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Abstract

We study the connections between the uniform exponential dichotomy of
a discrete linear skew-product semiflow and the uniform admissibility of the
pair (c0(N, X), c00(N, X)). We give necessary and sufficient conditions for
uniform exponential dichotomy of linear skew-product semiflows in terms of
the uniform admissibility of the pairs (c0(N, X), c00(N, X)) and (C0(R+, X),
C00(R+, X)), respectively. We generalize a dichotomy theorem due to Van
Minh, Räbiger and Schnaubelt for the case of linear skew-product semiflows.

1 Introduction

The concept of exponential dichotomy for differential equations was introduced by
Perron, connecting the problem of conditional stability of the system ẋ = A(t)x
with the existence of bounded solutions for the equation ẋ = A(t)x + f(t, x) in a
Banach space X. These ideas have been continued by Massera and Schäffer ([10]),
Coppel ([5]), Daleckii and Krein ([6]), respectively.

A significant step in this direction, in infinite dimensional spaces, has been made
by Henry in [7], where he introduced the concept of discrete dichotomy. Thus, he
characterized the dichotomy of a sequence of bounded linear operators (Tn)n∈Z in
terms of existence and uniqueness of bounded solutions for xn+1 = Tnxn + fn, for
every bounded sequence (fn)n∈Z. Moreover, Henry presented the connection between
the discrete dichotomy and the exponential dichotomy for an evolution family.
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In the last few years significant questions in the theory of evolution equations
have been answered using the theory of linear skew-product flows (see [2], [3], [4],
[8], [9], [13]-[15], [18], [19]). In [8], Latushkin, Montgomery - Smith and Randolph
expressed exponential dichotomy of a linear skew-product flow using a family of
weighted shift operators acting on c0(Z, X). In the same spirit of Henry’s theory,
Chow and Leiva introduced in [3] the concept of pointwise discrete dichotomy for
a skew-product sequence (Φn(θ), σ(θ, n))n∈N, over X × Θ, with X a Banach space
and Θ a compact Hausdorff space, generalizing Henry’s theorem for the equations
of type xn+1 = Φn(θ)xn + fn. They presented the relation between the point-
wise discrete dichotomy and the uniform discrete dichotomy and emphasized the
equivalence between the exponential dichotomy of a linear skew-product semiflow
π = (Φ, σ) and the discrete exponential dichotomy of the associated skew-product
sequence π̂ = (Φ(σ(θ, n), 1), σ(θ, n))n∈N in certain conditions. Other generalizations
for the dichotomy and robustness theorems due to Henry, for the case of linear
skew-product semiflows have been considered by Pliss and Sell in [18].

Another approach (see [9]) has been presented by Latushkin and Schnaubelt for
the case of dichotomy of strongly continuous cocycles over flows, in locally compact
spaces. They established the connection between the exponential dichotomy of a
strongly continuous cocycle over a flow and the dichotomy of the associated discrete
cocycle, employing an evolution semigroup technique. They extended some impor-
tant theorems in the field of evolution families, proving that the uniform exponential
dichotomy of a linear skew-product semiflow is equivalent to the hyperbolicity of its
evolution semigroup on C0(Θ, X). Moreover, in the spirit of Perron’s theory they
related, in certain conditions, exponential dichotomy of a strongly continuous cocy-
cle Φ over a flow σ to the existence and uniqueness of bounded continuous solutions
for the mild inhomogeneous equation

u(σ(θ, t)) = e−λtΦ(θ, t)u(θ) +
∫ t

0
e−λ(t−τ)Φ(σ(θ, τ), t− τ)g(σ(θ, τ)) dτ

on C0(Θ, X) or Cb(Θ, X). This result can be interpreted as a generalization of a
dichotomy theorem due to Van Minh, Räbiger and Schnaubelt (see [16]), given by

Theorem 1.1. An evolution family U = {U(t, s)}t≥s≥0 is uniformly exponen-

tially dichotomic if and only if for every u ∈ C0(R+, X) there is f ∈ C0(R+, X) such

that

f(t) = U(t, s)f(s) +
∫ t

s
U(t, τ)u(τ) dτ, ∀t ≥ s ≥ 0

and the space

X1 = {x ∈ X : lim
t→∞

U(t, 0)x = 0}

is closed and complemented in X.

The purpose of the present paper is to give other generalizations of this result for
the case of linear skew-product semiflows. First, we shall present the connections be-
tween the uniform exponential dichotomy of a discrete linear skew-product semiflow
π̂ and the uniform admissibility of the pair (c0(N, X), c00(N, X)) for π̂. Then, we
shall prove that the uniform exponential dichotomy of a linear skew-product semi-
flow is equivalent to the uniform exponential dichotomy of the associated discrete
linear skew-product semiflow. We shall study the relation between the uniform ex-
ponential dichotomy of a linear skew-product semiflow and the uniform admissibility
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of the pair (c0(N, X), c00(N, X)) for the associated discrete linear skew-product semi-
flow. In the spirit of Perron’s theory we shall characterize the uniform exponential
dichotomy in terms of uniform admissibility of the pair (C0(R+, X), C00(R+, X)).
In fact, this is a bounded input - bounded output condition for uniform exponential
dichotomy of linear skew-product semiflows. In this manner, we shall extend the
result of Van Minh, Räbiger and Schnaubelt for the case of linear skew-product
semiflows.

2 Discrete admissibility and uniform exponential dichotomy for

discrete linear skew-product semiflows

In this section we shall present the connections between the uniform admissibility
of the pair (c0(N, X), c00(N, X)) for a discrete linear skew-product semiflow and its
uniform exponential dichotomy.

Let X be a Banach space, let (Θ, d) be a metric space and let E = X × Θ. We
shall denote by B(X) the Banach algebra of all bounded linear operators from X
into itself. Throughout the paper, the norm on X and on B(X) will be denoted by
|| · ||.

Definition 2.1. A mapping σ̂ : Θ× Z → Θ is said to be a discrete flow on Θ,
if it has the following properties:

(i) σ̂(θ, 0) = θ, for all θ ∈ Θ;

(ii) σ̂(θ,m+ n) = σ̂(σ̂(θ,m), n), for all (θ,m, n) ∈ Θ× Z
2.

Definition 2.2. A pair π̂ = (Φ̂, σ̂) is called a discrete linear skew-product

semiflow on E = X × Θ if σ̂ is a discrete flow on Θ and Φ̂ : Θ × N → B(X)
satisfies the following conditions:

(i) Φ̂(θ, 0) = I, the identity operator on X, for all θ ∈ Θ;

(ii) Φ̂(θ,m + n) = Φ̂(σ̂(θ, n), m)Φ̂(θ, n), for all (θ,m, n) ∈ Θ × N
2 (the discrete

cocycle identity);

(iii) there are M ≥ 1 and ω > 0 such that

||Φ̂(θ, n)|| ≤Meωn, ∀(θ, n) ∈ Θ× N.

