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Abstract. The following is a discussion regarding a specific class
of operators acting on the space of entire functions, denoted H(C).
A diagonal operator D on H(C) is defined to be a continuous linear
map, sending H(C) into H(C), that has the monomials zn as its
eigenvectors and {λn} as the corresponding eigenvalues.

A closed subspace M is invariant for D if Df ∈ M for all f ∈
M . The study of invariant subspaces is a popular topic in modern
operator theory. We observe that the closed linear span of the orbit,
which we write span{Dkf : k ≥ 0} = span{

∑
∞

n=0
anλk

nz
n : k ≥

0}, is the smallest closed invariant subspace for D containing f . If
every invariant subspace for a diagonal operator D on H(C) can be
expressed as a closed linear span of some subset of the eigenvectors of
D, we say that D admits spectral synthesis on H(C). Until recently,
it was not known whether or not every diagonal operator on H(C)
admitted spectral synthesis.

This article focuses on using techniques from calculus and linear
algebra to construct a class of operators which fail spectral synthesis
on H(C). If the reader is not familiar with the operator theory defi-
nitions provided in the background, he or she can still appreciate the
construction of an interesting infinite series relying on properties of
logarithms, various convergence tests, and Cramer’s Rule.

1. Background

For more than sixty years, operator theorists have been trying to resolve
the Invariant Subspace Problem; that is, they have been trying to determine
whether or not every operator on a separable, infinite dimensional Hilbert
space H has a nontrivial invariant subspace. (An invariant subspace for an
operator T is a closed subspace M of H satisfying Tx ∈ M for every vector
x in M .) No one knows who originally posed the question, but it seems that
it arose in the late 1940’s after Beurling published his most famous paper
on invariant subspaces of shift operators (Yadav [21]). In their attempts to
resolve this famous open problem, mathematicians have branched out in a
variety of ways. One method that has been employed is to examine this
question with a specific class of operators which exhibit a particularly
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nice structure, called diagonal operators. In the setting of a Hilbert
space H, a diagonal operator D, is defined to be a continuous, linear map
such that D(en) = λnen for all n ≥ 0, where {en}

∞
n=0 is an orthonormal

basis for H. In order to learn more about diagonal operators on Hilbert
spaces, some mathematicians study the analogue of this type of operator
on different spaces. Studying the invariant subspaces of diagonal operators
will hopefully facilitate the solving of the Invariant Subspace Problem.

A Hilbert space, of course, is a special kind of Banach space. In the more
general setting of a Banach space, it has been shown that there do in fact
exist bounded linear operators that do not have any nontrivial invariant
subspaces. This construction was first done by Per Enflo in 1976, although
it was not actually published until 1987. In the meantime, C. J. Read used
the same general ideas as Per Enflo and published a similar result in 1984.
Read also strengthened Enflo’s result and constructed a bounded linear
operator on the Banach space `1 without nontrivial invariant subspaces
[21].

The quest for a solution to the invariant subspace problem also gave birth
to a related field of study called spectral synthesis. Suppose that X is a
complete, metrizable topological vector space. The most obvious invariant
subspace for an operator D acting on X would be the closed linear span of
the orbit of any vector f from X, which we can denote span{Dkf : k ≥ 0}.
Now, recalling the definition of a diagonal operator on H, we have that
span{Dkf : k ≥ 0} is actually the closed linear span of some subset of
eigenvectors. Clearly, all closed linear spans of subsets of eigenvectors are
invariant for D, but the interesting question is whether or not these are the
only closed invariant subspaces for D.

If an operator T : X → X, where X is any complete, metrizable topologi-
cal vector space, has the property that all of its invariant subspaces can be
expressed as the closed linear span of some set of eigenvectors for T , then
we say that T admits spectral synthesis on X. In short, we say T is
synthetic. If T fails to admit spectral synthesis (in short, T is nonsyn-

thetic), then T has some invariant subspaces that cannot be expressed as
the closed linear span of some set of eigenvectors for T .

