Homology of the completion of instanton moduli
spaces

Yasuhiko Kamiyama

Abstract

Let M(k,G) be the moduli space of based gauge equivalence classes of
G-instantons on S* with instanton number k. M (k,G) has the Uhlenbeck
completion M (k,G) = UZ:O SPY(R*) x M(k — q,G), where SPY(R?) denotes
the g-fold symmetric product of R*. Let X (k,G) be the first two strata of
the completion: X (k,G) = M(k,G) UR?* x M(k — 1,G). In this paper we
study the homology of X (k,G) for G = SU(n) or Sp(n), and relate this to
the homology of a certain homotopy theoretic fibre.

1 Introduction

Let V' be a connected complex manifold. For simplicity we assume (V) = 0 and
(V) =2 Z. Let Raty(V) denote the space of based holomorphic maps of degree
k from S% to V, and let i;, : Ratg(V) — Q2V be the inclusion. Suppose that
the following stability principle is satisfied: the inclusion 7, becomes a homotopy
equivalence through a range of dimensions which increases to infinity with k. In
particular, we have a homotopy equivalence Rato. (V) ~ Q2V, where Rat, (V) is
the direct limit khj& Ratg (V).

Let ad(i) : XRat1(V) — QV be the adjoint map of i;. We lift ad(i;) to a
map ad(iy) : SRaty (V) — QV, where QV is the universal cover of QV. Let W (V)
be the homotopy theoretic fibre of ad(i1). Then we have the following sequence of
fibrations: _

02V —— W(V) —— SRaty(V) Qv (1.1)

Received by the editors January 2001.

Communicated by Y. Félix.

1991 Mathematics Subject Classification : 58D27.

Key words and phrases : instantons, homotopy theoretic fibre.

Bull. Belg. Math. Soc. 10(2003), 169-178



170 Y. Kamiyama

We consider the following problem: how to construct a space Xy(V'), which is a
natural generalization of Raty(V'), such that X, (V') approximates W (V).

The problem was solved for V' = CP" in [7]. We summarize the results. For
| € Ratg(CP™), we assume the basepoint condition f(occ) = [1,...,1]. Such holo-
morphic maps are given by rational functions:

Ratg(CP") = {(po(2), ..., pn(2)) : each p;(2) is a monic, degree-k polynomial

and such that there are no roots common to all p;(2)}.

The stability principle for iy : Raty(CP") — QiCP™ was proved in [12]: i, is a
homotopy equivalence up to dimension k(2n — 1). Later the stable homotopy type
of Raty(CP™) was described in [4]: Rat,(CP") ~, VE_| Do(5%"71), where D, (S5*"1)
is a stable summand of the Snaith’s stable splitting Q*S2"+! ~ /o, D, (5**71).
We define XL(CP™) by

XLCP™) = {(po(2),...,pn(2)) : each p;(z) is a monic, degree-k polynomial

and such that there are at most [ roots common to all p;(2)}.

Thus as sets we have

l
Xj(CP") =[] C* x Raty,_,(CP"), (1.2)

q=0

where C? x Raty_,(CP™) corresponds to the subspace of X}(CP") consisting of
elements (po(z), ...,pn(z)) such that there are exactly [ roots common to all p;(2).
Let J'(S?") denote the I-th stage of the James construction which builds Q521
and let W!(.52") be the homotopy theoretic fibre of the inclusion J!(S*") — J(S?") ~
Q52"+ In [7] we proved a stable homotopy equivalence X|(CP") ~, Vi_, D£'(5™),
where D,&'(52") is a stable summand of the stable splitting W*'(52") o, /51 D &Y(S*).
We consider the case | = 1. Since J!(5%") ~ S?" W1(S?") is the homotopy theoretic
fibre of the Freudenthal suspension E : $?" — Q5§21 Since Rat;(CP") ~ S~ 1
ad(i;) : YRat,(CP") — QCP" ~ Q82" in (1.1) is also the Freudenthal suspen-
sion. Hence W(CP") ~ W1(S*") and X}(CP") gives an answer to the problem for
V =CP"

