Arithmetically Cohen-Macaulay reducible curves in projective spaces

E. Ballico *

Abstract

Here we prove that a reduced curve $X \subset \mathbf{P}^{N}$ either canonically embedded or with a high degree complete embedding is arithmetically Cohen - Macaulay.

1 Introduction

In this paper we study the existence of arithmetically Cohen - Macaulay reduced curves $X \subset \mathbf{P}^{N}$. We are interested in the case in which either X is canonically embedded or $\operatorname{deg}(X)$ is large with respect to $p_{a}(X)$. In the latter case trivial examples show that we need to assume that the degree of each irreducible component, D, of X is sufficiently large with respect to $p_{a}(X)$ and rather low with respect to the dimension of the linear space $\langle D\rangle$ spanned by D (see Definition 1). If X is irreducible, everything is known (in the canonical case by the extension to singular irreducible curves of Petri theorem ([7]), in the high degree case by [4], Th. 1 and its application to Th. 2 for irreducible but not necessarily smooth curves).

Definition 1. Let C be a reduced and connected projective curve. A line bundle L on C will be called canonically positive if there is an inclusion $j: \omega_{C} \rightarrow L$ of \mathcal{O}_{C}-sheaves, i.e. if there is $s \in H^{0}\left(C, \operatorname{Hom}\left(\omega_{C}, L\right)\right)$ with s not vanishing identically on any irreducible component of C .

Notice that in Definition 1 we do not require that C is a Gorenstein curve.

[^0]Proposition 1. Let C be a reduced and connected Gorenstein projective curve such that ω_{C} is very ample. Let $h: C \rightarrow \mathbf{P}^{g-1}$ be the embedding associated to ω_{C}. Then ω_{C} has Property N_{0}, i.e. $h(C)$ is arithmetically Cohen - Macaulay.

Theorem 1. Let C be a reduced and connected projective curve, L a very ample canonically positive line bundle on C with $L \neq \omega_{C}$ and $f: C \rightarrow \mathbf{P}\left(H^{0}(C, L)^{*}\right)$ the embedding associated to L. Then L has Property N_{0}.

We work over an algebraically closed field K with $\operatorname{char}(K)=0$.

2 The proofs

For any subset S of a projective space, let $\langle S\rangle$ denote its linear span.
Lemma 1. Let C be a reduced and connected projective curve, L a canonically positive line bundle on C and $X \subseteq C$ the union of some of the irreducible components of C. If either $L \neq \omega_{C}$ or $X \neq C$, then $h^{1}(X, L \mid X)=0$.

Proof. Since C is connected, we have $h^{0}\left(C, \mathcal{O}_{C}\right)=1$ and $h^{0}\left(C, \mathcal{I}_{Z}\right)=0$ for every non-empty zero-dimensional subscheme Z of C. By duality we have $h^{1}\left(C, \omega_{C}\right)=1$ and $h^{1}(C, R)=0$ for every $R \in \operatorname{Pic}(C)$ strictly containing ω_{C}. This proves the lemma for $X=C$. Now assume $X \neq C$ and X connected. Let Y be the union of the irreducible components of C not contained in X. Since C is connected, we have $X \cap Y \neq \emptyset$. Hence $\omega_{C} \mid X$ strictly contains ω_{X}. Hence $L \mid X$ strictly contains ω_{X}. By the first part we obtain $h^{1}(X, L \mid X)=0$. If $X \neq C$ but X is not connected, then apply the statement just proved to each connected component of X.

Remark 1. Let C be a reduced and connected reducible curve. Let $X \subset C$ be the union of some of the irreducible components of C and Y the union of the other irreducible components of C. We assume $X \neq \emptyset, Y \neq \emptyset$ and Y connected. Let $j: Y \rightarrow C$ be the inclusion. By the functorial property of the dualizing sheaf ([1], first 3 lines of p. 244) there is an inclusion $j_{!} j_{*}\left(\omega_{Y}\right) \rightarrow \omega_{C}$. Set $F=\operatorname{Im}\left(j_{!} j_{*}\left(\omega_{Y}\right)\right)$. By construction F is supported by Y and hence every local section of F vanishes on $X \backslash(X \cup Y)$. Thus $F \subseteq \mathcal{I}_{X, C} \otimes \omega_{C}$. Since Y is connected, we have $h^{1}\left(Y, \omega_{Y}\right)=1$, i.e. $h^{1}(Y, F)=1$. Thus $h^{1}\left(C, \mathcal{I}_{X, C} \otimes \omega_{C}\right) \leq 1$. From the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{X, C} \otimes \omega_{C} \rightarrow \omega_{C} \rightarrow \omega_{C} \mid X \rightarrow 0 \tag{1}
\end{equation*}
$$

