductive limit of the odd terms

$$\cdots \to A_{l^2\omega} \otimes M_{l^r}(\mathbb{C}) \stackrel{\varphi_r \circ g_r}{\to} A_{l^2\omega} \otimes M_{l^{r+n}}(\mathbb{C}) \stackrel{\varphi_{r+n} \circ g_{r+n}}{\to} \cdots$$

is $A_{l^2\omega} \otimes M_{l^\infty}$.

Next, the inductive limit of the even terms

 $\cdots \to A_{\omega} \otimes M_{l^r}(\mathbb{C}) \xrightarrow{g_{r+n} \circ \phi_r} A_{\omega} \otimes M_{l^{r+n}}(\mathbb{C}) \xrightarrow{g_{r+2n} \circ \phi_{r+n}} \cdots$

is $A_{\omega} \otimes M_{l^{\infty}}$. Hence by the Elliott theorem [6, Theorem 2.1], $A_{l^{2}\omega} \otimes M_{l^{\infty}}$ is isomorphic to $A_{\omega} \otimes M_{l^{\infty}}$.

G.A. Elliott showed in [5, Theorem 2.2] that $K_i(A_{\omega}) \cong \mathbb{Z}^{2^{n-1}}$, and that the class $[1_{A_{\omega}}]$ of the unit is a primitive element of $K_0(A_{\omega})$.

¿From now on, we assume that A_{ω} is isomorphic to the C^* -algebra of sections of a locally trivial continuous C^* -algebra bundle over \widehat{S}_{ω} with fibres $A_{\varphi} \otimes M_k(\mathbb{C})$ for some simple noncommutative torus A_{φ} and some positive integer k.

THEOREM 2.2. $A_{\omega} \otimes M_{l^{\infty}}$ is isomorphic to $C(\widehat{S_{\omega}}) \otimes A_{\varphi} \otimes M_k(\mathbb{C}) \otimes M_{l^{\infty}}$ if and only if the set of prime factors of k is a subset of the set of prime factors of l.

PROOF: Assume the set of prime factors of k is a subset of the set of prime factors of l. Let $A_{\omega} \cong C^*(\mathbb{Z}^n, \omega)$. Then $A_{k^2\omega} \cong C^*((k\mathbb{Z})^n, \omega|_{(k\mathbb{Z})^n})$, and the matrix subalgebra $M_k(\mathbb{C})$ is a twisted group C^* -algebra of a subgroup of $(\mathbb{Z}/k\mathbb{Z})^n$ defined by a totally skew multiplier ω_2 induced from ω . So $(k\mathbb{Z})^n/S_{\omega|_{(k\mathbb{Z})^n}}$ is torsion-free, $(k\mathbb{Z})^n$ splits as $F \oplus S_{\omega|_{(k\mathbb{Z})^n}}$ where $F \cong (k\mathbb{Z})^n/S_{\omega|_{(k\mathbb{Z})^n}}$ is a torsion-free subgroup of $(k\mathbb{Z})^n$, and $\omega|_{(k\mathbb{Z})^n}$ splits up to isomorphism as the direct sum of $\omega|_F$ and the trivial multiplier $1_{S_{\omega|_{(k\mathbb{Z})^n}}}$ on $S_{\omega|_{(k\mathbb{Z})^n}}$. Thus $A_{k^2\omega} \cong C^*(F, \omega|_F) \otimes C^*(S_{\omega|_{(k\mathbb{Z})^n}})$, which has the trivial bundle structure. By Theorem 2.1, $A_{k^2\omega} \otimes M_{k^\infty} \cong A_\omega \otimes M_{k^\infty}$. So $A_\omega \otimes M_{k^\infty}$ has the trivial bundle structure. Since M_{k^∞} can be considered as a factor of M_{l^∞} , $A_\omega \otimes M_{l^\infty}$ has the trivial bundle structure. That is, $A_\omega \otimes M_{l^\infty}$ is isomorphic to $C(\widehat{S_\omega}) \otimes A_\varphi \otimes M_k(\mathbb{C}) \otimes M_{l^\infty}$.

Conversely, assume that $A_{\omega} \otimes M_{l^{\infty}} \cong C(\widehat{S}_{\omega}) \otimes A_{\varphi} \otimes M_{k}(\mathbb{C}) \otimes M_{l^{\infty}}$. Then the unit $1_{A_{\omega}} \otimes 1_{M_{l^{\infty}}}$ maps to the unit $1_{C(\widehat{S}_{\omega}) \otimes A_{\varphi}} \otimes 1_{M_{l^{\infty}}} \otimes I_{k}$. By the Künneth theorem for tensor products [2, Theorem 23.1.3],

$$K_0(A \otimes B) = K_0(A) \otimes K_0(B)$$

for C^{*}-algebras A and B with $K_*(A)$ torsion-free and $K_1(B) \cong \{0\}$. So

