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Abstract. In 1986, the contestants of the 27th International Math-
ematical Olympiad were given a game of numbers played on a pen-
tagon. In 1987, Mozes generalized this game to an arbitrary undi-
rected, weighted, connected graph. The convergence properties and
total number of moves of any convergent game have been resolved by
Mozes using Weyl groups. Eriksson provided an alternate proof us-
ing matrix theory and graph theory. In this paper, we briefly discuss
the results of Mozes and Eriksson on undirected graphs. Then we
generalize this game to arbitrary directed, strongly connected graphs
and investigate the convergence properties of the game of numbers.

1. Introduction

In 1986, the 27th International Mathematical Olympiad posed a problem
involving a game played on a regular pentagon with integers.

“To each vertex of a regular pentagon an integer is assigned in such
a way that the sum of all five numbers is positive. If three consecutive
vertices are assigned the numbers x, y, z, respectively and y < 0 then the
following operation is allowed: the numbers x, y, z are replaced by x + y,
−y, z + y, respectively. Such an operation is performed repeatedly as long
as at least one of the five numbers is negative. Determine whether this
procedure necessarily comes to an end after a finite number of steps,” ([5]).

This game of numbers has been shown to come to an end after a finite
number of steps. We can view the five integers arranged on the regular
pentagon as labeling the vertices of C5 with integers, where C5 is a cycle
graph with five vertices and edges.

In [6], Wegert and Reiher present several solutions to the original game
of numbers and some generalizations. For example, their first solution is
showing that the following integer-valued quadratic function based on the
five vertex labels decreases with every move of the game:

f(x) = f(x1, x2, x3, x4, x5)

= (x1 − x3)
2 + (x2 − x4)

2 + (x3 − x5)
2 + (x4 − x1)

2 + (x5 − x2)
2,

where x1, x2, x3, x4, x5 are the vertex labels in their order on the circle.
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In Section 2, we describe the generalization of the game of numbers on
undirected graphs, as well as outline solutions to the generalization given by
Mozes and Eriksson. In Section 3, we consider the game of numbers played
on directed graphs, and prove the game of numbers always converges when
it is played on a directed cycle. In Section 4, we prove that the game of
numbers diverges for graphs whose adjacency matrices have spectral radius
greater than or equal to 2. In Section 5, we analyze graphs on which looping
games exist. In Section 6, we analyze graphs whose adjacency matrices have
spectral radius less than 2. Finally, in Section 7, we make our concluding
remarks.

2. Generalization of the Game of Numbers

The game of numbers was generalized from integers on C5 to real num-
bers on an arbitrary undirected, connected graph by Mozes [4]. Let G be a
simple, undirected, connected graph on n vertices v1, v2, . . ., vn. Assume
that each vertex vi is assigned a number ai, with aj < 0 for at least one
j. A move consists of selecting a vertex vi whose number ai is negative,
adding ai to the number of each vertex adjacent to vi, and inverting the
sign of the number at vi. A particular instance of the game of numbers
on G consists of performing a (perhaps infinite) sequence of moves as long
as a move is possible, that is, as long as some vertex of G has a negative
value. A game terminates, or is said to converge, once a state is reached
where there are no vertices having negative numbers. Note that a move is
possible only if the configuration has at least one negative valued vertex.
A valid state is one in which at least one number is negative. Henceforth,
state will always mean a valid state.

Mozes [4] analyzed the behavior of this game of numbers on arbitrary
graphs by first studying the game on the undirected cycle Cn. He showed
the following result holds.

Theorem 2.1. Let G be an undirected, simple, connected graph. For any
given initial state in the game of numbers, exactly one of the following
holds:

(1) Every game will terminate; the terminal state and the number of
moves leading to the terminal state are the same no matter how the
game is played.

(2) Every game can be continued indefinitely, that is, no terminal po-
sition (a state with all values non-negative) will be reached.

