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Abstract

Let M(k,G) be the moduli space of based gauge equivalence classes of
G-instantons on S4 with instanton number k. M(k,G) has the Uhlenbeck
completion M(k,G) =

⋃k
q=0 SPq(R4)×M(k − q,G), where SPq(R4) denotes

the q-fold symmetric product of R
4. Let X(k,G) be the first two strata of

the completion: X(k,G) = M(k,G) ∪ R
4 × M(k − 1, G). In this paper we

study the homology of X(k,G) for G = SU(n) or Sp(n), and relate this to
the homology of a certain homotopy theoretic fibre.

1 Introduction

Let V be a connected complex manifold. For simplicity we assume π1(V ) = 0 and
π2(V ) ∼= Z. Let Ratk(V ) denote the space of based holomorphic maps of degree
k from S2 to V , and let ik : Ratk(V ) → Ω2

kV be the inclusion. Suppose that
the following stability principle is satisfied: the inclusion ik becomes a homotopy
equivalence through a range of dimensions which increases to infinity with k. In
particular, we have a homotopy equivalence Rat∞(V ) ' Ω2

0V , where Rat∞(V ) is
the direct limit lim

k→∞
Ratk(V ).

Let ad(i1) : ΣRat1(V ) → ΩV be the adjoint map of i1. We lift ad(i1) to a

map ãd(i1) : ΣRat1(V ) → Ω̃V , where Ω̃V is the universal cover of ΩV . Let W (V )

be the homotopy theoretic fibre of ãd(i1). Then we have the following sequence of
fibrations:

Ω2
0V −−−→ W (V ) −−−→ ΣRat1(V )

ãd(i1)
−−−→ Ω̃V. (1.1)
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We consider the following problem: how to construct a space Xk(V ), which is a
natural generalization of Ratk(V ), such that X∞(V ) approximates W (V ).
The problem was solved for V = CP n in [7]. We summarize the results. For
f ∈ Ratk(CP n), we assume the basepoint condition f(∞) = [1, . . . , 1]. Such holo-
morphic maps are given by rational functions:

Ratk(CP n) = {(p0(z), . . . , pn(z)) : each pi(z) is a monic, degree-k polynomial

and such that there are no roots common to all pi(z)}.

The stability principle for ik : Ratk(CP n) → Ω2
kCP n was proved in [12]: ik is a

homotopy equivalence up to dimension k(2n− 1). Later the stable homotopy type
of Ratk(CP n) was described in [4]: Ratk(CP n) 's

∨k
q=1 Dq(S

2n−1), where Dq(S
2n−1)

is a stable summand of the Snaith’s stable splitting Ω2S2n+1 's
∨

q≥1 Dq(S
2n−1).

We define X l
k(CP n) by

X l
k(CP n) = {(p0(z), . . . , pn(z)) : each pi(z) is a monic, degree-k polynomial

and such that there are at most l roots common to all pi(z)}.

Thus as sets we have

X l
k(CP n) =

l∐

q=0

Cq × Ratk−q(CP n), (1.2)

where Cq × Ratk−q(CP n) corresponds to the subspace of X l
k(CP n) consisting of

elements (p0(z), . . . , pn(z)) such that there are exactly l roots common to all pi(z).
Let J l(S2n) denote the l-th stage of the James construction which builds ΩS2n+1,
and let W l(S2n) be the homotopy theoretic fibre of the inclusion J l(S2n) ↪→ J(S2n) '
ΩS2n+1. In [7] we proved a stable homotopy equivalence X l

k(CP n) 's
∨k

q=1 Dqξ
l(S2n),

where Dqξ
l(S2n) is a stable summand of the stable splitting W l(S2n) 's

∨
q≥1 Dqξ

l(S2n).
We consider the case l = 1. Since J1(S2n) ' S2n, W 1(S2n) is the homotopy theoretic
fibre of the Freudenthal suspension E : S2n → ΩS2n+1. Since Rat1(CP n) ' S2n−1,

ãd(i1) : ΣRat1(CP n) → Ω̃CP n ' ΩS2n+1 in (1.1) is also the Freudenthal suspen-
sion. Hence W (CP n) ' W 1(S2n) and X1

k(CP n) gives an answer to the problem for
V = CP n.