Example 2.1. Let X be a Banach space, let α > 0 and let

Θ := {T = {Tn}n∈Z ⊂ B(X) : sup
n∈Z

||Tn|| ≤ α}

endowed with the metric

d(T, S) =
∞
∑

n=1

1

2n

sup
|k|≤n

||Tk − Sk||

1 + sup
|k|≤n

||Tk − Sk||
.
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We define

Φ̂(T, 0) = I, Φ̂(T, n0) = Tn0−1 . . . T1T0,

for all T = {Tn}n∈Z and all n0 ∈ N
∗. If

σ̂ : Θ× Z → Θ, σ̂(T, n0) = {Tn+n0
}n∈Z

then π̂ = (Φ̂, σ̂) is a discrete linear skew-product semiflow on E = X ×Θ.

Definition 2.3. A discrete linear skew-product semiflow π̂ = (Φ̂, σ̂) is said to be
uniformly exponentially dichotomic if there exist a family of projections {P (θ)}θ∈Θ ⊂
B(X), K ≥ 1 and ν > 0 such that

(i) Φ̂(θ, n)P (θ) = P (σ̂(θ, n))Φ̂(θ, n), for all (θ, n) ∈ Θ× N;

(ii) ||Φ̂(θ, n)x|| ≤ Ke−νn||x||, for all x ∈ ImP (θ) and all (θ, n) ∈ Θ× N;

(iii) ||Φ̂(θ, n)x|| ≥ 1
K
eνn||x||, for all x ∈ KerP (θ) and all (θ, n) ∈ Θ× N;

(iv) for every (θ, n) ∈ Θ×N the restriction Φ̂(θ, n)| : KerP (θ) → KerP (σ̂(θ, n))
is an isomorphism.

Remark 2.1. The condition (i) from Definition 2.3. is equivalent to

Φ̂(σ̂(θ, n), m− n)P (σ̂(θ, n)) = P (σ̂(θ,m))Φ̂(σ̂(θ, n), m− n),

for all (θ,m, n) ∈ Θ× N
2, m ≥ n.

Proposition 2.1. Let π̂ = (Φ̂, σ̂) be a discrete linear skew-product semiflow. If π̂
is uniformly exponentially dichotomic relative to the family of projections {P (θ)}θ∈Θ,

then

sup
θ∈Θ

||P (θ)|| <∞.

Proof. The idea is the same as in [6]. For θ ∈ Θ we define

δθ := inf{||x1 + x2|| : x1 ∈ ImP (θ), x2 ∈ KerP (θ), ||x1|| = ||x2|| = 1}.

If x1 ∈ ImP (θ), x2 ∈ KerP (θ), with ||x1|| = ||x2|| = 1, then, we have

||x1 + x2|| ≥
1

M
e−ωn||Φ̂(θ, n)x1 + Φ̂(θ, n)x2||

≥
1

M
e−ωn(

1

K
eνn −Ke−νn), ∀n ∈ N,

where M,ω are given by Definition 2.2. and K, ν by Definition 2.3. It follows that
there is c > 0 such that δθ ≥ c, for all θ ∈ Θ.

Let θ ∈ Θ and x ∈ X with P (θ)x 6= 0 and (I − P (θ))x 6= 0. Then

δθ ≤ ||
P (θ)x

||P (θ)x||
+

(I − P (θ))x

||(I − P (θ))x||
|| =

=
1

||P (θ)x||
||P (θ)x+

||P (θ)x||

||(I − P (θ))x||
(I − P (θ))x|| =

=
1

||P (θ)x||
||x+

||P (θ)x|| − ||(I − P (θ))x||

||(I − P (θ))x||
(I − P (θ))x|| ≤

2||x||

||P (θ)x||
.

It results that ||P (θ)|| ≤ 2/δθ, for all θ ∈ Θ, which ends the proof. �
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Definition 2.4. Let π̂ = (Φ̂, σ̂) be a discrete linear skew-product semiflow on
E = X × Θ and let (x, θ) ∈ E . We say that Φ̂ has a negative continuation relative
to (x, θ) if there is a function ϕ : Z− → X such that ϕ(0) = x and

ϕ(m + n) = Φ̂(σ̂(θ,m), n)ϕ(m), ∀(m,n) ∈ Z− × N with m+ n ≤ 0.

For a discrete linear skew-product semiflow π̂ = (Φ̂, σ̂) on E = X × Θ, for every
θ ∈ Θ, we consider the linear subspaces

X̂1(θ) = {x ∈ X : lim
n→∞

Φ̂(θ, n)x = 0}

X̂2(θ) = {x ∈ X : Φ̂ has a negative continuation ϕ relative to (x, θ)

such that lim
m→−∞

ϕ(m) = 0}.

Lemma 2.1. If π̂ = (Φ̂, σ̂) is discrete linear skew-product semiflow then

(i) Φ̂(θ, n)X̂1(θ) ⊂ X̂1(σ̂(θ, n)), for all (θ, n) ∈ Θ× N;

(ii) Φ̂(θ, n)X̂2(θ) ⊂ X̂2(σ̂(θ, n)), for all (θ, n) ∈ Θ× N.

Proof. (i) It is obvious.

(ii) Let (θ, n) ∈ Θ × N, x ∈ X̂2(θ) and let ϕ be a negative continuation of Φ̂
relative to (x, θ) with lim

m→−∞
ϕ(m) = 0. We denote by y = Φ̂(θ, n)x and we define

ψ : Z− → X, ψ(m) = Φ̂(σ̂(θ,m), n)ϕ(m).

Then, it is easy to see that ψ is a negative continuation of Φ̂ relative to (y, σ̂(θ, n))
and lim

m→−∞
ψ(m) = 0, so y ∈ X̂2(σ̂(θ, n)). �

Proposition 2.2. Let π̂ = (Φ̂, σ̂) be a discrete linear skew-product semiflow. If π̂
is uniformly exponentially dichotomic relative to the family of projections {P (θ)}θ∈Θ,

then

(i) ImP (θ) = X̂1(θ), for all θ ∈ Θ;

(ii) KerP (θ) = X̂2(θ), for all θ ∈ Θ.

Proof. (i) It is obvious that ImP (θ) ⊂ X̂1(θ), for all θ ∈ Θ.

Let θ ∈ Θ and x ∈ X̂1(θ). If K, ν are given by Definition 2.3. then

||x− P (θ)x|| ≤ Ke−νn||Φ̂(θ, n)(I − P (θ))x|| ≤

≤ Ke−νn[||Φ̂(θ, n)x||+Ke−νn||P (θ)x||], ∀n ∈ N.

It follows that P (θ)x = x, so x ∈ ImP (θ). It results that X̂1(θ) ⊂ ImP (θ).

(ii) Let x ∈ X̂2(θ) and let ϕ be a negative continuation of Φ̂ relative to (x, θ)
with lim

m→−∞
ϕ(m) = 0. We define

δ : Z− → X, δ(m) = P (σ̂(θ,m))ϕ(m).
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If y = P (θ)x then it is easy to verify that δ(0) = y and

δ(m + n) = Φ̂(σ̂(θ,m), n)δ(m), ∀(m,n) ∈ Z− × N, m+ n ≤ 0.