The objective of this paper is to examine the behavior of the following
generalization of the game of numbers to directed graphs. Let G be a
directed, strongly connected graph on n vertices v1, v2, . . ., vn. For each
i, suppose that a real number ai is assigned to vertex vi such that aj < 0
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for at least one j. A move consists of selecting a vertex vi with a negative
number ai, adding ai to the number on each of vi’s out-neighbors, and then
inverting the sign of ai. A game is a (perhaps infinite) sequence of moves,
and a game terminates, or converges, once a state is reached where there
are no vertices having negative numbers.

In the remainder of this section, we present some illustrative examples
and additional results about the game on undirected graphs. The study of
the game on directed graphs commences in Section 3.

Theorem 2.1 was proved by Mozes using the theory of Weyl groups and
Kac-Moody algebras. Each legal move of the game is represented by means
of a linear transformation on R

n. These linear transformations generate
a group H that has a fundamental domain P for the appropriate group
action. Mozes showed that a game terminates if and only if the initial state
belongs to the Tits cone of the group, defined as ∪g∈G gP , and in this case
Theorem 2.1 holds.

More elementary proofs were given by Bjorner [1]. Using elementary
graph theory and the theory of non-negative matrices, Eriksson extended
the results obtained by Mozes. The main tools used in Eriksson’s paper
are graph theory and the Perron-Frobenius Theorem [3] on non-negative
matrices. He showed the following result holds.

Theorem 2.2. Let G be an undirected graph, A its adjacency matrix, and
ρ(A) the spectral radius of A (i.e., the maximum of the absolute value of
the eigenvalues of A). Then

(1) Every initial state on G leads to a convergent game if and only if
ρ(A) < 2.

(2) G admits looping games (games in which there is a state that repeats
after a certain sequence of moves) if and only if ρ(A) = 2.

(3) G admits divergent games (games that neither loop nor terminate)
if and only if ρ(A) > 2.

Moreover, in the case that G admits looping games, Eriksson obtained
a characterization of the initial states that lead to looping games.

We now look at the following example.
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Example 2.3. Consider the following undirected C3.

v1

v2 v3

Let the state of the vertices be given by x = [−1, 1, 0]T , where xi corresponds
to the state of vertex vi. The bold number of a state indicate which vertex
is picked to play the next round of the game. This particular game loops as
follows.

x =





−1

1
0



 →





1
0
−1



 →





0
−1

1



 →





−1

1
0



 .

Thus, the game of numbers diverges on C3. However, if we let the state of
the vertices be given by x = [−2, 6, 1]T , then this particular game converges
on C3 as follows.

x =





−2

6
1



 →





2
4
−1



 →





1
3
1



 .

Note that if we let the state of the vertices be given by x = [−5,−6,−7]T ,
then no matter how we play the game, this particular game of numbers
never converges. For example, if we always choose the negative number
with largest magnitude, the game is played as follows.

x =





−5
−6
−7



 →





−12
−13

7



 →





−25

13
−6



 →





25
−12
−31



 →





−6
−43

31



 → · · · .

For any undirected cycle, if the sum of the starting vector is s, then after
every legal move of the game, the sum of the resulting position vector stays
s. Hence, it is easy to see that if we start with s < 0, then the game of
numbers must diverge. If we start with s = 0, then the game of numbers
must diverge or reach a position vector whose coordinates are all 0. Next,
we look at an example that is not a cycle.
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Example 2.4. Consider the following undirected G.

v1

v2 v3 v4

v5 v6

Let the state of the vertices be given by x = [−1,−1,−1,−1,−1,−1]T. No
matter how the game is played, it must diverge. For example, if we always
select the negative valued vertex with smallest index, the game is played as
follows.

x =

















−1

−1
−1
−1
−1
−1

















→

















1
−1

−2
−1
−1
−1

















→

















1
1
−3

−1
−2
−1

















→

















−2

−2
3
−4
−5
−4

















→

















2
−2

1
−4
−5
−4

















→

















2
2
−1

−4
−7
−4

















→ · · · .

However, there are convergent games for this graph. Let the state of the
vertices be given by x = [−1, 3, 7, 3,−4, 9]T . This game converges as follows.

x =

















−1
3
7
3
−4

9

















→

















−1
−1

3
3
4
5

















→

















−1

1
2
3
3
5

















→

















1
1
1
3
3
5

















.