The purpose of this paper is to study the problem for V = ΩG, where G = SU(n)
or Sp(n). In this case Ratk(V ) is identified with M(k, G), the moduli space of based
gauge equivalence classes of G-instantons on S4 with instanton number k. The mod-
uli space M(k, G) is a smooth connected non-compact complex manifold of complex
dimension 2kn if G = SU(n) and 2k(n + 1) if G = Sp(n). Let ik : M(k, G) → Ω3

kG
be the inclusion. The stability principle for ik is called the Atiyah-Jones conjecture,
which is now solved (see Section 3). Let C = CG(SU(2)) be the centralizer of SU(2)
in G. Define a map J : G/C → Ω3

0G by J(gC)(x) = gxg−1x−1, where x ∈ SU(2).
Particular examples are: SU(n)/C is diffeomorphic to the unit tangent bundle of
CP n−1 and Sp(n)/C is diffeomorphic to RP 4n−1 (see [2], [11]). M(1, G) is diffeo-
morphic to R5×G/C such that the following homotopy commutative diagram holds
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(see [2]):

M(1, G)
i1−−−→ Ω3

1Gy'
y'

G/C
J

−−−→ Ω3
0G

(1.3)

Hence W (ΩG) in (1.1) is identified with the homotopy theoretic fibre of ãd(J) :
ΣG/C → Ω̃2G.
On the other hand, M(k, G) has the Uhlenbeck completion (see [6]), which is similar
to (1.2):

M(k, G) =
k⋃

q=0

SPq(R4)×M(k − q, G),

where SPq(R4) denotes the q-fold symmetric product of R4. Let X(k, G) be the
first two strata of the completion:

X(k, G) = M(k, G) ∪R4 ×M(k − 1, G). (1.4)

For Xk(ΩG) in the problem, we consider X(k, G).
Now our results are as follows.

Theorem A. Let n ≥ 3 and p a prime with p = 2 or p ≥ 2n + 1. Then we have

the following isomorphism for q ≤ 2k:

Hq(X(k, SU(n));Z/p) ∼= Hq(W (ΩSU(n));Z/p).

Theorem B. Let n ≥ 1 and p a prime with p = 2 or p ≥ 2n + 3. Then we have

the following isomorphism for q ≤
[

k
2

]
− 1:

Hq(X(k, Sp(n));Z/p) ∼= Hq(W (ΩSp(n));Z/p).

For G = SU(2) = Sp(1), we have

Theorem C. For all primes p, we have the following isomorphism for q ≤ k − 1:

Hq(X(k, SU(2));Z/p) ∼= Hq(W (ΩSU(2));Z/p).

If we form k →∞ in Theorems A and B, we have the following:

Corollary D. Put ν(G) = 2n + 1 if G = SU(n) (n ≥ 2) and ν(G) = 2n + 3 if

G = Sp(n) (n ≥ 1). Then for p a prime with p = 2 or p ≥ ν(G), we have the

following isomorphism:

H∗(X(∞, G);Z/p) ∼= H∗(W (ΩG);Z/p).

The structure of H∗(W (ΩG);Z/p) is determined in Section 2. (See Propositions
2.7, 2.9 and Remark 2.10 for G = SU(n), and Propositions 2.12 and 2.13 for G =
Sp(n).)
Finally we remark about the situation where n = ∞. By [9] we have a homotopy
equivalence M(k, SU) ' BU(k) hence W (ΩSU) is the homotopy theoretic fibre
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of the natural map ΣBU(1) → SU . Similarly, we have a homotopy equivalence
M(k, Sp) ' BO(k) hence W (ΩSp) is the homotopy theoretic fibre of the natural
map ΣBO(1) → SU/SO. In particular, localized away from 2, W (ΩSp) is homotopy
equivalent to ΩSU/SO.
This paper is organized as follows. In Section 2 we determine H∗(W (ΩG);Z/p) and
in Section 3 we prove Theorems A, B and C.