This was a very popular area of exploration in the mid-twentieth century.
A theorem summarizing the relevant works coming from a combination of
Brown, Shields, and Zeller [1], Nikol’skii [10, 11], Sarason [13, 14], Scroggs
[15], Sibilev [18], and Wermer [19] expressing a multitude of conditions
equivalent to a diagonal operator failing synthesis on a Hilbert space can
be found in a paper by Marin and Seubert [9]. This result demonstrates
the complexity of the spectral synthesis question for diagonal operators on
Hilbert spaces. We will extract the parts of this extensive theorem most
relevant to this article.
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Theorem 1. Let H be a separable infinite dimensional Hilbert space and
let D be any bounded linear operator on H. Suppose there exists an or-
thonormal basis {en} for H and a sequence {λn} of complex numbers for
which Den = λnen for all n ≥ 0. Then {λn} is bounded and, if λn 6= λm

for all n 6= m, the following are equivalent.

(i) D admits spectral synthesis.
(ii) There does not exist a nonzero sequence {ωn} of complex numbers in

`1 for which
∑∞

n=0 ωnλ
k
n = 0 for all k ≥ 0.

As early as the 1920’s, mathematicians were exploring the possibility of
getting a series, such as

∑∞
n=0 ωnλ

k
n, to be identically zero for all integers

k ≥ 0, even though the terms of the series were not identically zero. Many
articles were published under this category of “representing zero”. The
work done in 1921 by one mathematician by the name of Wolff on this
particular topic became very relevant in the field of spectral synthesis upon
the publication of Theorem 1 in the early 1990’s. Wolff’s construction
results in the first known example of a diagonal operator failing spectral
synthesis on a Hilbert space. This is rather interesting, because Wolff is
credited with this groundbreaking example of a nonsynthetic operator, even
though the term spectral synthesis did not come about until decades after
his construction.

Example 1. (Wolff [20]) Let {Dj}
∞
j=1 be any countable collection of disks,

each having a unique center at a point λj in the unit disk and radius rj < 1,
satisfying the property that the planar Lebesgue measure, denoted m2, of
the set D \ (

⋃

Dj) is zero. Then,
∑∞

j=1 ωjλ
m
j = 0 for all m ≥ 0.

Notice that {λn} is bounded, so the map D with eigenvalues {λj} is a
well-defined operator acting on `2. Consider the sequence ωj := r2jλj for
all j ≥ 1. Clearly, {ωj} is not identically zero, and according to Wolff,
∑∞

j=1 ωjλ
k
j ≡ 0 for all k ≥ 0. This construction yielded the first known

example of a diagonal operator failing spectral synthesis on a Hilbert space.
The space of functions analytic on the entire complex plane, which we

will denote H(C), is a well-studied space, even in graduate level analysis
courses. H(C) is a complete metrizable topological vector space. Spectral
synthesis of diagonal operators on H(C) have been studied by Deters [3, 4,
5], Marin [9], Seubert [16], and Wade [17] amongst others. It is worthwhile
to discuss some of the existing results concerning this subject.

Any function in f ∈ H(C) can be expressed as power series
∑∞

n=0 anz
n

that converges for all z in the plane. Specifically, the radius convergence
theorem leads us to the following conclusion.

Theorem 2. (Marin [9]) Suppose {λn} is a sequence of complex numbers.
Then, D (

∑∞
n=0 anz

n) =
∑∞

n=0 λnanz
n defines a continuous, linear map
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from H(C) to H(C) if and only if

lim sup |λn|
1/n < ∞.

In regard to spectral synthesis, we have the following theorem to parallel
the one existing on Hilbert spaces.

Theorem 3. ([9]) Let D be any diagonal operator on H(C) having distinct
eigenvalues {λn}. Then the following are equivalent.

(i) D admits spectral synthesis.
(ii) There does not exist a sequence {ωn} of complex numbers, not iden-

tically zero, for which lim sup |ωn|
1/n = 0 and 0 ≡

∑∞
n=0 ωnλ

k
n for all

k ≥ 0.

2. An Infinite Dimensional System of Equations

As mentioned earlier, Wolff did not know of the term spectral synthe-
sis, and yet he was able to construct a very important operator. Even if
unfamiliar with much operator theory, one can dive into the construction
of nonsynthetic operators by relying instead on calculus and linear alge-
bra skills. In an introductory linear algebra course, we learn techniques
for solving systems of equations. Given a set of distinct, nonzero complex
numbers {λn}

2
n=0, consider the system

β
(3)
0 + β

(3)
1 + β

(3)
2 = 1

β
(3)
0 λ0 + β

(3)
1 λ1 + β

(3)
2 λ2 = 0

β
(3)
0 λ2

0 + β
(3)
1 λ2

1 + β
(3)
2 λ2

2 = 0.