It follows that
||y|| = ||Φ̂(σ̂(θ,−n), n)P (σ̂(θ,−n))ϕ(−n)|| ≤

≤ Ke−νn||P (σ̂(θ,−n))ϕ(−n)|| ≤ Ke−νn sup
θ∈Θ

||P (θ)|| ||ϕ(−n)|| → 0,

as n→∞, which shows that x ∈ KerP (θ). So X̂2(θ) ⊂ KerP (θ).

Conversely, let x ∈ KerP (θ). We define

ψ : Z− → X, ψ(m) = Φ̂(σ̂(θ,m),−m)−1
| x.

Then ψ(0) = x. For every (m,n) ∈ Z− × N with m+ n ≤ 0 we have

Φ̂(σ̂(θ,m),−m) = Φ̂(σ̂(θ,m+ n),−m− n)Φ̂(σ̂(θ,m), n),

so
Φ̂(σ̂(θ,m + n),−m− n)−1

| x = Φ̂(σ̂(θ,m), n)Φ̂(σ̂(θ,m),−m)−1
| x,

which shows that

ψ(m + n) = Φ̂(σ̂(θ,m), n)ψ(m), ∀(m,n) ∈ Z− × N, m+ n ≤ 0.

It follows that ψ is a negative continuation for Φ̂. Moreover,

||ψ(m)|| ≤ Keνm||x|| → 0, as m→ −∞

and hence x ∈ X̂2(θ). We conclude that KerP (θ) ⊂ X̂2(θ), which ends the proof. �

Remark 2.2. From the previous proposition it follows that if the discrete li-
near skew-product semiflow π̂ = (Φ̂, σ̂) is uniformly exponentially dichotomic, then
the family of projections {P (θ)}θ∈Θ is uniquely determined by the conditions from
Definition 2.3.

We consider c0(N, X) = {s : N → X | lim
n→∞

s(n) = 0}, which is a Banach space

with respect to the norm |||s||| = sup
n∈N

||s(n)||. We shall denote by c00(N, X) := {s ∈

c0(N, X) : s(0) = 0}.

Let π̂ = (Φ̂, σ̂) be a discrete linear skew-product semiflow on E = X × Θ. For
every θ ∈ Θ we consider the discrete equation (Eθ

d) given by

γ(m) = Φ̂(σ̂(θ, n), m− n)γ(n) +
m

∑

j=n+1

Φ̂(σ̂(θ, j), m− j)s(j), ∀m,n ∈ N, m > n.

Remark 2.3. If γ ∈ c0(N, X) and s1, s2 ∈ c00(N, X) such that (γ, s1), (γ, s2)
verify the equation (Eθ

d), then s1 = s2. Thus, for every θ ∈ Θ we consider the closed
linear operator

Qθ : c0(N, X) → c00(N, X), Qθγ = s.
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Remark 2.4. It is easy to see that Ker Qθ = {γ : N → X : γ(n) =
Φ(θ, n)γ(0) and γ(0) ∈ X̂1(θ)}, for all θ ∈ Θ.

For every θ ∈ Θ we define

D2(Qθ) = {γ ∈ c0(N, X) : γ(0) ∈ X̂2(θ)}.

Definition 2.5. The pair (c0(N, X), c00(N, X)) is said to be uniformly admissible

for the discrete linear skew-product semiflow π̂ = (Φ̂, σ̂) if

(i) for every θ ∈ Θ and every s ∈ c00(N, X) there is γθ,s ∈ c0(N, X) such that
(γθ,s, s) verifies the equation (Eθ

d);

(ii) there is c > 0 such that |||Qθγ||| ≥ c|||γ|||, for all γ ∈ D2(Qθ) and all θ ∈ Θ.

Remark 2.5. If the pair (c0(N, X), c00(N, X)) is uniformly admissible for the
linear skew-product semiflow π̂ = (Φ̂, σ̂), then

X̂1(θ) ∩ X̂2(θ) = {0}, ∀θ ∈ Θ.

Indeed, let θ ∈ Θ and x ∈ X̂1(θ) ∩ X̂2(θ). We define

γ : N → X, γ(n) = Φ(θ, n)x.

From Remark 2.4. and x ∈ X̂1(θ) we have that γ ∈ Ker Qθ. Since the pair
(c0(N, X), c00(N, X)) is uniformly admissible for π̂ and γ(0) = x ∈ X̂2(θ), there
is c > 0 such that 0 = |||Qθγ||| ≥ c|||γ|||. It results that |||γ||| = 0 and hence
x = γ(0) = 0.

Remark 2.6. If the pair (c0(N, X), c00(N, X)) is uniformly admissible for the
discrete linear skew-product semiflow π̂ on E = X×Θ, then the operator Qθ|D2(Qθ) :
D2(Qθ) → c00(N, X) is injective.

In what follows, we shall present necessary conditions given by the uniform ad-
missibility of the pair (c0(N, X), c00(N, X)) for a discrete linear skew-product semi-
flow.

Theorem 2.1. Let π̂ = (Φ̂, σ̂) be a discrete linear skew-product semiflow on

E = X × Θ. If the pair (c0(N, X), c00(N, X)) is uniformly admissible for π̂ then

there exist K ≥ 1 and ν > 0 such that

(2.1) ||Φ̂(θ, n)x|| ≤ Ke−νn||x||, ∀x ∈ X̂1(θ), ∀(θ, n) ∈ Θ× N.

Proof. From hypothesis there is ν ∈ (0, 1) sufficiently small such that 2ν > eν − 1
and

|||Qθγ||| ≥ 2ν|||γ|||, ∀γ ∈ D2(Qθ), ∀θ ∈ Θ.

Let θ ∈ Θ and x ∈ X̂1(θ) \ {0}. Let Iθ,x = {k ∈ N : Φ̂(θ, k)x 6= 0}. It is possible
to have the following two cases:
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Case 1. Iθ,x = N. For every n ∈ N
∗ we define the sequences

sn : N → X, sn(k) =







0 , k = 0 or k ≥ n + 1
Φ̂(θ,k)x

||Φ̂(θ,k)x||
, k ∈ {1, . . . , n}

γn : N → X, γn(k) =



























0 , k = 0
k
∑

j=1

Φ̂(θ,k)x

||Φ̂(θ,j)x||
, k ∈ {1, . . . , n}

n
∑

j=1

Φ̂(θ,k)x

||Φ̂(θ,j)x||
, k ≥ n+ 1.

Since x ∈ X̂1(θ) it follows that γn ∈ c00(N, X) and obviously sn ∈ c00(N, X), too.
Moreover (γn, sn) verifies the equation (Eθ

d), for all n ∈ N
∗. Thus, we have that

1 = |||sn||| = |||Qθγn||| ≥ 2ν|||γn|||, ∀n ∈ N
∗,

so

(2.2) 2ν
n

∑

j=1

1

||Φ̂(θ, j)x||
≤

1

||Φ̂(θ, n)x||
, ∀n ∈ N

∗.