2 Homology of W (ΩG)

First we determine H∗(W (ΩSU(n));Z/2). Since SU(n)/C is diffeomorphic to the
unit tangent bundle of CP n−1, H∗(SU(n)/C;Z/2) is given as follows.
(1) For n even,

H∗(SU(n)/C;Z/2) ∼= H∗(CP n−1;Z/2)⊗H∗(S2n−3;Z/2).

(2) For n odd,

H∗(SU(n)/C;Z/2) ∼= H∗(CP n−2;Z/2)⊗H∗(S2n−1;Z/2). (2.1)

We write the generators of H∗(SU(n)/C;Z/2) as follows.
(1) For n even, 




α2i 1 ≤ i ≤ n− 1

β2i+1 n− 2 ≤ i ≤ 2n− 3.

(2) For n odd, 



α2i 1 ≤ i ≤ n− 2

β2i+1 n− 1 ≤ i ≤ 2n− 3.

Theorem 2.2 ([2]). For n ≥ 3, there are choices of elements

(1) x2i i = 1 or 2 ≤ i ≤ n − 2, i ≡ 0 (mod 2), (2) y4i+1

[
n−1

2

]
≤ i ≤ n − 2, i ≡

1 (mod 2), such that H∗(Ω
3
0SU(n);Z/2) is isomorphic to the following algebra:

Z/2
[
Qa

2(x2i) : a ≥ 0, i = 1 or 2 ≤ i ≤
[
n− 3

2

]
, i ≡ 0 (mod 2)

]

⊗ Z/2
[
Qa

1Q
b
2(x2i) : a, b ≥ 0,

[
n− 1

2

]
≤ i ≤ n− 2, i ≡ 0 (mod 2)

]

⊗ Z/2
[
Qa

1Q
b
3(y4i+1) : a, b ≥ 0,

[
n− 1

2

]
≤ i ≤ n− 2, i ≡ 1 (mod 2)

]
.

We generalize the elements x2i and y4i+1 in Theorem 2.2 to the following ones:
(1) For n even, 




x2i 1 ≤ i ≤ n− 1

y4i+1
n
2
− 1 ≤ i ≤ n− 2.

(2.3)

(2) For n odd, 



x2i 1 ≤ i ≤ n− 2

y4i+1
n−1

2
≤ i ≤ n− 2.

(2.4)
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The definitions are as follows.
(i) If i = 1 or i ≡ 0 (mod 2), then we define x2i to be the one in Theorem 2.2 (1).
(ii) If i ≡ 1 (mod 2), then there exist a and j uniquely such that deg Qa

2(x4j) = 2i
(where we put x0 = [1]). Then we define x2i by x2i = Qa

2(x4j).
(iii) If i ≡ 1 (mod 2), then we define y4i+1 to be the one in Theorem 2.2 (2).
(iv) If i ≡ 0 (mod 2), then we define y4i+1 by y4i+1 = Q1(x2i). Recall that we defined

a map J : SU(n)/C → Ω3
0SU(n) in Section 1.

Lemma 2.5. We have the following relations:

(1) (i) When i = 1 or i ≡ 0 (mod 2), J∗(α2i) = x2i.

(ii) When i ≡ 1 (mod 2), J∗(α2i) contains the term x2i.

(2) (i) When i ≡ 1 (mod 2), J∗(β4i+1) = y4i+1.

(ii) When i ≡ 0 (mod 2), J∗(β4i+1) contains the term y4i+1.

(iii) J∗(β4i+3) is decomposable.