The purpose of this paper is to study the problem for V' = QG, where G = SU(n)
or Sp(n). In this case Raty (V') is identified with M (k, G), the moduli space of based
gauge equivalence classes of G-instantons on S* with instanton number k. The mod-
uli space M (k,G) is a smooth connected non-compact complex manifold of complex
dimension 2kn if G = SU(n) and 2k(n + 1) if G = Sp(n). Let i : M(k,G) — Q3G
be the inclusion. The stability principle for iy, is called the Atiyah-Jones conjecture,
which is now solved (see Section 3). Let C' = C(SU(2)) be the centralizer of SU(2)
in G. Define a map J : G/C — Q3G by J(gC)(z) = grg~'z~", where z € SU(2).
Particular examples are: SU(n)/C is diffeomorphic to the unit tangent bundle of
CP" ! and Sp(n)/C is diffeomorphic to RP*! (see [2], [11]). M(1,G) is diffeo-
morphic to R® x G/C such that the following homotopy commutative diagram holds
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(see [2]): '
M(1,G) - Q3G

J: l: (1.3)

qg/c —L- ada

Hence W(QG) in (1.1) is identified with the homotopy theoretic fibre of ad(J) :
YG/C — Q*G.
On the other hand, M(k, G) has the Uhlenbeck completion (see [6]), which is similar
to (1.2):
k
M(k,G) = |J SPYR") x M(k —¢,G),

q=0
where SPY(R*) denotes the g-fold symmetric product of R*. Let X(k,G) be the
first two strata of the completion:

X(k,G)=Mk,G)UR x M(k —1,G). (1.4)

For X;(Q2G) in the problem, we consider X (k, G).
Now our results are as follows.

Theorem A. Letn > 3 and p a prime with p =2 or p > 2n+ 1. Then we have
the following isomorphism for q < 2k:

Hy(X(k, SU(n)); Z/p) = Hy(W(QSU(n)); Z/p).

Theorem B. Let n > 1 and p a prime with p = 2 or p > 2n + 3. Then we have

the following isomorphism for ¢ < [g} —1:

Hy (X (k,Sp(n));Z/p) = H,(W(QSp(n)); Z/p).

For G = SU(2) = Sp(1), we have

Theorem C. For all primes p, we have the following isomorphism for ¢ < k — 1:
Hy(X(k, SU(2)); Z/p) = H,(W(QSU(2)); Z/p).

If we form £ — oo in Theorems A and B, we have the following:
Corollary D. Put v(G) =2n+ 1 if G = SU(n) (n > 2) and v(G) = 2n + 3 if
G = Sp(n) (n > 1). Then for p a prime with p = 2 or p > v(G), we have the
following isomorphism:

H,(X(00,G); Z/p) = H.(W(QG); Z/p).

The structure of H.(W(Q2G);Z/p) is determined in Section 2. (See Propositions
2.7, 2.9 and Remark 2.10 for G = SU(n), and Propositions 2.12 and 2.13 for G =
Sp(n).)

Finally we remark about the situation where n = co. By [9] we have a homotopy

equivalence M (k,SU) ~ BU(k) hence W(Q2SU) is the homotopy theoretic fibre
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of the natural map ¥ BU(1) — SU. Similarly, we have a homotopy equivalence
M (k,Sp) ~ BO(k) hence W(2Sp) is the homotopy theoretic fibre of the natural
map XBO(1) — SU/SO. In particular, localized away from 2, W (2Sp) is homotopy
equivalent to QSU/SO.

This paper is organized as follows. In Section 2 we determine H.(W (Q2G);Z/p) and
in Section 3 we prove Theorems A, B and C.

2 Homology of W(QG)

First we determine H,(W (QSU(n));Z/2). Since SU(n)/C is diffeomorphic to the
unit tangent bundle of CP"~!, H*(SU(n)/C;Z/2) is given as follows.
(1) For n even,

H*(SU(n)/C;Z/2) = H*(CP" Y Z/2) @ H*(S* 3, Z/2).