We consider the sequence

δ : N
∗ → R+, δ(n) =

n
∑

j=1

1

||Φ̂(θ, j)x||
.

From (2.2) we deduce that

1

||Φ̂(θ, n+ 1)x||
≥ 2νδ(n) ≥ (eν − 1)δ(n)

so δ(n+ 1) ≥ eνδ(n), for all n ∈ N
∗. Then, we obtain that

1

||Φ̂(θ, n + 1)x||
≥ 2νδ(n+ 1) ≥ 2νeνn 1

||Φ̂(θ, 1)x||
, ∀n ∈ N

∗,

so
||Φ̂(θ, n+ 1)x|| ≤ L e−ν(n+1)||x||, ∀n ∈ N

∗,

where L = Meω+ν/(2ν) and M,ω are given by Definition 2.2. Setting K = 2L we
obtain (2.1).

Case 2. Iθ,x = {0, . . . , p}. In this case we define the sequences

s : N → X, s(k) =







0 , k = 0 or k ≥ p+ 1
Φ̂(θ,k)x

||Φ̂(θ,k)x||
, k ∈ {1, . . . , p}

γ : N → X, γ(k) =



























0 , k = 0
k
∑

j=1

Φ̂(θ,k)x

||Φ̂(θ,j)x||
, k ∈ {1, . . . , p}

p
∑

j=1

Φ̂(θ,k)x

||Φ̂(θ,j)x||
, k ≥ p+ 1.

Then we deduce that s, γ ∈ c00(N, X) and the pair (γ, s) verifies the equation (Eθ
d).

Using an analogous argument as in Case 1. we obtain the conclusion. �
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Corollary 2.1. Let π̂ = (Φ̂, σ̂) be a discrete linear skew-product semiflow on

E = X × Θ. If the pair (c0(N, X), c00(N, X)) is uniformly admissible for π̂ then

X̂1(θ) is a closed linear subspace, for all θ ∈ Θ.

Proof. Let θ ∈ Θ be fixed and (xp) ⊂ X̂1(θ) converging to x ∈ X. It follows that
there is L > 0 such that ||xp|| ≤ L, for all p ∈ N. If K, ν are given by Theorem

2.1., we deduce that ||Φ̂(θ, n)xp|| ≤ KLe−νn, for all n, p ∈ N. Hence we obtain that

||Φ̂(θ, n)x|| ≤ KLe−νn, for all n ∈ N, so x ∈ X̂1(θ). It follows that X̂1(θ) is closed.
�

Theorem 2.2. Let π̂ = (Φ̂, σ̂) be a discrete linear skew-product semiflow on

E = X × Θ. If the pair (c0(N, X), c00(N, X)) is uniformly admissible for π̂ then

there exist K ≥ 1 and ν > 0 such that

(2.3) ||Φ̂(θ, n)x|| ≥
1

K
eνn||x||, ∀x ∈ X̂2(θ), ∀(θ, n) ∈ Θ× N.

Proof. Let ν ∈ (0, 1) such that 2ν > eν − 1 and

|||Qθγ||| ≥ 2ν|||γ|||, ∀γ ∈ D2(Qθ), ∀θ ∈ Θ.

Let θ ∈ Θ and x ∈ X̂2(θ) \ {0}. From Remark 2.5. it follows that Φ̂(θ, n)x 6= 0,
for all n ∈ N. For every n ∈ N

∗ we consider the sequences

sn : N → X, sn(k) =







0 , k = 0 or k ≥ n + 1

− Φ̂(θ,k)x

||Φ̂(θ,k)x||
, k ∈ {1, . . . , n}

γn : N → X, γn(k) =











0 , k ≥ n
n
∑

j=k+1

Φ̂(θ,k)x

||Φ̂(θ,j)x||
, k ≤ n− 1.

We easily deduce that γn ∈ c0(N, X), sn ∈ c00(N, X) and (γn, sn) verifies the equation
(Eθ

d), for all n ∈ N
∗. Moreover

γn(0) =
n

∑

j=1

x

||Φ̂(θ, j)x||
∈ X̂2(θ),

so γn ∈ D
2(Qθ) and Qθγn = sn, for all n ∈ N

∗. It follows that

1 = |||sn||| = |||Qθγn||| ≥ 2ν|||γn|||, ∀n ∈ N
∗.

Thus, we obtain that

(2.4) 2ν
∞
∑

j=k+1

1

||Φ̂(θ, j)x||
≤

1

||Φ̂(θ, k)x||
, ∀k ∈ N.

Let

f, F : N → R∗
+, f(n) =

1

||Φ̂(θ, n)x||
, F (n) =

∞
∑

j=n

f(j).
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From (2.4) we deduce that

f(n) ≥ 2νF (n+ 1) ≥ (eν − 1)F (n+ 1), ∀n ∈ N,

so
F (n) ≥ eνF (n+ 1), ∀n ∈ N.

It results that

f(n) ≤ F (n) ≤ e−ν(n−1)F (1) ≤
eν

2ν
e−νnf(0) =

eν

2ν
e−νn 1

||x||
, ∀n ∈ N

∗

and hence we obtain (2.3) for K = eν/2ν. �

Corollary 2.2. If the pair (c0(N, X), c00(N, X)) is uniformly admissible for the

discrete linear skew-product semiflow π̂ on E = X×Θ, then X̂2(θ) is a closed linear

subspace, for all θ ∈ Θ.

Proof. Let θ ∈ Θ. If y ∈ X̂2(θ) and ϕ is a negative continuation for Φ̂ relative to
(y, θ) with lim

m→−∞
ϕ(m) = 0, then it is easy to see that ϕ(m) ∈ X̂2(σ̂(θ,m)), for all

m ∈ Z−.

Let (xp) ⊂ X̂2(θ) converging to x ∈ X. For every p ∈ N there is a negative

continuation ϕp for Φ̂ relative to (xp, θ) such that lim
m→−∞

ϕp(m) = 0. Since

(2.5) ϕp(m + n) = Φ̂(σ̂(θ,m), n)ϕp(m), ∀(m,n, p) ∈ Z− ×N2, m+ n ≤ 0,

for K, ν given by Theorem 2.2., it follows that

(2.6) ||xp − xk|| = ||Φ̂(σ̂(θ,−n), n)(ϕp(−n)− ϕk(−n))|| ≥

≥
1

K
eνn||ϕp(−n)− ϕk(−n)||, ∀n, p, k ∈ N.

Using the fact that (xp)p∈N is fundamental, from (2.6) it follows that for every
m ∈ Z− the sequence (ϕp(m))p is fundamental, so it is convergent. We denote by
ϕ(m) := lim

p→∞
ϕp(m), for all m ∈ Z−. Hence ϕ(0) = x and from (2.5) we obtain that

ϕ(m+ n) = Φ̂(σ̂(θ,m), n)ϕ(m), ∀(m,n) ∈ Z− × N, m + n ≤ 0.