Proof. (1) follows from the following homotopy commutative diagram:

SU(n)/CSU(n)(SU(2))
J

−−−→ Ω3
0SU(n)yi

yj

SU/CSU(SU(2))
J

−−−→ Ω3
0SUy'
y'

BU(1)
k

−−−→ BU

where i, j and k are the inclusions and Ω3
0SU ' BU is the Bott periodicity. (The

homotopy commutativity of the bottom square follows from the third diagram of
[11, p. 4054] for k = 1 and l = ∞.)
(2) is proved in [8]. In particular, (iii) is a consequence of dimensional reasons. This
completes the proof of Lemma 2.5. �

We define an increasing sequence of ideals of H∗(Ω
3
0SU(n);Z/2), Iν, as follows:

Consider the elements x2i and y4i+1 in (2.3) or (2.4). Put

Iν = the ideal generated by x2i and y4i+1 whose degree is less than ν. (2.6)

For γ ∈ H∗(SU(n)/C;Z/2), let sγ ∈ H∗+1(ΣSU(n)/C;Z/2) be the suspension.

Proposition 2.7. For n ≥ 3, H∗(W (ΩSU(n));Z/2) is isomorphic to the following

module:

a
⊕
i=2

sα2i ⊗ I2i ⊕
n−2
⊕
i=b

sβ4i+1 ⊗ I4i+1 ⊕
n−2
⊕
i=b

sβ4i+3 ⊗H∗(Ω
3
0SU(n);Z/2)

⊕
H∗(Ω

3
0SU(n);Z/2)

I4n−3
,

where

a =





n− 1 n : even

n− 2 n : odd
and b =





n
2
− 1 n : even

n−1
2

n : odd.
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Proof. Consider the homology Serre spectral sequence of the fibration Ω3
0SU(n) →

W (ΩSU(n)) → ΣSU(n)/C. By Lemma 2.5 (1) (i), we have d3(sα2) = x2 hence
E∞

3,∗ = 0. Next, we have d5(sα4) = x4. Note that d5(sα4 ⊗ z) = 0 if z ∈ I4 = (x2).
Hence E∞

5,∗
∼= sα4 ⊗ I4. Following the same procedures, we obtain Proposition 2.7.

�

Let n ≥ 2 and p a prime with p ≥ 2n + 1. Then H∗(SU(n)/C;Z/p) is of the
form (2.1), and we define α2i and β2i+1 similarly. On the other hand, localized at
p, SU(n) is homotopy equivalent to

∏n−1
i=1 S2i+1 (see [10]) and H∗(Ω

3S2i+1;Z/p) is
given in [5]. For 1 ≤ i ≤ n− 2, let x2i ∈ H2i(Ω

3S2i+3;Z/p) be the generator. Form
x2, . . . , x2n−4, we define an increasing sequence of ideals of H∗(Ω

3
0SU(n);Z/p), Iν ,

in the same way as in (2.6).

Lemma 2.8. For p ≥ 2n + 1, we have the following relations:

(1) For 1 ≤ i ≤ n− 2, J∗(α2i) = x2i. (2) For n− 1 ≤ i ≤ 2n− 3, J∗(β2i+1) = 0.

Proof. We can prove (1) in the same way as in Lemma 2.5 (1). For (2), a minimal
odd dimensional element of H∗(Ω

3
0S

3;Z/p) is βQ2[1], whose degree is 2p − 3. On
the other hand, deg β2i+1 ≤ 4n − 5. Since p ≥ 2n + 1, dimensional reasons show
J∗(β2i+1) = 0. This completes the proof of Lemma 2.8. �

Proposition 2.9. For n ≥ 2 and p ≥ 2n + 1, H∗(W (ΩSU(n));Z/p) is isomorphic

to the following module:

n−2
⊕
i=2

sα2i ⊗ I2i ⊕
2n−3
⊕

i=n−1
sβ2i+1 ⊗H∗(Ω

3
0SU(n);Z/p)⊕

H∗(Ω
3
0SU(n);Z/p)

I2n−2
.