we obtain the surjectivity of the restriction map $H^{0}\left(C, \omega_{C}\right) \rightarrow H^{0}\left(X, \omega_{C} \mid X\right)$ without any assumption on ω_{C}; if C is not Gorenstein at the points of $(X \cap Y)_{\text {red }}$, the sheaf $\omega_{C} \mid X$ may have torsion. Now take a canonically positive line bundle L on C with $L \neq \omega_{C}$. In the same way we obtain $h^{1}\left(C, \mathcal{I}_{X, C} \otimes L\right)=0$ and hence that the restriction map $H^{0}(C, L) \rightarrow H^{0}(X, L \mid X)$ is surjective. This part of the remark holds even if Y is not connected.

In this paper we will use only the case $p=0$, i.e. Property N_{0}, of the following observation. For the definition of Property $N_{p}, p \geq 0$, see [3] or [4].

Remark 2. Let $C \subset \mathbf{P}^{n}$ be a reduced and connected curve. Assume that C is linearly normal and that it spans \mathbf{P}^{n}, i.e. assume that the restriction map $H^{0}\left(\mathbf{P}^{n}, \mathcal{O}_{\mathbf{P}^{n}}(1)\right) \rightarrow H^{0}\left(C, \mathcal{O}_{C}(1)\right)$ is bijective. Take a general hyperplane H of \mathbf{P}^{n} and consider the exact sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{I}_{C}(t-1) \rightarrow \mathcal{I}_{C}(t) \rightarrow \mathcal{I}_{C \cap H, H}(t) \rightarrow 0 \tag{2}
\end{equation*}
$$

induced by the multiplication by an equation of H. First assume $h^{1}\left(C, \mathcal{O}_{C}(1)\right)=0$. Using (2) we easily obtain that $\mathcal{O}_{C}(1)$ has Property N_{p} for some integer $p \geq 0$ if and only if the zero-dimensional subscheme $C \cap H$ of H has Property N_{p} in H; indeed, when N_{0} holds for C or $C \cap H$, we can lift a minimal set of generators of the homogeneous ideal of $C \cap H$ in H to a minimal set of generators of the homogeneous ideal of C in \mathbf{P}^{n} and hence $C \cap H$ and C have the same Betti numbers ([5], Th. 1.3.6, or [3], 3.b.1, 3.b. 4 and 3.b.7). Now assume $h^{1}\left(C, \mathcal{O}_{C}(1)\right)=1$ and take a subset S of $C \cap H$ with $\operatorname{card}(S)=\operatorname{card}(C \cap H)-1$. Using (2) we obtain as before that C has Property N_{p} if S has Property N_{p}.

Lemma 2. Let $C \subset \mathbf{P}^{n}$ be a reduced curve and $H \subset \mathbf{P}^{n}$ a general hyperplane. Let $M \subset H$ be a linear subspace spanned by a subset of $C \cap H$. Set $S=C \cap M$. We have $\operatorname{card}(S) \geq \operatorname{dim}(M)+1$. If $\operatorname{card}(S) \geq \operatorname{dim}(M)+2$, there is a subset T of S (perhaps empty), a subspace M^{\prime} of M with $\operatorname{dim}\left(M^{\prime}\right)=\operatorname{dim}(M)-\operatorname{card}(T)$ and M spanned by $M^{\prime} \cup T$ and a linear subspace N of \mathbf{P}^{n} such that $\operatorname{dim}(N)=\operatorname{dim}\left(M^{\prime}\right)+1$, $M^{\prime}=N \cap H$ and $S \cap N=X \cap N$, where X is the union of all irreducible components of C contained in N.