We can express this system equivalently as

2
∑

n=0

β(3)
n λm

n =

{

1 if m = 0

0 if m = 1, 2,

or in its matrix form





1 1 1
λ0 λ1 λ2

λ2
0 λ2

1 λ2
2











β
(3)
0

β
(3)
1

β
(3)
2






=





1
0
0



 .

Using Cramer’s Rule, we can easily solve for {β
(3)
n }2n=0. For example,

52 MISSOURI J. OF MATH. SCI., VOL. 28, NO. 1



AN INFINITE SERIES APPLIES TO OPERATOR THEORY

β
(3)
0 =

det





1 1 1
0 λ1 λ2

0 λ2
1 λ2

2





det





1 1 1
λ0 λ1 λ2

λ2
0 λ2

1 λ2
2





.

Let us take a minute to study the matrix in this denominator. A matrix
with this form is called a Vandermonde matrix, and its determinant is well
known to be

∏

0≤i<j≤2

(λj − λi) = (λ2 − λ1)(λ2 − λ0)(λ1 − λ0).

Moving on to the determinant in the numerator, we can expand by the
first column and, with some minor adjustments, end up with another Van-
dermonde matrix.

det





1 1 1
0 λ1 λ2

0 λ2
1 λ2

2



 = det

[

λ1 λ2

λ2
1 λ2

2

]

= λ1λ2 det

[

1 1
λ1 λ2

]

= λ1λ2(λ2 − λ1).

Then,

β
(3)
0 =

(

λ1

λ1 − λ0

)(

λ2

λ2 − λ0

)

.

This leads us to the following conclusion.

Lemma 1. Let {λn}
N
n=0 be a set of distinct, nonzero complex numbers.

Then for each N ,

N
∑

n=0





N
∏

j 6=n

λj

λj − λn



λm
n =

{

1 if m = 0

0 if 1 ≤ m ≤ N.

The (N + 1)x(N + 1) system of equations in this lemma is easily solved
using Cramer’s Rule and properties of the Vandermonde matrix. The full
proof is available in my dissertation, [7]. The reader may be wondering

why we are solving the system with
[

1, 0, 0
]T

as the column vector

on the right-hand side of the matrix equation, rather than
[

0, 0, 0
]T

.
Please note that if we were to solve the equation with this zero vector,
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we would end up with the trivial solution as the only solution. Since this
would certainly not be interesting, we tweaked the system and will make
adjustments later in this article via a change of variable.

An interesting question that arises from this result is whether or not we
can extend this notion to infinite dimensions. In other words, if {λn} is a

sequence of distinct, nonzero complex numbers and if βn =
∏∞

j 6=n
λj

λj−λn
, is

∑∞
n=0 βnλ

k
n = 0 for all integers k ≥ 1?

To resolve this question, we would have to verify that the βn are each in
fact well-defined infinite products. Then we would need to verify that the
growth rates of the sequences {λn} and {βn} are such that the infinite sum
∑∞

n=0 βnλ
k
n does in fact converge for any given natural number k. Finally,

we would need to verify if the series in fact converges to zero for all natural
numbers k.

3. A Class of Nonsynthetic Diagonal Operators on H(C)

Theorem 4. Suppose that D is a diagonal operator on H(C) having dis-

tinct, nonzero eigenvalues {λn} which satisfy lim sup
∣

∣

∣

λn

λn+1

∣

∣

∣ < 1. Then D

fails spectral synthesis on H(C).

Proof. Note that since lim sup
∣

∣

∣

λn

λn+1

∣

∣

∣ < 1, there exists a real number q with

0 < q < 1 and a positive integer N0 such that for all n ≥ N0, we know
|λn|

|λn+1|
< q. This means that when n ≥ N0,

|λn| < q|λn+1| < q2|λn+2| < · · · .