Proof. We can prove the proposition in the same way as in Proposition 2.7. �

Remark 2.10. In order to determine H∗(W (ΩSU(2));Z/p) for all primes p, we need
to consider the cases p = 2 and 3. For p = 2, see Proposition 2.12. For p = 3, we have
J∗(β3) = βQ2[1] (where β in the right-hand side is the Bockstein homomorphism).
Hence

H∗(W (ΩSU(2));Z/3) ∼= sβ3 ⊗ (βQ2[1])⊕
H∗(Ω

3
0S

3;Z/3)

(βQ2[1])
.

Next we study H∗(W (ΩSp(n));Z/p). Recall that Sp(n)/C is diffeomorphic to
RP 4n−1. Let αi (1 ≤ i ≤ 4n− 1) be the generator of Hi(Sp(n)/C;Z/2).

Theorem 2.11 ([3]). For n ≥ 1, H∗(Ω
3
0Sp(n);Z/2) is isomorphic to the following

algebra:

Z/2
[
Qa

1Q
b
2[1] ∗ [−2a+b] : a, b ≥ 0

]
⊗ Z/2

[
Qa

1Q
b
2(x4j) : a, b ≥ 0, 1 ≤ j ≤ n− 1

]
.

We generalize x4j (1 ≤ j ≤ n− 1) in Theorem 2.11 to xi (1 ≤ i ≤ 4n− 1) in the
same way as in (2.3) or (2.4). That is,
(i) If i ≡ 0 (mod 4), then we define xi to be the one in Theorem 2.11.
(ii) If i 6≡ 0 (mod 4), then there exist a, b and j uniquely such that degQa

1Q
b
2(x4j) = i

(where we put x0 = [1]). Then we define xi by xi = Qa
1Q

b
2(x4j). From the elements

x1, . . . , x4n−1, we define an increasing sequence of ideals of H∗(Ω
3
0Sp(n);Z/2), Iν , in

the same way as in (2.6).
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Proposition 2.12. For n ≥ 1, H∗(W (ΩSp(n));Z/2) is isomorphic to the following

module:
4n−1
⊕
i=2

sαi ⊗ Ii ⊕
H∗(Ω

3
0Sp(n);Z/2)

I4n
.

Proof. In the same way as in the proof of Lemma 2.5 (1), we see that J∗(αi) contains
the term xi. Then from the fibration Ω3

0Sp(n) → W (ΩSp(n)) → ΣRP 4n−1, we can
prove the proposition in the same way as in Proposition 2.7. �

Let p be a prime with p ≥ 2n+3 and α4n−1 be the generator of H4n−1(RP 4n−1;Z/p).
Localized at p, Sp(n) is homotopy equivalent to

∏n
i=1 S4i−1.

Proposition 2.13. For n ≥ 1 and p ≥ 2n+3, H∗(W (ΩSp(n));Z/p) is isomorphic

to the following module:

sα4n−1 ⊗H∗(Ω
3
0Sp(n);Z/p)⊕H∗(Ω

3
0Sp(n);Z/p)

∼= H∗(S
4n;Z/p)⊗H∗(Ω

3
0Sp(n);Z/p).

Proof. In the same way as in the proof of Lemma 2.8 (2), we have J∗(α4n−1) = 0 for
p ≥ 2n + 3. Then the proposition follows easily. �

3 Proofs of Theorems A, B and C

The Atiyah-Jones conjecture suggests the stability principle for ik : M(k, G) → Ω3
kG.