3. Game of Numbers on Directed Cycles

Throughout this section, we assume that we have a directed cycle, Cn,
which has n vertices labeled v1, v2, . . ., vn. Each vertex vi has the value
ai ∈ R for 1 6 i 6 n , respectively. We also assume that vi has an edge
directed to vertex vi+1 for each 1 6 i 6 n− 1, and vn has an edge directed
out to vertex v1. Our aim is to show that every game of numbers played
on Cn converges for any n . We begin with a key lemma.
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Lemma 3.1. In every move of the game of numbers on Cn, exactly one of
the following three must happen.

(i) the number of vertices labeled with a negative number decreases,
(ii) the number of vertices labeled with a zero decreases,
(iii) the sum of the absolute values of the negative values decreases.

Proof. Suppose we choose vi, so that ai < 0. Without loss of generality,
assume i < n. Then by the rules of the game, vi gets the value −ai (which
is positive), vi+1 gets the value ai + ai+1, and the other n− 2 vertices keep
the same values.

If ai+1 < 0, then (i) holds since vi, vi+1 went from both having neg-
ative values to only one of them having a negative value. If ai+1 = 0,
then (ii) holds since vi, vi+1 went from one negative and one zero value
to one positive and one negative value, respectively. If ai+1 > 0 and
ai + ai+1 > 0, then (i) holds since vi, vi+1 went from one being negative to
both being non-negative. If ai+1 > 0 and ai + ai+1 < 0, then (iii) holds
since |ai + ai+1| < |ai|. �

Observation 3.2. When a move is played with vertex vi chosen, then vi
becomes positive. Thus, each time a move is played, either the number of
negative valued vertices decreases by one, or a negative value is shifted from
vertex vi to vi+1 (or from vn to v1). When a negative value is shifted from
vertex vi to vi+1 (or from vn to v1), its absolute value either stays the same
or decreases by Lemma 3.1.

Theorem 3.3. The game of numbers always converges when played on a
directed cycle.

Proof. Pick any directed cycle with vertices v1, . . ., vn labeled with real
numbers a1, . . ., an, such that the cycle orientation goes from vi−1 to vi
for each 2 6 i 6 n, and from vn to v1. First, we show that the number
of negative valued ai’s decreases to one. Since every vertex in a directed
cycle has exactly one out-neighbor, the number of negative vertices never
increases. Assume vi1 , . . ., vik are the only k negative vertices with i1 <

i2 < · · · < ik, for some k > 2. Let aij be the value with largest absolute
value, which clearly exists since we only have a finite number of vertices
(and if there is more than one with largest value, pick any one). Without
loss of generality, assume that j = k.

Note that if vm−1 and vm are both negative vertices for some m, then
firing vm−1 decreases the number of negative vertices. Hence, there is at
most i2 − i1 − 1 moves that can be made without firing vertices vi2 , . . .,
vik , and if i2 − i1 − 1 such moves are made, then vi2−1 and vi2 are negative
and vm is non-negative for each 1 6 m < i2 − 1. Then, there are at most
2(i3 − i2 − 1) moves that can be made without firing vertices vi3 , . . ., vik ,
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and if 2(i3− i2−1) such moves are made, then vi3−2, vi3−1, vi3 are negative
and vm is non-negative for each 1 6 m < i3−2. Continuing in this way, we
see that there are only a finite number of moves that can be made before we
must fire vik . During the moves before vik is first fired, by Observation 3.2,
either the number of negative values has decreased or all the negative values
are assigned to vertices vik , vik−1, . . ., vik−k+1. Hence, we must choose vik
or Lemma 3.1 (i) applies.

If we choose vik , then its value is now−aik . By assumption, −aik > |aim |
for each 1 6 m 6 k, and by Observation 3.2, when the negative values shift
down during play, they never increase in size. Thus, −aik is at least as
big as the absolute value of vik−1’s value, and choosing vik−1 results in
Lemma 3.1 (i) occurring.

In at most n− k − 1 moves, aik shifts down to vertex vik−k, or possibly
becomes non-negative before it reaches that vertex. In either case, we must
choose a vertex from vik−k, . . ., vik−1, and Lemma 3.1 (i) occurs. In all
cases, we must decrease to only one negative valued vertex.