(2) For n odd,
H*(SU(n)/C;Z/2) = H*(CP" % Z/2) @ H*(S* ', Z/2). (2.1)

We write the generators of H,(SU(n)/C;Z/2) as follows.
(1) For n even,

9; 1§2§n—1
ﬁ2i+1 n—2§z§2n—3

(2) For n odd,
9; ]_SZSTL—Q
Bais1 n—1<i<2n—3.

Theorem 2.2 ([2]). Forn > 3, there are choices of elements

(1) xg; i=1or2<i<n-—24i=0(mod2), (2) ys1 {"T_l} <i<n-—2i=

1 (mod 2), such that H,(Q3SU(n); Z/2) is isomorphic to the following algebra:

Z)/2 [Qg(m):azo,i: lor2<i< [RT} ,iEO(mon)]

n—1

®7Z/2 Q‘f@g(m):a,bzo,[ i ]gign—Q,iEO(mon)]

n—1

®7Z/2 [Q‘f@g(y4i+1) ca,b >0, [ ] <i<n-—-2i=1 (modZ)] .

We generalize the elements xs9; and 34,41 in Theorem 2.2 to the following ones:
(1) For n even,

: (2.3)
Yaiv1 §—1<i<n-2
(2) For n odd,
i 1<i<n-—2
To __11_.71 (2.4)
Yait1 =<i<n-—2
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The definitions are as follows.
(i) If i =1 or i = 0 (mod 2), then we define z5; to be the one in Theorem 2.2 (1).
(ii) If i = 1 (mod 2), then there exist a and j uniquely such that degQ$(z4;) = 2¢
(where we put xg = [1]). Then we define xq; by z2; = Q5(x4;).

(iii) If s = 1 (mod 2), then we define y4;11 to be the one in Theorem 2.2 (2).

(iv) If i = 0 (mod 2), then we define y4;11 by yair1 = Q1(x2;). Recall that we defined
amap J: SU(n)/C — Q3SU(n) in Section 1.

Lemma 2.5. We have the following relations:

(1) i) When i =1 or i =0 (mod 2), J,(ag) = .

ii) When i =1 (mod 2), J.(ay;) contains the term xs;.

1) When i =1 (Il’lOd 2), J*(ﬁ4i+1) = Y4i+1-

ii) When i =0 (mod 2), J.(B4+1) contains the term vy .

iii) Ji(Bairs) is decomposable.

(
(2) (
(
(

Proof. (1) follows from the following homotopy commutative diagram:

SU(n)/Csumy(SU(2)) —1— Q3SU(n)

| |
SU/Csy(SU(2)) —1— Q35U
5 |-
BU(1) k. BU

where 4, j and k are the inclusions and Q3SU ~ BU is the Bott periodicity. (The
homotopy commutativity of the bottom square follows from the third diagram of
[11, p. 4054] for k =1 and | = 0.)

(2) is proved in [8]. In particular, (iii) is a consequence of dimensional reasons. This
completes the proof of Lemma 2.5. [

We define an increasing sequence of ideals of H,(Q3SU(n);Z/2), I, as follows:
Consider the elements x9; and yy;41 in (2.3) or (2.4). Put

I, = the ideal generated by x9; and y4;,11 whose degree is less than v. (2.6)

For v € H.(SU(n)/C;Z/2), let sy € H.11(XSU(n)/C;Z/2) be the suspension.
Proposition 2.7. Forn > 3, H.(W(QS5U(n));Z/2) is isomorphic to the following
module:
a n—2 n—2
‘6_92 S ® Io; © ‘6_9b554z‘+1 ® Igi41 @ G_9b$ﬁ4z‘+3 ® H*(Q§SU(n); Z/2)
@ H.(Q3SU(n);Z/2)

where
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Proof. Consider the homology Serre spectral sequence of the fibration Q3SU(n) —
W(QSU(n)) — ¥SU(n)/C. By Lemma 2.5 (1) (i), we have d*(say) = x5 hence
E3S, = 0. Next, we have d®(say) = x4. Note that d°(say ® z) = 0 if z € Iy = (x2).
Hence Eg5, = say @ Iy. Following the same procedures, we obtain Proposition 2.7.