Proof. Since S spans M, we have $\operatorname{card}(S) \geq \operatorname{dim}(M)+1$. Now assume $\operatorname{card}(S) \geq$ $\operatorname{dim}(M)+2$. Since char $(K)=0$, for every irreducible component D of C the set $D \cap H$ is in linearly general position in its linear span $\langle D \cap H\rangle=\langle D\rangle \cap H$ ([6], Lemma 1.1). Using [6], Cor. 1.6, and the generality of H we obtain that for every irreducible component D of C either $D \cap M$ is in linearly general position in its linear span or $D \cap H \subseteq M$ and $\langle D\rangle \cap H \subset M$. In the latter case $\langle D\rangle$ is the unique linear subspace U of \mathbf{P}^{n} with $X \subset U$ and $\operatorname{dim}(U)=\operatorname{dim}(\langle D \cap H\rangle)+1$. Let X be the union of all irreducible components D of C such that $\langle D\rangle \cap H \subset M$ and Y the union of all other irreducible components of C. Set $T=S \backslash X \cap H$. By the generality of H as in [6], Cor. 1.6, we obtain $\langle X\rangle \cap Y=\emptyset$. Thus $\operatorname{dim}(X \cap H)+\operatorname{card}(T)=\operatorname{dim}(M)$. Since $\operatorname{card}(S) \geq \operatorname{dim}(M)+2$, we have $X \neq \emptyset$.

Remark 3. Let D be an irreducible projective curve. We have $\operatorname{deg}\left(\omega_{D}\right)=2 p_{a}(D)-2$ even when D is not Gorenstein ([2], Prop. 3.1.6). The proof uses only the duality for locally Cohen - Macaulay projective one-dimensional schemes and works for any reduced and connected projective curve.

Lemma 3. Let D be a reduced projective curve and $L \in \operatorname{Pic}(D)$ with L very ample. Assume $h^{0}\left(D, \operatorname{Hom}\left(\omega_{D}, L\right)\right) \neq 0$, i.e. assume L canonically positive. Then either $L \cong \omega_{D}$ or $\operatorname{deg}(L) \geq 2 p_{a}(D)+1$.

Proof. Since $\operatorname{deg}\left(\omega_{D}\right)=2 p_{a}(D)-2$ (Remark 3$)$ it is sufficient to exclude the cases $\operatorname{deg}(L)=2 p_{a}(D)-1$ and $\operatorname{deg}(L)=2 p_{a}(D)$. Let $F \subset L$ be the image of a non-zero section of $\operatorname{Hom}\left(\omega_{D}, L\right)$. Since L is locally free of rank one, the torsion sheaf L / F
is isomorphic to the structural sheaf of a zero-dimensional subscheme Z of D with $\operatorname{deg}(Z)=\operatorname{deg}(L)-\operatorname{deg}(F)=\operatorname{deg}(L)-2 p_{a}(D)+2$. Assume $\operatorname{deg}(L)=2 p_{a}(D)$, i.e. assume $\operatorname{deg}(Z)=2$. Since L is very ample, it is spanned and hence for every $P \in Z_{\text {red }}$ we have $h^{0}\left(D, L \otimes \mathcal{I}_{\{P\}}\right)=h^{0}(D, L)-1$. By Riemann - Roch we have $h^{0}(D, L)=p_{a}(D)+1=h^{0}\left(D, L \otimes \mathcal{I}_{\{P\}}\right)+1$, i.e. $h^{0}\left(D, L \otimes \mathcal{I}_{\{P\}}\right)=h^{0}\left(D, L \otimes \mathcal{I}_{\{Z\}}\right)$, contradicting the very ampleness of L and the assumption $\operatorname{deg}(Z)=2$. In the same way we see that if $\operatorname{deg}(L)=2 p_{a}(D)-1$, then L is not spanned at the point Z, contradiction.

Lemma 4. Let $C \subset \mathbf{P}^{n}$ be a reduced and connected curve and $H \subset \mathbf{P}^{n}$ a general hyperplane. Assume that C is linearly normal, $\mathcal{O}_{C}(1) \not \not \equiv \omega_{X}$ and that $\mathcal{O}_{C}(1)$ is canonically positive. Let M be any subspace of H. Then $\operatorname{card}(C \cap M) \leq 2(\operatorname{dim}(M))+$ 1.