Next, we show the game terminates. Assume there is only one negative
value, call it c, and it is on vertex vi for some 1 6 i 6 n. Then, in at
most n − 1 moves, either there are no negative values and the game has
terminated, or vi−1 is now negative with a value whose magnitude is less
than or equal to |c|. In the latter case, choosing vi−1 ends the game. �

Theorem 3.3 says that the game of numbers always converges on a di-
rected cycle. However, for a given initial configuration, the number of moves
until a game converges can vary from one game to another, as the following
example illustrates.

Example 3.4. Consider the following directed cycle.

v1

v2 v3

v4

Let the state of the vertices be given by x = [−1,−1, 0, 0]T , where xi cor-
responds to the state of vertex vi. As before, the bold numbers of a state
indicate which vertex is picked to play the next round of the game. Starting
the game of numbers at vertex v1, one set of 5 possible moves until the game
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terminates is

x =









−1

−1
0
0









→









1
−2

0
0









→









1
2
−2

0









→









1
2
2
−2









→









−1

2
2
2









→









1
1
2
2









.

On the other hand, starting the game of numbers on vertex v2 on the state
x, another set of 4 possible moves until the game terminates is

x =









−1
−1

0
0









→









−1

1
−1
0









→









1
0
−1

0









→









1
2
1
−1









→









0
2
1
1









.

Note that the final position vector is different for these last two games.

In the case of undirected cycles, every game of numbers must terminate
in the same number of moves, no matter how the game is played. This
does not happen in the case of directed cycles, where the number of moves
required to end the game depends on the order selection of the vertices.
This suggests that analyzing the game of numbers on arbitrary directed
graphs is much more difficult than in the undirected case.

4. Divergent Game of Numbers

The game of numbers from Section 3 can be extended to the game of
numbers over any strongly connected directed graph. Consider the follow-
ing example.

Example 4.1. Consider the following strongly connected directed graph,
where each vertex has out-degree exactly 2.

v1

v2

v3

v4

v5
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Let the state of the vertices be given by x = [−10,−5, 0, 3,−20]T , where
xi corresponds to the state of vertex vi. Starting the game of numbers at
vertex v5, a few iterations of the game gives

x =













−10
−5
0
3

−20













→













−30

−25
0
3
20













→













30
−55

−30
3
20













→













30
55
−85

−52
20













→













30
55
85

−137

−65













→













−107
55
85
137
−202













→













−309

−147
85
137
202













→ · · · .

The bold numbers of a state indicate which vertex is picked to play the
next round of the game of numbers. In this game of numbers, the choice
of which vertex to play a particular round is given by the smallest negative
real number from the state of that round. One observation of this par-
ticular game is that it seems not to converge (we show after the proof of
Theorem 4.2 that this game does diverge).

Unlike the game of numbers played on directed cycles, Example 4.1 sug-
gests that the game of numbers may not always converge for an arbitrary
strongly connected, directed graph. This section aims to characterize the
type of strongly connected graphs for which the game of numbers diverges.

Theorem 4.2. If G is a strongly connected directed graph, each of whose
vertices have out-degree at least 2, then there is a game of numbers on G

that does not converge.

Proof. Note that one way to show that a game of numbers does not converge
is to show that the sum of the values of the vertices at any point in the
game is always negative. Let s be the sum of the value of the vertices of
G at the start of a given game of numbers for G, where each vertex of G
has out-degree of at least 2. Note that if vertex vi of out-degree d2 with
negative value ai is chosen, then after that move, s changes to s+(d2−2)ai,
since changing the sign of ai affects the sum by a factor of −2ai, and adding
ai to the d2 out-neighbors of vi affects the sum by a factor of d2ai. Thus, if
we pick any game that starts with a negative sum s, then since each vertex
has out-degree of at least 2, every move of this particular game of numbers
must result in a negative sum of the values of the vertices. Hence, the game
never converges. �
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In Example 4.1, the sum of the values of the starting position (x =
[−10,−5, 0, 3,−20]T) is −32. Since each vertex has out-degree 2, the sum
of the values of the state vector is always −32, so the game of numbers
diverges. The previous proof of Theorem 4.2 was simple, but we now pro-
vide an alternate proof that has a generalization to our main result of this
section.