From (2.6) we deduce that

||ϕ(−n)|| ≤ Ke−νn||xp − x||+ ||ϕp(−n)||, ∀(n, p) ∈ N2.

It results that lim
m→−∞

ϕ(m) = 0, so x ∈ X̂2(θ). �

Proposition 2.3. If the pair (c0(N, X), c00(N, X)) is uniformly admissible for

the discrete linear skew-product semiflow π̂ on E = X ×Θ and X̂1(θ) + X̂2(θ) = X,

for all θ ∈ Θ, then

X̂2(σ̂(θ, n)) = Φ̂(θ, n)X̂2(θ), ∀(θ, n) ∈ Θ× N.
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Proof. Let (θ, n) ∈ Θ× N
∗ and x ∈ X̂2(σ̂(θ, n)). We define

s : N → X, s(k) =

{

−x , k = n
0 , k 6= n

.

Since s ∈ c00(N, X) there is γ ∈ c0(N, X) such that

(2.7) γ(m) = Φ̂(σ̂(θ, k), m− k)γ(k) +
m

∑

j=k+1

Φ̂(σ̂(θ, j), m− j)s(j), ∀m > k.

From (2.7), for k = n we deduce that

γ(m) = Φ̂(σ̂(θ, n), m− n)γ(n), ∀m > n.

Since γ ∈ c0(N, X) it follows that γ(n) ∈ X̂1(σ̂(θ, n)).
For m = n and k = 0, from (2.7) we obtain γ(n) = Φ̂(θ, n)γ(0) − x. Let

x1 ∈ X̂1(θ) and x2 ∈ X̂2(θ) such that γ(0) = x1 + x2. Then γ(n) − Φ̂(θ, n)x1 =
Φ̂(θ, n)x2−x. Using Lemma 2.1. and Remark 2.5., it follows that Φ̂(θ, n)x2−x = 0,
so x ∈ Φ̂(θ, n)X̂2(θ). Thus, X̂2(σ̂(θ, n)) ⊂ Φ̂(θ, n)X̂2(θ). Applying once again
Lemma 2.1. we obtain the conclusion. �

The main result of this section presents the connection between the uniform
exponential dichotomy of a discrete linear skew-product semiflow and the uniform
admissibility of the pair (c0(N, X), c00(N, X)).

Theorem 2.3. Let π̂ = (Φ̂, σ̂) be a discrete linear skew-product semiflow on

E = X × Θ. The following assertions are equivalent:

(i) π̂ is uniformly exponentially dichotomic;

(ii) the pair (c0(N, X), c00(N, X)) is uniformly admissible for π̂ and X̂1(θ)+X̂2(θ) =
X, for all θ ∈ Θ.

Proof. Necessity. Let {P (θ)}θ∈Θ be the family of projections given by Definition
2.3. From Proposition 2.2. we have that ImP (θ) = X̂1(θ), KerP (θ) = X̂2(θ), so
X̂1(θ) + X̂2(θ) = X, for all θ ∈ Θ.

Let θ ∈ Θ be fixed. For s ∈ c00(N, X) we define the sequence

(2.8) γs : N → X, γs(n) =
n

∑

k=0

Φ̂(σ̂(θ, k), n− k)P (σ̂(θ, k))s(k)

−
∞
∑

k=n+1

Φ̂(σ̂(θ, n), k − n)−1
| (I − P (σ̂(θ, k)))s(k),

where for every k ≥ n, Φ̂(σ̂(θ, n), k − n)−1
| denotes the inverse of the operator

Φ̂(σ̂(θ, n), k − n)| : KerP (σ̂(θ, n)) → KerP (σ̂(θ, k)).

¿From Proposition 2.1. there exists L = sup
θ∈Θ

||P (θ)|| < ∞. It follows that

γs ∈ c0(N, X) and an easy computation shows that the pair (γs, s) verifies the
equation (Eθ

d). Moreover
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γs(0) = −
∞
∑

k=1

Φ̂(θ, k)−1
| (I − P (σ̂(θ, k)))s(k) ∈ X̂2(θ),

so γs ∈ D
2(Qθ) and Qθγs = s.

Let γ ∈ D2(Qθ) and s = Qθγ. Using the relation from above and the fact that
Qθ|D2(Qθ) is injective (see Remark 2.6.) it follows that γ is expressed by relation
(2.8). If K, ν are given by Definition 2.3. we obtain that

||γ(n)|| ≤ K(L+ 1)
2

1− e−ν
|||s|||, ∀n ∈ N.

Then, for c = (1− e−ν)/2K(L+ 1) we have

|||Qθγ||| ≥ c|||γ|||, ∀γ ∈ D2(Qθ).

Because θ ∈ Θ was arbitrary and c does not depend on θ, it results that the pair
(c0(N, X), c00(N, X)) is uniformly admissible for π̂, which ends the necessity.

Sufficiency. From hypothesis, Corollary 2.1., Corollary 2.2. and Remark 2.5. it
follows that X̂1(θ) ⊕ X̂2(θ) = X, for all θ ∈ Θ. For every θ ∈ Θ let P (θ) be the
projection corresponding to X̂1(θ), i.e. ImP (θ) = X̂1(θ) and KerP (θ) = X̂2(θ).
Using Lemma 2.1. it follows that

Φ̂(θ, n)P (θ) = P (σ̂(θ, n))Φ̂(θ, n), ∀(θ, n) ∈ Θ× N.

From Theorem 2.2. and Proposition 2.3. it follows that the restriction Φ̂(θ, n)| :
KerP (θ) → KerP (σ̂(θ, n)) is an isomorphism. Finally, using Theorem 2.1. and
Theorem 2.2. we obtain that π̂ is uniformly exponentially dichotomic. �

3 Admissibility and uniform exponential dichotomy of linear skew-

product semiflows

In what follows we shall establish the connections between the uniform exponen-
tial dichotomy of a linear skew-product semiflow and the uniform admissibility of
the pair (c0(N, X), c00(N, X)). We shall extend this result for the case of uniform
admissibility of the pair (C0(R+, X), C00(R+, X)), obtaining a generalization for a
theorem due to Van Minh, Räbiger and Schnaubelt.

As in the second section, let X be a Banach space, let Θ be a metric space and
let E = X × Θ.

Definition 3.1. A mapping σ : Θ× R → Θ is said to be a flow on Θ, if it has
the following properties:

(i) σ(θ, 0) = θ, for all θ ∈ Θ;

(ii) σ(θ, s+ t) = σ(σ(θ, s), t), for all (θ, s, t) ∈ Θ×R2;

(iii) σ is continuous.
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Definition 3.2. A pair π = (Φ, σ) is called a linear skew-product semiflow on
E = X × Θ if σ is a flow on Θ and Φ : Θ × R+ → B(X) satisfies the following
conditions:

(i) Φ(θ, 0) = I, the identity operator on X, for all θ ∈ Θ;

(ii) Φ(θ, t+s) = Φ(σ(θ, s), t)Φ(θ, s), for all (θ, t, s) ∈ Θ×R2
+ (the cocycle identity);

(iii) there are M ≥ 1 and ω > 0 such that

||Φ(θ, t)|| ≤Meωt, ∀(θ, t) ∈ Θ× R+.