Proof. Fix a linear subspace M for which the inequality is not true and with $\operatorname{dim}(M)$ minimal. Since $\operatorname{card}(C \cap M)>2(\operatorname{dim}(M))+1$, we have $\operatorname{card}(C \cap M) \geq \operatorname{dim}(M)+2$. By Lemma 2 the minimality of $\operatorname{dim}(M)$ implies that for every irreducible component D of C either $D \cap M=\emptyset$ or $D \cap H \subset M$. Let X be the union of all irreducible components D of C such that $D \cap H \subset M$. Hence $C \cap M=X \cap M$. By Lemma 2 we have $\operatorname{dim}(N)=\operatorname{dim}(\langle X\rangle)+1$ and $M=\langle X\rangle \cap H$. By Lemma 3 the result is true if $X=C$. Assume $X \neq C$. Let c be the number of the connected components of X. By the last sentence of Remark 1 the curve X is linearly normal in $\langle X\rangle$. Since $h^{1}(X, L \mid X)=0$ (Lemma 1), we have $\operatorname{dim}(M)=\operatorname{dim}(\langle X\rangle)-1=\operatorname{deg}(X)+c-2-$ $p_{a}(X)$ (Riemann - Roch). Since for every connected component A of $X L \mid A$ strictly contains ω_{A} we may apply Lemma 3 to each connected component of X. We obtain $\operatorname{deg}(X) \geq 2 p_{a}(X)-2+3 c$. Thus $\operatorname{card}(C \cap M)=\operatorname{deg}(X) \leq 2(\operatorname{dim}(M))+6-5 c$, proving the lemma.

Lemma 5. Let C be a connected curve such that ω_{C} is very ample and $C \subset \mathbf{P}^{n}$ its canonical embedding. Let M be a proper subspace of H. Then $\operatorname{card}(C \cap M) \leq$ $2(\operatorname{dim}(M))+1$.
Proof. We copy words for words the proof of Lemma 4. If $c=1$, then we still may apply Remark 1. Assume $c \geq 2$. The first part of the proof of Remark 1 gives $\operatorname{dim}(\langle X\rangle) \geq h^{0}\left(X, \mathcal{O}_{X}(1)\right)-c$. Hence as in the proof of Lemma 4 we obtain $\operatorname{card}(C \cap M)=\operatorname{deg}(X) \leq 2(\operatorname{dim}(M))+2-3 c$, proving the lemma.

The following result is a simple but lengthy exercise (see [4], last 3 lines of $\S 2$).
Lemma 6. Let $S \subset \mathbf{P}^{r}$ be a finite set with $\operatorname{card}(S) \leq 2 r+1$. We have $h^{1}\left(\mathbf{P}^{r}, \mathcal{I}_{S}(t)\right) \neq$ 0 for some integer $t \geq 2$ if and only if $h^{1}\left(\mathbf{P}^{r}, \mathcal{I}_{S}(2)\right) \neq 0$ and this is the case if and only if there is an integer s with $1 \leq s<r$ and a linear subspace M of \mathbf{P}^{r} with $\operatorname{dim}(M)=s, \operatorname{card}(S \cap M) \geq 2 s+2$ and $h^{1}\left(M, \mathcal{I}_{S \cap M}(2)\right) \neq 0$.

Proof of Proposition 1 and Theorem 1. Let $H \cap C$ be a general hyperplane section of C in the embedding given by L, and $S=C \cap H$ for Theorem $1, S \subset C \cap H$, $\operatorname{card}(S)=2 p_{a}(C)-3$ for Proposition 1. By Remark 2 if S has Property N_{0}, also C does. Now apply Lemmata 4 (for Theorem 1), 5 (for Proposition 1) and 6 to conclude.

References

[1] R.-O. Buchweitz and G.-M. Greuel, The Milnor number and deformations of complex curve singularities, Invent. Math. 58 (1980), 241-281.
[2] Ph. R. Cook, Local and global aspects of the module theory of singular curves, Ph. D. Thesis, Liverpool, 1993.
[3] M. Green, Koszul cohomology and the geometry of projective varieties, J. Differential Geometry 19 (1984), 125-171.
[4] M. Green and R. Lazarsfeld, Some results about syzygies of finite sets and algebraic curves, Compositio Math. 67 (1988), 301-314.
[5] J. C. Migliore, Introduction to Liaison Theory and Deficiency Modules, Progress in Math. 165, Birkhäuser, Boston - Basel - Berlin, 1998.
[6] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann. 276 (1987), 565-579.
[7] F.-O. Schreyer, A standard basis approach to syzygies of canonical curves, J. Reine Angew. Math. 421 (1991), 83-123.

Dept. of Mathematics
University of Trento
38050 Povo (TN), Italy
email : ballico@science.unitn.it

[^0]: *The author was partially supported by MURST and GNSAGA of INdAM (Italy).
 Received by the editors October 2001.
 Communicated by J. Thas.
 1991 Mathematics Subject Classification : 14H50, 14N05, 13D02, 13C99.
 Key words and phrases : reducible curves, postulation, arithmetically normal, canonical curve, arithmetically Cohen - Macaulay curve.