The transition matrices for the states of the game are given by

Fi = I + (AT − 2I)eiei
T ,

where A is the adjacency matrix of G given by a labeling of the vertices v1,
v2, . . ., vn, and the ei’s are the unit vectors of the standard base for R

n.
Applying Fi to a state of the game x flips the sign of xi in x. It also adds
xi to any entry xj of x, where j is such that vj is an out-neighbor of vi.
Specifically, if x is the state of the game with xi < 0, for some i, then

Fix = x+ (AT − 2I)eiei
Tx

= x+ (AT − 2I)ei(xi)

= x+ xi(A
T − 2I)ei .

Letting 1 = [1, 1, . . . , 1]T , the sum of the entries of Fix is

1TFix = 1Tx+ xi1
T (AT − 2I)ei

= 1Tx+ xi(1
TAT ei − 21Tei)

= 1Tx+ xi(1
TAT ei − 2) .

Since the ith column of AT is ATei, then 1TAT ei is the sum of the ith
column of AT , which in turn is the ith row of A. If di denotes the out-
degree of vertex vi, then the sum of the ith row of A is di, and this gives

1TFix = 1Tx+ xi(di − 2)

=

n
∑

j=1

xj + xi(di − 2) .

Now, suppose that 1Tx < 0. Since every vertex of G has out-degree at least
2, then di > 2. Thus, if xi < 0, then 1TFix < 0. This says that starting
the game with a state x which has a negative sum implies that any state
that can be reached from that x will have a negative sum. In fact, if the
out-degree of every vertex of G is at least 2, then the sum of the entries
of any state of the game does not increase from that of the previous state.
In particular, if the out-degree of every vertex of G is greater than 2, then
the sum of the entries of any state of the game will strictly decrease with
each iteration and never be positive or zero. We generalize this to our next
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divergence theorem, but we need the following part of the Perron-Frobenius
Theorem [3].

Theorem 4.3. Let M be an irreducible non-negative n × n matrix with
spectral radius ρ(M) = r. Then the number r is a positive real number
and an eigenvalue of M , and M has a right eigenvector q associated with
eigenvalue r whose components are all positive.

Theorem 4.4. Let G be a strongly connected directed graph with adjacency
matrix A. If the spectral radius of A is at least 2, then the game of numbers
diverges for G.

Proof. Let ρ(A) = r and let q be the right eigenvector of A, in accor-
dance with the Perron-Frobenius Theorem (which we can use because the
adjacency matrix of a strongly connected directed graph is an irreducible
non-negative matrix). Hence, Aq = rq, or equivalently, qTAT = rqT .
Recall that the transition matrices for the states of the game are given by

Fi = I + (AT − 2I)eiei
T .

Since qT ei = qi, we get that

qTFi = qT + (qTAT − 2qT I)eiei
T

= qT + (r − 2)qiei
T .

Since ei
Tx = xi, we get that

qTFix = qTx+ (r − 2)qiei
Tx

= qTx+ (r − 2)qixi.

Note that (r − 2) > 0 by assumption and qi > 0, because all of the com-
ponents of q are positive. Furthermore, xi < 0 since otherwise, Fix is
not a valid game move. Hence, (r − 2)qixi 6 0. Thus, for r > 2, we get
that qTFix 6 qTx. Hence, if we pick any starting position x such that
qTx < 0, then since all the coordinates of qT are positive, this game never
terminates. Therefore, the game of numbers diverges on G. �

We saw in Section 3 that the game of numbers converges for all directed
cycles, and the adjacency matrix of all directed cycles have a spectral radius
less than 2. Theorem 4.4 states that if a directed graph has spectral radius
greater than or equal to 2, then it admits divergent games. This suggests
that, just like in the undirected case, a spectral radius of 2 might be the
cutoff that separates graphs on which all games converge from those that
admit divergent games.
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5. Looping Game of Numbers

Eriksson showed in [2] that in the undirected case, a looping game of
numbers exists for G if and only if the spectral radius of its adjacency
matrix is equal to 2. This appears to be true for the directed case.