The conjecture was first proved in [1] for G = SU(2). Later the conjecture was
confirmed for general G and the range of homotopy equivalence for ik was improved.
At present, the following solutions are known:

Theorem 3.1 ([9], [13], [14]). The map ik : M(k, G) → Ω3
kG induces homomor-

phisms in homotopy groups, which are

(i) if G = SU(n) (n ≥ 3), isomorphisms in dimensions less than 2k + 1, and an

epimorphism in dimension 2k + 1;

(ii) if G = Sp(n) (n ≥ 2), isomorphisms in dimensions less than
[

k
2

]
, and an epi-

morphism in dimension
[

k
2

]
;

(iii) if G = SU(2) = Sp(1), isomorphisms in dimensions less than k, and an epimor-

phism in dimension k.

By [2] we have a C4-structure in
∐

k≥1 M(k, G), in particular we have a loop sum
∗ : M(k, G) × M(k′, G) → M(k + k′, G). Similarly, we have a map ∗ : X(k, G) ×
M(k′, G) → X(k + k′, G), which is an extension of the above loop sum. Passing to
homology, ⊕k≥1H∗(X(k, G);Z/p) is a module over ⊕k≥1H∗(M(k, G);Z/p).
We prove the following:

Lemma 3.2. For all primes p, we have the following long exact sequence:

· · · → Hq(M(k, G);Z/p) → Hq(X(k, G);Z/p)

→ ⊕
i+j=q

H̃i(ΣG/C;Z/p)⊗Hj(M(k − 1, G);Z/p)

φq

−→ Hq−1(M(k, G);Z/p) → · · · .



176 Y. Kamiyama

Moreover, φq is given by

φq(sγ ⊗ z) = γ ∗ z,

where γ ∈ H̃i(G/C;Z/p), sγ is the suspension of γ and z ∈ Hj(M(k − 1, G);Z/p).
As in Section 1, let C = CG(SU(2)) be the centralizer of SU(2) in G.

Proof. We recall how the stratum R4 × M(k − 1, G) is attached to M(k, G) and
builds X(k, G) in (1.4) (see [6, Section 3.4]). By [2] we have a diffeomorphism
M(1, G) ∼= R5×G/C. Hence M(1, G) is parametrized by R4× (0, δ)×G/C, where
δ > 0 is a small number. The point x ∈ R4 represents the center of the instanton,
while the scale λ ∈ (0, δ) represents the spread of the curvature density function.
The remaining parameter is G/C. For G = SU(2), SU(2)/C ∼= SO(3) represents
the framing at infinity.
Let the scale λ ∈ (0, δ) approach 0. At the moment when λ = 0, all the ele-
ments of G/C are identified to a point. Thus, when λ = 0, the remaining pa-
rameter is only R4 and a tubular neighborhood of this R4 in X(1, G) is given by(
R4 × [0, δ]×G/C

)
/ ∼, where we put (x, 0, u) ∼ (x, 0, u′).

Similarly, we apply the above construction to X(k, G). We consider R4 × (0, δ) ×
G/C×M(k−1, G) ⊂ M(k, G). As above, let the scale λ ∈ (0, δ) approach 0. When
λ = 0, we obtain a new stratum R4 ×M(k − 1, G) and a tubular neighborhood of
the stratum in X(k, G) is given by

ν =
(
R4 × [0, δ]×G/C ×M(k − 1, G)

)
/ ∼,

where we put (x, 0, u, A) ∼ (x, 0, u′, A).
Let ∂ν be the boundary of ν. We consider the homology long exact sequence of the
pair (X(k, G), M(k, G)). By excision, we have

H∗(X(k, G), M(k, G);Z/p) ∼= H∗(ν, ∂ν;Z/p). (3.3)

Moreover,

H∗(ν, ∂ν;Z/p) (3.4)

∼=H∗

(
[0, δ]×G/C

{0} ×G/C
, {δ} ×G/C;Z/p

)
⊗H∗(M(k − 1, G);Z/p)

∼=H̃∗(ΣG/C;Z/p)⊗H∗(M(k − 1, G);Z/p).