[

Let n > 2 and p a prime with p > 2n + 1. Then H*(SU(n)/C;Z/p) is of the
form (2.1), and we define ay; and ;41 similarly. On the other hand, localized at
p, SU(n) is homotopy equivalent to [T7=! S%*1 (see [10]) and H,(Q3S%*1:Z/p) is
given in [5]. For 1 <i <n — 2, let xy; € Hy(Q235%73:Z/p) be the generator. Form
Ty, ..., T4, we define an increasing sequence of ideals of H,(Q3SU(n);Z/p), 1,
in the same way as in (2.6).

Lemma 2.8. For p > 2n + 1, we have the following relations:
(1) For 1 <i<n-—2, J.(ag) = 2. (2) Forn —1<1i<2n—3, J(fas1) = 0.

Proof. We can prove (1) in the same way as in Lemma 2.5 (1). For (2), a minimal
odd dimensional element of H,(235% Z/p) is 3Q2[1], whose degree is 2p — 3. On
the other hand, degf3s;11 < 4n — 5. Since p > 2n + 1, dimensional reasons show
J(B2i+1) = 0. This completes the proof of Lemma 2.8. ]

Proposition 2.9. Forn >2andp > 2n+1, H. (W (QSU(n)); Z/p) is isomorphic
to the following module:

3 H,(QBSU(n); Z

St © HAQLSUm): 2 /p) @ ROV ZIR),

]énf2

n—2 2n—
@250422‘ QI® @

1=n—

Proof. We can prove the proposition in the same way as in Proposition 2.7. [ |

Remark 2.10. In order to determine H,(W (Q2SU(2));Z/p) for all primes p, we need
to consider the cases p = 2 and 3. For p = 2, see Proposition 2.12. For p = 3, we have
J«(B3) = BQs[1] (where ( in the right-hand side is the Bockstein homomorphism).

Hence
H, (353 Z/3)

(5Q=(1])

Next we study H.(W(QSp(n));Z/p). Recall that Sp(n)/C is diffeomorphic to
RP* 1 Let o; (1 <4< 4n —1) be the generator of H;(Sp(n)/C;Z/2).

Theorem 2.11 ([3]). Forn > 1, H.(Q3Sp(n); Z/2) is isomorphic to the following
algebra:

72 [Q1Q5[1)  [~2" 1 a,b > 0] ® Z/2 [Q5Qb(w4) 1 a,b > 0,1 < j <n—1].

We generalize z4; (1 < j <n—1) in Theorem 2.11 to z; (1 <i < 4n —1) in the
same way as in (2.3) or (2.4). That is,
(i) If i = 0 (mod4), then we define z; to be the one in Theorem 2.11.
(ii) If s # 0 (mod 4), then there exist a, b and j uniquely such that deg Q§Q5(z4;) = i
(where we put zy = [1]). Then we define z; by z; = Q{Q5(z4;). From the elements

H,(W(QSU(2)); Z/3) = sfs @ (6Q:[1]) ®

T1,...,T4n_1, we define an increasing sequence of ideals of H,(Q3Sp(n);Z/2), I, in
the same way as in (2.6).
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Proposition 2.12.  Forn > 1, H.(W(2Sp(n)); Z/2) is isomorphic to the following

module: T 7/
o 0 1 (82 f(n), / ).
=2 4in

Proof. In the same way as in the proof of Lemma 2.5 (1), we see that J,(a;) contains
the term z;. Then from the fibration Q3Sp(n) — W (Q2Sp(n)) — XRP" ! we can
prove the proposition in the same way as in Proposition 2.7. |

Let p be a prime with p > 2n+3 and ay,,_; be the generator of Hy,, 1 (RP*';Z/p).
Localized at p, Sp(n) is homotopy equivalent to [T, S*~!.