Example 5.1. The directed graph from Example 4.1 is

v1

v2

v3

v4

v5

Let the state of the vertices be given by x = [1,−1,−1, 1, 0]T , where xi

corresponds to the state of vertex vi. If we choose vertices in the order of
v3, v2, v5, v4, v1, then we get F1F4F5F2F3x = x, as illustrated below.

x =













1
−1
−1

1
0













→













1
−1

1
0
−1













→













1
1
0
−1
−1













→













0
0
0
−1

1













→













−1

0
0
1
0













→













1
−1
−1
1
0













.

Thus, a looping game exists on this graph.

Theorem 4.4 shows that for any strongly connected directed graph G

with corresponding adjacency matrix A, if ρ(A) 6= 2, then no looping game
can exist on G. If ρ(A) = 2, then a looping game could exist, as shown by
the following heuristic argument.

Recall that the transition matrices for the states of the game are given
by

Fi = I + (AT − 2I)eiei
T .

It is easy to verify that 1 is an eigenvalue of each matrix Fi. If ρ(A) = 2,
then it can be shown that 1 is an eigenvalue of every finite product of the
matrices Fi. Let F be the product of the n matrices Fi in some arbitrary
order. Then since 1 is an eigenvalue of F , there is a nonzero vector v such
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that Fv = v. If v is a valid state, and starting at v, if every state arising
in the sequence of moves represented by the terms in the product for F is a
valid move, then v will be the initial state of a looping game on the graph
G. This leads to our first conjecture.

Conjecture 5.2. A looping game exists for a directed, strongly connected
graph G if and only if the spectral radius of the adjacency matrix of G is
equal to 2.

We have already proven the only if direction of this conjecture, but the
if direction remains elusive.

6. Convergent Game of Numbers

The previous section has shown that for any graph G with adjacency
matrix A, if ρ(A) > 2, then the game of numbers diverges for G, and
suggests that a looping game exists for G if and only if ρ(A) = 2. We
have shown that the game of numbers on the directed cycle converge for all
initial configurations of values on the vertices. Note that the spectral radius
of a directed cycle is 1. This leads us to make the following conjecture.

Conjecture 6.1. Let G be a strongly connected directed graph with adja-
cency matrix A. There exists a real number c > 1 such that the spectral
radius of A is less than c if and only if the game of numbers converges for
G.

In the case of undirected graphs, the value of c is 2. Initially, it seems
like this would be the case for directed graphs, but the following example
shows a game on a graph with spectral radius less than 2 that appears to
diverge.

Example 6.2. Consider the following graph G with spectral radius approx-
imately equal to 1.965.
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v1

v2

v3

v4

v5
v6

v7

Let the state of the vertices be given by x = [−1, 0, 0, 0, 0, 0, 0]T . This game
appears to diverge, as illustrated below.

x =





















−1

0
0
0
0
0
0





















→





















1
−1

0
−1
0
0
0





















→





















1
1
−1

−2
0
0
−1





















→





















1
1
1
−2
−1
−1

−2





















→





















0
1
1
−2
−2
1
−3





















→





















−3

1
1
−5
−2
1
3





















→ · · · .

We have found examples of (non-cycle) graphs with spectral radius less
than 2 where the game of numbers converges. For example, the game of
numbers converges for all strongly connected digraphs with n vertices and
n+1 edges, and the game of numbers converges for any strong orientation
on the graph K4.

7. Conclusion

To sum up, the game of numbers has been completely resolved for the
undirected case. The convergent games have been characterized, and it is
known that if a game converges, then no matter how you play the game,
it must converge to the same ending position vector in the same number
of moves. Mozes used Weyl groups to prove these results, and Eriksson
used elementary graph and matrix theory to prove these results. Most of
their techniques do not extend to the directed case. We can show that
the game of numbers diverges on graphs whose adjacency matrices have
spectral radius greater than or equal to 2, and we have a conjecture about
graphs with looping games and convergent games.
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Future research plans for this topic include proving or disproving the two
conjectures stated in the previous two sections, and looking into further
generalizations.
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