From (3.3) and (3.4), we obtain the long exact sequence of Lemma 3.2.
By the same argument as in [7], it is easy to see that in the long exact sequence of the
pair (X(k, G), M(k, G)), the connecting homomorphism ∂∗ : Hq(X(k, G), M(k, G);
Z/p) → Hq−1(M(k, G);Z/p) corresponds to φq in Lemma 3.2. This completes the
proof of Lemma 3.2. �

In order to prove Theorem A, we first determine Hq(X(k, SU(n));Z/2) for q ≤
2k. We consider the long exact sequence of Lemma 3.2 starting from

⊕
i+j=2k+1

H̃i(ΣSU(n)/C;Z/2)⊗Hj(M(k − 1, SU(n));Z/2).
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Using Theorem 3.1 (i), φq (q ≤ 2k + 1) in Lemma 3.2 is written as follows:

φq : ⊕
i+j=q

H̃i(ΣSU(n)/C;Z/2)⊗Hj(Ω
3
0SU(n);Z/2) → Hq−1(Ω

3
0SU(n);Z/2), (3.5)

where φq(sγ ⊗ z) = J∗(γ) ∗ z.
From the exactness, we have

Hq(X(k, SU(n));Z/2) ∼= Ker φq ⊕ Coker φq+1.

We claim:

Ker φq
∼=

[
a
⊕
i=2

sα2i ⊗ I2i ⊕
n−2
⊕
i=b

sβ4i+1 ⊗ I4i+1

⊕
n−2
⊕
i=b

sβ4i+3 ⊗H∗(Ω
3
0SU(n);Z/2)

]

q

(q ≤ 2k) (3.6)

and

Coker φq+1
∼=

[
H∗(Ω

3
0SU(n);Z/2)

I4n−3

]

q

(q ≤ 2k). (3.7)

Here a and b in (3.6) are defined in Proposition 2.7 and [ ]q denotes the subspace
consisting of elements of degree q.
It is easy to prove the following:

Lemma 3.8. Let ϕ : V → V ′ be a linear mapping between vector spaces and let W
be a subspace of V . Let ϕ|W : W → V ′ be the restriction and ϕ : V/W → V ′/ϕ(W )
be the induced mapping. Then we have

Ker ϕ ∼= Ker ϕ|W ⊕ Kerϕ.

Hereafter, let q ≤ 2k and we drop q from all modules and maps.
Step 1. For ϕ and W in Lemma 3.8, we take ϕ = φ in (3.5) and W = sα2 ⊗
H∗(Ω

3
0SU(n);Z/2). Then using Lemma 2.5 (1) (i), we have

Kerφ ∼= 0⊕ Kerφ,

where φ : Z/2{sα4, . . . , sβ4n−5}⊗H∗(Ω
3
0SU(n);Z/2) −→

H∗(Ω3

0
SU(n);Z/2)

I4
is the map-

ping induced from φ. (Z/2{sα4, . . . , sβ4n−5} is a free Z/2-module with a Z/2-basis
{sα4, . . . , sβ4n−5}.)

Step 2. For ϕ and W in Lemma 3.8, we take ϕ = φ and W = sα4 ⊗
H∗(Ω

3
0SU(n);Z/2). Then

Ker φ ∼= sα4 ⊗ I4 ⊕ Ker φ,

where φ : Z/2{sα6, . . . , sβ4n−5} ⊗ H∗(Ω
3
0SU(n);Z/2) →

H∗(Ω3

0
SU(n);Z/2)

I6
is the map-

ping induced from φ.

We repeat these steps with respect to sα2i and sβ2i+1. Then we obtain (3.6).
(3.7) follows from Lemma 2.5. Now from (3.6), (3.7) and Proposition 2.7, we have
Theorem A for p = 2. Theorem A for p ≥ 2n + 1 is proved from Proposition 2.9.
This completes the proof of Theorem A.

Similarly, Theorem B follows from Propositions 2.12, 2.13 and Theorem 3.1 (ii),
and Theorem C follows from Remark 2.10 and Theorem 3.1 (iii).
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