If, moreover, for every x ∈ X the mapping (θ, t) 7→ Φ(θ, t)x is continuous, then π is
said strongly continuous linear skew-product semiflow.

Remark 3.1. If π = (Φ, σ) is a linear skew-product semiflow on E = X × Θ
then one can associate to π a discrete linear skew-product semiflow π̂ = (Φ̂, σ̂) by
Φ̂(θ, n) = Φ(θ, n) and σ̂(θ,m) = σ(θ,m), for all (θ, n,m) ∈ Θ× N× Z.

Example 3.1. Let Θ = R, σ(θ, t) = θ + t and let U = {U(t, s)}t≥s be an
evolution family on the Banach space X. We define Φ(θ, t) = U(t + θ, θ), for all
(θ, t) ∈ R× R+. Then π = (Φ, σ) is a linear skew-product semiflow on E = X × Θ
called the linear skew-product semiflow generated by the evolution family U .

Example 3.2. Let Θ be a locally compact metric space, let σ be a flow on Θ and
let T = {T (t)}t≥0 be a C0-semigroup on X. If ΦT (θ, t) = T (t), for all (θ, t) ∈ Θ×R+

then the pair πT = (ΦT , σ), is a strongly continuous linear skew-product semiflow
on E = X × Θ, which is called the linear skew-product semiflow generated by the

C0-semigroup T and the flow σ.

Example 3.3. Let X be a Banach space. We consider C(R), the space of all
continuous functions f : R → R, which is metrizable with the metric

d(f, g) =
∞
∑

n=1

1

2n

dn(f, g)

1 + dn(f, g)
,

where dn(f, g) = sup
t∈[−n,n]

|f(t)− g(t)|.

Let a : R → R+ be a continuous function such that there exists lim
t→±∞

a(t) ∈ R.

If we denote by as(t) = a(t+s) and by Θ the closure of {as : s ∈ R+} in C(R), then

σ : Θ× R → Θ, σ(θ, t)(s) := θ(t+ s),

is a flow on Θ and for

Φ : Θ× R+ → B(X), Φ(θ, t)x = exp (
∫ t

0
θ(τ) dτ) x

we have that π = (Φ, σ) is a strongly continuous linear skew-product semiflow on
E = X × Θ.

Definition 3.3. A linear skew-product semiflow π = (Φ, σ) is said to be uni-

formly exponentially dichotomic if there exist a family of projections {P (θ)}θ∈Θ ⊂
B(X), K ≥ 1 and ν > 0 such that
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(i) Φ(θ, t)P (θ) = P (σ(θ, t))Φ(θ, t), for all (θ, t) ∈ Θ× R+;

(ii) ||Φ(θ, t)x|| ≤ Ke−νt||x||, for all x ∈ ImP (θ) and all (θ, t) ∈ Θ× R+;

(iii) ||Φ(θ, t)x|| ≥ 1
K
eνt||x||, for all x ∈ KerP (θ) and all (θ, t) ∈ Θ× R+;

(iv) for every (θ, t) ∈ Θ×R+, the restriction Φ(θ, t)| : KerP (θ) → KerP (σ(θ, t))
is an isomorphism.

Remark 3.2. As in Proposition 2.1. it follows that if π = (Φ, σ) is uniformly
exponentially dichotomic relative to the family of projections {P (θ)}θ∈Θ, then

sup
θ∈Θ

||P (θ)|| <∞.

Definition 3.4. Let π = (Φ, σ) be a linear skew-product semiflow on E =
X × Θ. We say that Φ has a negative continuation relative to (x, θ) if there is a
function h : R− → X such that h(0) = x and

h(s+ t) = Φ(σ(θ, s), t)h(s), ∀(s, t) ∈ R− × R+ with s+ t ≤ 0.

For a linear skew-product semiflow π = (Φ, σ) on E = X × Θ, for every θ ∈ Θ,
we consider the linear subspaces

X1(θ) = {x ∈ X : lim
t→∞

Φ(θ, t)x = 0}

X2(θ) = {x ∈ X : Φ has a negative continuation h relative to (x, θ)

such that lim
s→−∞

h(s) = 0}.

Lemma 3.1. If π = (Φ, σ) is linear skew-product semiflow on E = X×Θ then

(i) Φ(θ, t)X1(θ) ⊂ X1(σ(θ, t)), for all (θ, t) ∈ Θ× R+;

(ii) Φ(θ, t)X2(θ) ⊂ X2(σ(θ, t)), for all (θ, t) ∈ Θ× R+.

Proof. It follows in an analogous manner as in Lemma 2.1. �

Lemma 3.2. If π = (Φ, σ) is linear skew-product semiflow on E = X ×Θ and

π̂ is the associated discrete linear skew-product semiflow then

(i) X1(θ) = X̂1(θ), for all θ ∈ Θ;

(ii) X2(θ) = X̂2(θ), for all θ ∈ Θ.

Proof. (i) It is a simple exercise.

(ii) Let θ ∈ Θ. It is sufficient to show that X̂2(θ) ⊂ X2(θ), the other inclusion
being trivial.

Therefore, let x ∈ X̂2(θ) and let ϕ be a negative continuation for Φ̂ relative to
(x, θ), with lim

m→−∞
ϕ(m) = 0. We define

h : R− → X, h(t) = Φ(σ(θ, [t]), t− [t])ϕ([t]).

Then a simple computation shows that

h(s+ t) = Φ(σ(θ, s), t)h(s), ∀(s, t) ∈ R− × R+, s+ t ≤ 0.

Moreover lim
s→−∞

h(s) = 0. Hence x ∈ X2(θ), which ends the proof. �
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Theorem 3.1. Let π = (Φ, σ) be a linear skew-product semiflow on E = X ×Θ
and let π̂ be the discrete linear skew-product semiflow associated to π. Then π
is uniformly exponentially dichotomic if and only if π̂ is uniformly exponentially

dichotomic.

Proof. Necessity is obvious.

Sufficiency. Since π̂ is uniformly exponentially dichotomic there are a family of
projections {P (θ)}θ∈Θ and two constants K ≥ 1 and ν > 0 such that

1. ||Φ(θ, n)x|| ≤ Ke−νn||x||, for all x ∈ ImP (θ) and all (θ, n) ∈ Θ× N;

2. ||Φ(θ, n)x|| ≥ 1
K
eνn||x||, for all x ∈ KerP (θ) and all (θ, n) ∈ Θ× N;

3. the restriction Φ(θ, n)| : KerP (θ) → KerP (σ(θ, n)) is an isomorphism
for all (θ, n) ∈ Θ× N.