Proposition 2.13. Forn > 1 andp > 2n+3, H.(W(QSp(n)); Z/p) is isomorphic
to the following module:

SQn—1 @ H(Q3Sp(n); Z/p) ® H.(Q3Sp(n); Z/p)
~ [1,(S"; Z/p) ® H.(Q3Sp(n); Z/p).

Proof. In the same way as in the proof of Lemma 2.8 (2), we have J,(a4,-1) = 0 for
p > 2n + 3. Then the proposition follows easily. [ |

3 Proofs of Theorems A, B and C

The Atiyah-Jones conjecture suggests the stability principle for i, : M (k, G) — Q3 G.
The conjecture was first proved in [1] for G = SU(2). Later the conjecture was
confirmed for general GG and the range of homotopy equivalence for i, was improved.
At present, the following solutions are known:

Theorem 3.1 ([9], [13], [14]). The map i) : M(k,G) — Q3G induces homomor-
phisms in homotopy groups, which are

(i) if G = SU(n) (n > 3), isomorphisms in dimensions less than 2k + 1, and an
epimorphism in dimension 2k + 1;

(i) if G = Sp(n) (n > 2), isomorphisms in dimensions less than [g}, and an epi-
morphism in dimension {g},
(i) if G = SU(2) = Sp(1),

isomorphisms in dimensions less than k, and an epimor-
phism in dimension k.

By [2] we have a Cy-structure in [, M (k, G), in particular we have a loop sum
x: M(k,G) x M(K',G) — M(k + k',G). Similarly, we have a map * : X (k,G) x
M(K',G) — X(k+ k', G), which is an extension of the above loop sum. Passing to
homology, ®x>1H.(X (k,G);Z/p) is a module over @1 H.(M(k,G);Z/p).
We prove the following;:

Lemma 3.2. For all primes p, we have the following long exact sequence:

B Hq(M(kv G), Z/p) - Hq(X(kv G), Z/p>
— iﬁin(ZG/C; Z/p) @ Hy(M(k —1,G); Z/p)

2 Hy (M (k,G);Z/p) — -
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Moreover, ¢, is given by
Gq(s57 @ 2) =7 * 2,

where v € H;(G/C;Z/p), s is the suspension of v and z € H;(M(k—-1,G);Z/p).
As in Section 1, let C' = C¢(SU(2)) be the centralizer of SU(2) in G.

Proof. We recall how the stratum R* x M(k — 1,G) is attached to M (k,G) and
builds X (k,G) in (1.4) (see [6, Section 3.4]). By [2] we have a diffeomorphism
M(1,G) = R® x G/C. Hence M(1,G) is parametrized by R* x (0,6) x G/C, where
§ > 0 is a small number. The point = € R? represents the center of the instanton,
while the scale A € (0,0) represents the spread of the curvature density function.
The remaining parameter is G/C. For G = SU(2), SU(2)/C = SO(3) represents
the framing at infinity.

Let the scale A € (0,0) approach 0. At the moment when A\ = 0, all the ele-
ments of G/C are identified to a point. Thus, when A = 0, the remaining pa-
rameter is only R* and a tubular neighborhood of this R* in X (1,G) is given by
(R4 x [0, d] x G/C) / ~, where we put (z,0,u) ~ (z,0,u').