$$[1_{A_{\omega}} \otimes 1_{M_{l^{\infty}}}] = [1_{C(\widehat{S_{\omega}}) \otimes A_{\varphi}} \otimes 1_{M_{l^{\infty}}} \otimes I_{k}]$$
$$[1_{A_{\omega}} \otimes 1_{M_{l^{\infty}}}] = [1_{A_{\omega}}] \otimes [1_{M_{l^{\infty}}}]$$
$$[1_{C(\widehat{S_{\omega}}) \otimes A_{\varphi}} \otimes 1_{M_{l^{\infty}}} \otimes I_{k}] = k([1_{C(\widehat{S_{\omega}}) \otimes A_{\varphi}}] \otimes [1_{M_{l^{\infty}}}]).$$

Under the assumption that the unit $1_{A_{\omega}} \otimes 1_{M_{l^{\infty}}}$ maps to the unit $1_{C(\widehat{S_{\omega}}) \otimes A_{\varphi}} \otimes 1_{M_{l^{\infty}}} \otimes I_{k}$, if there is a prime factor q of k such that $q \not\mid l$, then $[1_{M_{l^{\infty}}}] \neq q[e_{\infty}]$ for any element $[e_{\infty}] \in K_0(M_{l^{\infty}})$. So there is an element $[e] \in K_0(A_{\omega})$ such that $[1_{A_{\omega}}] = q[e]$. This contradicts the fact that $[1_{A_{\omega}}]$ is primitive ([5, Theorem 2.2]). Thus the set of prime factors of k is a subset of the set of prime factors of l.

Therefore, $A_{\omega} \otimes M_{l^{\infty}}$ is isomorphic to $C(S_{\omega}) \otimes A_{\varphi} \otimes M_k(\mathbb{C}) \otimes M_{l^{\infty}}$ if and only if the set of prime factors of k is a subset of the set of prime factors of l.

Now let us understand the bundle structure of the tensor products of noncommutative tori with (even) Cuntz algebras.

The Cuntz algebra $\mathcal{O}_u, 2 \leq u < \infty$, is the universal C^* -algebra generated by u isometries s_1, \ldots, s_u , i.e., $s_j^* s_j = 1$ for all j, with the relation $s_1 s_1^* + \cdots + s_u s_u^* = 1$. Cuntz [3, 4] proved that \mathcal{O}_u is simple and the K-theory of \mathcal{O}_u is $K_0(\mathcal{O}_u) = \mathbb{Z}/(u-1)\mathbb{Z}$ and $K_1(\mathcal{O}_u) = 0$. He proved that $K_0(\mathcal{O}_u)$ is generated by the class of the unit.

PROPOSITION 2.3. Let u be a positive integer such that k and u-1 are not relatively prime. Then $\mathcal{O}_u \otimes A_\omega$ is not isomorphic to $\mathcal{O}_u \otimes C(\widehat{S}_\omega) \otimes A_\varphi \otimes M_k(\mathbb{C})$.

PROOF: Let p be a prime such that $p \mid k$ and $p \mid u-1$. Suppose that $\mathcal{O}_u \otimes A_\omega$ is isomorphic to $\mathcal{O}_u \otimes C(\widehat{S}_\omega) \otimes A_\varphi \otimes M_k(\mathbb{C})$. Then the unit $1_{\mathcal{O}_u \otimes A_\omega}$ maps to the unit $1_{\mathcal{O}_u \otimes C(\widehat{S}_\omega) \otimes A_\varphi} \otimes I_k$. So

$$[1_{\mathcal{O}_u \otimes A_\omega}] = [1_{\mathcal{O}_u \otimes C(\widehat{S_\omega}) \otimes A_\varphi} \otimes I_k] = k[1_{\mathcal{O}_u \otimes C(\widehat{S_\omega}) \otimes A_\varphi}].$$

Hence there is an element $[e] \in K_0(\mathcal{O}_u \otimes A_\omega)$ such that $[1_{\mathcal{O}_u \otimes A_\omega}] = k[e]$. By the Künneth theorem for tensor products given in the proof of Theorem 2.2, $[1_{\mathcal{O}_u \otimes A_\rho}] = [1_{\mathcal{O}_u}] \otimes [1_{A_\omega}]$ and $[1_{\mathcal{O}_u}]$ is a generator of $K_0(\mathcal{O}_u) \cong \mathbb{Z}/(u-1)\mathbb{Z}$ (see [4]). But $p \mid u-1$. $[1_{\mathcal{O}_u}] \neq p[e_*]$ for any element $[e_*] \in K_0(\mathcal{O}_u)$. So $[1_{A_\omega}] = p[e']$ for some element $[e'] \in K_0(A_\omega)$. This contradicts the fact that $[1_{A_\omega}]$ is primitive (see [5, Theorem 2.2]). Hence k and u-1 are relatively prime.