From Proposition 2.2. and Lemma 3.2. it follows that ImP (θ) = X1(θ) and
KerP (θ) = X2(θ), for all θ ∈ Θ. Using Lemma 3.1. we obtain that

Φ(θ, t)P (θ) = P (σ(θ, t))Φ(θ, t), ∀(θ, t) ∈ Θ× R+.

Let now t > 0 and n = [t]. Since

Φ(θ, t)x = Φ(σ(θ, n), t− n)Φ(θ, n)x, ∀x ∈ KerP (θ),

it follows that it is sufficient to show that Φ(σ(θ, n), t − n)| : KerP (σ(θ, n)) →
KerP (σ(θ, t)) is an isomorphism. But,

Φ(σ(θ, n), 1)x = Φ(σ(θ, t), n+ 1− t)Φ(σ(θ, n), t− n)x, ∀x ∈ KerP (σ(θ, n))

so for every x ∈ KerP (σ(θ, n))

x = Φ(σ(θ, n), 1)−1
| Φ(σ(θ, t), n + 1− t)Φ(σ(θ, n), t− n)x,

which means that Φ(σ(θ, n), t− n) has a left-inverse.
Because for every x ∈ KerP (σ(θ, t− 1)) we have

Φ(σ(θ, t− 1), 1)x = Φ(σ(θ, n), t− n)Φ(σ(θ, t− 1), n+ 1− t)x,

we deduce that for every x ∈ KerP (σ(θ, t))

x = Φ(σ(θ, n), t− n)Φ(σ(θ, t− 1), n+ 1− t)Φ(σ(θ, t− 1), 1)−1
| x,

so Φ(σ(θ, n), t− n) has a right-inverse.

Hence, Φ(θ, t)| : KerP (θ) → KerP (σ(θ, t)) is an isomorphism, for all (θ, t) ∈
Θ× R+.

Let (θ, t) ∈ Θ×R+ and n = [t]. If x ∈ ImP (θ) and M,ω are given by Definition
3.2., we have that

||Φ(θ, t)x|| ≤Meω||Φ(θ, n)x|| ≤MKeω+νe−νt||x||.

If x ∈ KerP (θ), we deduce that

1

K
eν(n+1)||x|| ≤ ||Φ(θ, n+ 1)x|| ≤Meω||Φ(θ, t)x||,

so

||Φ(θ, t)x|| ≥
1

MKeω
eνt||x||.

Setting N = MKeω+ν we obtain the conclusion. �
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Remark 3.3. The result from above has been obtained by Latushkin and
Schnaubelt in [9] for the case of strongly continuous linear skew-product semiflows.
In [9] this theorem is proved using the equivalence between the uniform exponential
dichotomy of a linear skew-product semiflow π = (Φ, σ) on E = X × Θ and the
hyperbolicity of the associated evolution semigroup on C0(Θ, X).

Corollary 3.1. Let π = (Φ, σ) be a linear skew-product semiflow on E = X×Θ.

Then the following assertions are equivalent:

(i) π is uniformly exponentially dichotomic;

(ii) the pair (c0(N, X), c00(N, X)) is uniformly admissible for the discrete linear

skew-product semiflow π̂ associated to π and X1(θ)+X2(θ) = X, for all θ ∈ Θ.

Proof. It is immediate from Theorem 3.1., Lemma 3.2. and Theorem 2.3. �

Let C0(R+, X) be the space of all continuous functions f : R+ → X with the
property that lim

t→∞
f(t) = 0, which is a Banach space with respect to the norm

|||f ||| = sup
t∈R+

f(t). We shall denote by C00(R+, X) = {f ∈ C0(R+, X) : f(0) = 0}.

Let π = (Φ, σ) be a strongly continuous linear skew-product semiflow on E =
X × Θ. For every θ ∈ Θ we consider the integral equation (Eθ

c ) given by

f(t) = Φ(σ(θ, s), t− s)f(s) +
∫ t

s
Φ(σ(θ, τ), t− τ)u(τ) dτ, t ≥ s ≥ 0

with u, f ∈ C0(R+, X).

Remark 3.4. If u1, u2 ∈ C00(R+, X) and f ∈ C0(R+, X) such that the pairs
(f, u1), (f, u2) verify the equation (Eθ

c ), then u1 = u2. Hence, for every θ ∈ Θ we
consider the linear subspace

D(Aθ) = {f ∈ C0(R+, X) : ∃u ∈ C00(R+, X) such that (f, u) verifies (Eθ
c )}

and the linear operator

Aθ : D(Aθ) → C00(R+, X), Aθf = u.

We shall denote by D2(Aθ) = {f ∈ D(Aθ) : f(0) ∈ X2(θ)}.

Definition 3.5. The pair (C0(R+, X), C00(R+, X)) is said to be uniformly ad-

missible for the strongly continuous linear skew-product semiflow π = (Φ, σ) on
E = X × Θ if

(i) for every θ ∈ Θ and every u ∈ C00(R+, X) there is fθ,u ∈ C0(R+, X) such that
(fθ,u, u) verifies the equation (Eθ

c );

(ii) there is c > 0 such that |||Aθf ||| ≥ c|||f |||, for all f ∈ D2(Aθ) and all θ ∈ Θ.
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Remark 3.5. It is easy to see that for every θ ∈ Θ, KerAθ = {f ∈ D(Aθ) :
f(t) = Φ(θ, t)f(0) with f(0) ∈ X1(θ)}. Using this fact we observe that if condition
(i) from Definition 3.5. holds for the strongly continuous linear skew-product semi-
flow π = (Φ, σ) on E = X × Θ and X1(θ) + X2(θ) = X, for all θ ∈ Θ, then for
every θ ∈ Θ and every u ∈ C00(R+, X) there exists fθ,u ∈ D

2(Aθ) such that (fθ,u, u)
verifies the equation (Eθ

c ).

Before presenting the next theorem of the paper, we shall prove a necessary
condition given by the uniform exponential dichotomy of a strongly continuous linear
skew-product semiflow.

Proposition 3.1. Let π = (Φ, σ) be a strongly continuous linear skew-product

semiflow on E = X × Θ. If π is uniformly exponentially dichotomic relative to the

family of projections {P (θ)}θ∈Θ, then

(i) for every (θ, t) ∈ Θ × R∗
+ and every x ∈ KerP (σ(θ, t)) the mapping s →

Φ(σ(θ, s), t− s)−1
| x is continuous on [0, t];

(ii) for every (x, θ) ∈ E the mapping t→ P (σ(θ, t))x is continuous on R+.

Proof. (i) Let t > 0, θ ∈ Θ and x ∈ KerP (σ(θ, t)). There is y ∈ KerP (θ) such that
x = Φ(θ, t)y.

Let s0 ∈ [0, t]. It is easy to see that

Φ(σ(θ, s), t− s)−1
| x− Φ(σ(θ, s0), t− s0)

−1
| x =

= Φ(θ, s)y − Φ(θ, s0)y → 0, as s→ s0.