Similarly, we apply the above construction to X (k,G). We consider R* x (0,6) x
G/CxM(k—1,G) C M(k,G). As above, let the scale A € (0,6) approach 0. When
A = 0, we obtain a new stratum R* x M(k — 1, G) and a tubular neighborhood of
the stratum in X (k, G) is given by

v = (R x [0,8] x G/C x M(k—1,0)) / ~,

where we put (z,0,u, A) ~ (x,0,u/, A).
Let Ov be the boundary of v. We consider the homology long exact sequence of the
pair (X (k,G), M(k,G)). By excision, we have

H.(X (k, G), M(k, G); Z/p) = H. (v, 0v; Z/p) (3.3)
Moreover,
H.(v,0v;Z/p) (3.4)

~H, (%, (6} x G/C; Z/p> ® H.(M(k —1,G): Z/p)

~H.(XG/C;Z/p) @ H.(M(k —1,G); Z/p).

From (3.3) and (3.4), we obtain the long exact sequence of Lemma 3.2.

By the same argument as in [7], it is easy to see that in the long exact sequence of the
pair (X(k,G), M(k,G)), the connecting homomorphism 0, : H (X (k, G), M (k,G);
Z/p) — H, 1(M(k,G);Z/p) corresponds to ¢, in Lemma 3.2. This completes the
proof of Lemma 3.2. [

In order to prove Theorem A, we first determine H (X (k, SU(n));Z/2) for ¢ <
2k. We consider the long exact sequence of Lemma 3.2 starting from

®  H(2SU(n)/C;Z)2) @ Hy(M(k —1,SU(n)); Z/2).

i+j=2k+1
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Using Theorem 3.1 (i), ¢, (¢ < 2k + 1) in Lemma 3.2 is written as follows:
¢g: ©® Hi(ESU(n)/C:Z/2) ® Hy(QSU(n); Z/2) — Hya (%SU(n); Z/2), (3.5)

i+j=q
where ¢,(s7 ® 2) = J () * 2.
From the exactness, we have

H, (X (k,SU(n));Z/2) = Ker ¢, & Coker ¢g41.

We claim:

a n—2
Ker ¢, = ZQ:BZSO% ® Iy @ E:BbSﬁMH ® L4it1

® 7;621_9:854i+3 ® H.(QSU(n); Z /2)1 (g <2k) (3.6)

q

and
H. (O3 1 Z2/2
Coker ¢gq1 = (%5U(n): 2/ )] (g < 2k). (3.7)
I4n—3 q
Here a and b in (3.6) are defined in Proposition 2.7 and [ ], denotes the subspace

consisting of elements of degree ¢.
It is easy to prove the following:

Lemma 3.8. Let p:V — V' be a linear mapping between vector spaces and let W
be a subspace of V. Let o|W : W — V' be the restriction and @ : V/W — V' /(W)
be the induced mapping. Then we have
Ker p = Ker p|W @ Ker @.
Hereafter, let ¢ < 2k and we drop ¢ from all modules and maps.
STEP 1. For ¢ and W in Lemma 3.8, we take ¢ = ¢ in (3.5) and W = sas ®
H.(Q3SU(n);Z/2). Then using Lemma 2.5 (1) (i), we have
Ker ¢ =2 0 @ Ker ¢,

where ¢ : Z/2{say, ..., 8B 5} @ H,(QBSU(n); Z/2) — %AW is the map-
ping induced from ¢. (Z/2{say, ..., 04,5} is a free Z/2-module with a Z/2-basis
{say,...,$0um—5}.)

STEP 2. For ¢ and W in Lemma 3.8, we take ¢ = ¢ and W = say ®
H.(Q3SU(n);Z/2). Then

Ker¢ = say @ I, ® Kerz,

where ¢ : Z/2{sag, ..., 50m_5} @ H(Q3SU(n); Z/2) — %{W is the map-
ping induced from .

We repeat these steps with respect to say; and sf11. Then we obtain (3.6).
(3.7) follows from Lemma 2.5. Now from (3.6), (3.7) and Proposition 2.7, we have
Theorem A for p = 2. Theorem A for p > 2n + 1 is proved from Proposition 2.9.
This completes the proof of Theorem A.

Similarly, Theorem B follows from Propositions 2.12, 2.13 and Theorem 3.1 (ii),
and Theorem C follows from Remark 2.10 and Theorem 3.1 (iii).
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