Therefore, $\mathcal{O}_u \otimes A_\omega$ is not isomorphic to $\mathcal{O}_u \otimes C(\widehat{S_\omega}) \otimes A_\varphi \otimes M_k(\mathbb{C})$ if k and u-1 are not relatively prime.

The following result is useful to understand the bundle structure of $\mathcal{O}_u \otimes A_\omega$.

PROPOSITION 2.4 ([12, THEOREM 7.2]). Let A and B be unital simple inductive limits of even Cuntz algebras. If $\alpha : K_0(A) \to K_0(B)$ is an isomorphism of abelian groups satisfying $\alpha([1_A]) = [1_B]$, then there is an isomorphism $\phi : A \to B$ which induces α .

COROLLARY 2.5. Let l be an odd integer such that l and 2u-1 are relatively prime. Then \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{l^{\infty}}$. In particular, \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{(2u)^{\infty}}$.

THEOREM 2.6. $\mathcal{O}_{2u} \otimes A_{\omega}$ is isomorphic to $\mathcal{O}_{2u} \otimes C(\widehat{S_{\omega}}) \otimes A_{\varphi} \otimes M_k(\mathbb{C})$ if and only if k and 2u - 1 are relatively prime. PROOF: Assume that k and 2u - 1 are relatively prime. Let $k = l2^v$ for some odd integer l. Then l and 2u - 1 are relatively prime. Then by Corollary 2.5 \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{l^{\infty}}$, and \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{(2u)^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{(2u)^{\infty}} \otimes$ $M_{(2^v)^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{(2^v)^{\infty}}$. So \mathcal{O}_{2u} is isomorphic to $\mathcal{O}_{2u} \otimes M_{l^{\infty}} \otimes M_{(2^v)^{\infty}} \cong \mathcal{O}_{2u} \otimes M_{k^{\infty}}$. Thus by Theorem 2.2, $\mathcal{O}_{2u} \otimes A_{\omega}$ is isomorphic to $\mathcal{O}_{2u} \otimes M_{k^{\infty}} \otimes A_{\omega}$, which in turn is isomorphic to $\mathcal{O}_{2u} \otimes M_{k^{\infty}} \otimes C(\widehat{S_{\omega}}) \otimes A_{\varphi} \otimes M_k(\mathbb{C})$. Thus $\mathcal{O}_{2u} \otimes A_{\omega}$ is isomorphic to $\mathcal{O}_{2u} \otimes C(\widehat{S_{\omega}}) \otimes A_{\varphi} \otimes M_k(\mathbb{C})$.

The converse was proved in Proposition 2.3.

Therefore, $\mathcal{O}_{2u} \otimes A_{\omega}$ is isomorphic to $\mathcal{O}_{2u} \otimes C(\widehat{S}_{\omega}) \otimes A_{\varphi} \otimes M_k(\mathbb{C})$ if and only if k and 2u-1 are relatively prime.

References

- L. Baggett and A. Kleppner, 'Multiplier representations of abelian groups', J. Funct. Anal. 14 (1973), 299–324.
- [2] B. Blackadar, K-Theory for Operator Algebras, (Springer-Verlag, New York and Berlin, 1986).
- [3] J. Cuntz, 'Simple C*-algebras generated by isometries', Comm. Math. Phys. 57 (1977), 173–185.
- [4] J. Cuntz, 'K-theory for certain C^{*}-algebras', Ann. Math. **113** (1981), 181–197.
- [5] G.A. Elliott, 'On the K-theory of the C*-algebra generated by a projective representation of a torsion-free discrete abelian group', Operator Algebras and Group Representations 1 (*Pitman, London*, 1984), 157–184.
- [6] G.A. Elliott, 'On the classification of C*-algebras of real rank zero', J. Reine Angew. Math. 443 (1993), 179–219.
- [7] P. Green, 'The local structure of twisted covariance algebras', Acta Math. 140 (1978), 191–250.
- [8] R.Y. Lee, 'On the C^{*}-algebras of operator fields', Indiana Univ. Math. J. 25 (1976), 303–314.
- [9] S. Oh and C. Park, 'Equivalence bimodule between noncommutative tori', *Czechoslovak Math. J.* (to appear).
- [10] D. Poguntke, 'Simple quotients of group C*-algebras for two step nilpotent groups and connected Lie groups', Ann. Scient. Ec. Norm. Sup. 16 (1983), 151–172.
- [11] D. Poguntke, 'The structure of twisted convolution C*-algebras on abelian groups', J. Operator Theory 38 (1997), 3–18.
- [12] M. Rørdam, 'Classification of inductive limits of Cuntz algebras', J. Reine Angew. Math. 440 (1993), 175–200.

Department of Mathematics Chungnam National University Daejeon 305-764 South Korea e-mail: cgpark@math.cnu.ac.kr