(ii) Let (x, θ) ∈ E . Let t0 > 0. We have that

||P (σ(θ, t))x− P (σ(θ, t0))x|| ≤ ||P (σ(θ, t))x− P (σ(θ, t))Φ(σ(θ, t0), t− t0)x||+

+||Φ(σ(θ, t0), t− t0)P (σ(θ, t0))x− P (σ(θ, t0))x|| ≤

≤ sup
θ∈Θ

||P (θ)|| ||Φ(σ(θ, t0), t− t0)x− x||+

+||Φ(σ(θ, t0), t− t0)P (σ(θ, t0))x− P (σ(θ, t0))x|| → 0,

as t↘ t0, so the mapping P (σ(θ, ·))x is right-continuous in t0.

Let t < t0. Since

(I − P (σ(θ, t)))x = Φ(σ(θ, t), t0 − t)−1
| Φ(σ(θ, t), t0 − t)(I − P (σ(θ, t)))x =

= Φ(σ(θ, t), t0 − t)−1
| (I − P (σ(θ, t0)))Φ(σ(θ, t), t− t0)x→ (I − P (σ(θ, t0)))x,

as t↗ t0, we obtain that the mapping P (σ(θ, ·))x is left-continuous in t0. �

The next result of this section presents the connection between the uniform
exponential dichotomy of a strongly continuous linear skew-product semiflow and the
uniform admissibility of the pairs (C0(R+, X), C00(R+, X)) and (c0(N, X), c00(N, X))
respectively.
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Theorem 3.2. Let π = (Φ, σ) be a strongly continuous linear skew-product

semiflow on E = X ×Θ. The following assertions are equivalent:

(i) π is uniformly exponentially dichotomic;

(ii) the pair (C0(R+, X), C00(R+, X)) is uniformly admissible for π and X1(θ) +
X2(θ) = X, for all θ ∈ Θ;

(iii) the pair (c0(N, X), c00(N, X)) is uniformly admissible for the discrete linear

skew-product semiflow π̂ associated to π and X1(θ)+X2(θ) = X, for all θ ∈ Θ.

Proof. (i) =⇒ (ii) Let {P (θ)}θ∈Θ be the family of projections corresponding to the
fact that π is uniformly exponentially dichotomic. From Lemma 3.2. and Proposi-
tion 2.2. we have that X1(θ) = ImP (θ) and X2(θ) = KerP (θ), for all θ ∈ Θ, so
X1(θ) +X2(θ) = X, for all θ ∈ Θ.

Let θ ∈ Θ and u ∈ C00(R+, X). We define the function

fu : R+ → X, fu(t) =
∫ t

0
Φ(σ(θ, s), t− s)P (σ(θ, s))u(s) ds−

−
∫ ∞

t
Φ(σ(θ, t), s− t)−1

| (I − P (σ(θ, s)))u(s) ds,

where Φ(σ(θ, t), s − t)−1
| denotes the inverse of the operator Φ(σ(θ, t), s − t)| :

KerP (σ(θ, t)) → KerP (σ(θ, s)). It follows that fu ∈ C0(R+, X) and the pair (fu, u)
verifies the equation (Eθ

c ). Moreover

fu(0) = −
∫ ∞

0
Φ(θ, s)−1

| (I − P (σ(θ, s)))u(s) ds ∈ X2(θ).

Using an analogous argument as in the necessity of Theorem 2.3., for N, ν given by
Definition 3.3. we obtain that

|||Aθf ||| ≥ c|||f |||, ∀f ∈ D2(Aθ), ∀θ ∈ Θ,

where c = ν/2N(L + 1) and L := sup
θ∈Θ

||P (θ)||.

(ii) =⇒ (iii) Let c > 0 such that

(3.1) |||Aθ||| ≥ c|||f |||, ∀f ∈ D2(Aθ), ∀θ ∈ Θ.

We consider a continuous function α : [0, 1] → [0, 2] with the support contained in
(0, 1) and

∫ 1

0
α(τ) dτ = 1.

Let θ ∈ Θ and s ∈ c00(N, X). We define

u : R+ → X, u(t) = Φ(σ(θ, [t]), t− [t])s([t])α(t− [t]).

Then u is continuous and u(0) = 0. If M,ω are given by Definition 3.2., we observe
that

||u(t)|| ≤ 2Meω||s([t])||, ∀t ≥ 0,
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so u ∈ C00(R+, X). From hypothesis and Remark 3.5. there is fu ∈ D2(Aθ) such
that

fu(t) = Φ(σ(θ, s), t− s)fu(s) +
∫ t

s
Φ(σ(θ, τ), t− τ)u(τ) dτ, ∀t ≥ s ≥ 0.

Let m,n ∈ N, m > n. Then

fu(m) = Φ(σ(θ, n), m− n)fu(n) +
∫ m

n
Φ(σ(θ, τ), m− τ)u(τ) dτ =

= Φ(σ(θ, n), m− n)fu(n) +
m−1
∑

j=n

∫ j+1

j
Φ(σ(θ, τ), m− τ)u(τ) dτ.

But, it is easy to see that

Φ(σ(θ, τ), m− τ)u(τ) = Φ(σ(θ, j), m− j)s(j)α(τ − j), ∀τ ∈ [j, j + 1),

and thus we deduce that

fu(m) = Φ(σ(θ, n), m− n)fu(n) +
m−1
∑

j=n

Φ(σ(θ, j), m− j)s(j), ∀m,n ∈ N, m > n.

Let

(3.2) γ : N → X, γ(n) = fu(n) + s(n).

It follows that

γ(m) = Φ(σ(θ, n), m− n)γ(n) +
m

∑

j=n+1

Φ(σ(θ, j), m− j)s(j), ∀m,n ∈ N, m > n.

Because fu ∈ C0(R+, X), we have that γ ∈ c0(N, X) and from above (γ, s) verifies
the equation (Eθ

d). Moreover γ(0) = fu(0) ∈ X2(θ), so γ ∈ D2(Qθ).

Let θ ∈ Θ, γ ∈ D2(Qθ) and s = Qθγ. Since Qθ : D2(Qθ) → c00(N, X) is injective
it follows that γ is given by (3.2). So using (3.1) we have that

|||γ||| ≤ |||fu|||+ |||s||| ≤
1

c
|||u|||+ |||s||| ≤ (

2

c
Meω + 1)|||s|||.

Setting c′ = c/(2Meω + c) we finally obtain that

|||Qθγ||| ≥ c′|||γ|||, ∀γ ∈ D2(Qθ), ∀θ ∈ Θ,

so, the pair (c0(N, X), c00(N, X)) is uniformly admissible for the discrete linear skew-
product semiflow π̂.

(iii) =⇒ (i) It follows from Corollary 3.1. �

Remark 3.6. The equivalence (i) ⇐⇒ (ii) represents an extension of the
dichotomy theorem due to Van Minh, Räbiger and Schnaubelt (see [16]), for the
case of linear skew-product semiflows.
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