Consequently, for any pair of positive integers a and b, with a > b ≥ N0,

|λb| < qa−b|λa|. (1)

It is clear by this equation that |λj | are increasing for j larger than N0.
Now, let n be an arbitrary fixed nonnegative integer and consider

βn =

∞
∏

j 6=n

λj

λj − λn
.

First, we will see that βn is well-defined. Notice that limj→∞ |λj | = ∞,
and consequently, for any fixed n,

lim
j→∞

λj

λj − λn
= 1 and lim

j→∞

λn

λj − λn
= 0. (2)

This means we can choose a positive integer N1 so that for all j ≥ N1,

Re

(

λj

λj − λn

)

> 0 and
|λn|

|λj − λn|
<

1

2
.
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Also, let us assume that N1 was chosen to be larger than both N0 and n.
Note that showing βn is well-defined is equivalent to showing that the “tail”
∏∞

j=N1

λj

λj−λn
converges. Now, recall the inequality stating when |z| < 1

2 ,

1

2
|z| ≤ | log(1 + z)| ≤

3

2
|z|. (3)

(This can be shown by examining the power series expansion of log(1+z).
See Conway [2, p 165].) Using this, along with equations 1 and 2,

∞
∑

j=N1

∣

∣

∣

∣

log

(

λj

λj − λn

)∣

∣

∣

∣

=

∞
∑

j=N1

∣

∣

∣

∣

log

(

1 +
λn

λj − λn

)∣

∣

∣

∣

≤
3

2

∞
∑

j=N1

|λn|

|λj − λn|

≤
3

2

∞
∑

j=N1

|λn|

|λj | − |λn|

≤
3

2

∞
∑

j=N1

qj−n|λj |

|λj | − qj−n|λj |

=
3

2

∞
∑

j=N1

qj−n

1− qj−n
.

Now notice that this sum converges by the ratio test, since

lim sup
j→∞

(

qj−n+1

1− qj−n+1

)(

1− qj−n

qj−n

)

= lim sup
j→∞

(

q − qj−n+1

1− qj−n+1

)

= q

< 1.

This means
∑∞

j=N1

∣

∣

∣
log

(

λj

λj−λn

)∣

∣

∣
< ∞, and hence,

∑∞
j=N1

log
(

λj

λj−λn

)

converges. It is enough to conclude
∏∞

j=N1

λj

λj−λn
converges to a nonzero

complex number. Therefore, βn is well-defined and nonzero for any non-
negative integer n.

Next, we wish to see lim sup |βn|
1
n = 0. Let us assume n > N0 and recall

equation 1,

|βn| ≤

N0−1
∏

j=0

|λj |

|λj − λn|

n−1
∏

j=N0

|λj |

|λn| − |λj |

∞
∏

j=n+1

|λj |

|λj | − |λn|

≤

N0−1
∏

j=0

|λj |

|λj − λn|

n−1
∏

j=N0

qn−j |λn|

|λn| − qn−j |λn|

∞
∏

j=n+1

|λj |

|λj | − qj−n|λj |
.
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Therefore, for all n ≥ N0,

|βn| ≤

N0−1
∏

j=0

|λj |

|λj − λn|

n−1
∏

j=N0

qn−j

1− qn−j

∞
∏

j=n+1

1

1− qj−n
. (4)

Thus,

lim sup |βn|
1
n

≤ lim sup





N0−1
∏

j=0

|λj |

|λj − λn|





1
n

lim sup





n−1
∏

j=N0

qn−j

1− qn−j





1
n

× lim sup





∞
∏

j=n+1

1

1− qj−n





1
n

.

We now wish to show

lim sup





∞
∏

j=n+1

1

1− qj−n





1
n

= 1,

or equivalently,

lim sup
n→∞

∑∞
j=n+1 log

(

1
1−qj−n

)

n
= lim sup

n→∞

∑∞
k=1 log

(

1
1−qk

)

n
= 0.

But this is true, since
∑∞

k=1 log
(

1
1−qk

)

is finite by the ratio test, as

shown below:

lim
k→∞

∣

∣

∣log
(

1
1−qk+1

)∣

∣

∣

∣

∣

∣log
(

1
1−qk

)∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

log(1− qk+1)

log(1− qk)

∣

∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

∣

∣

(

1
1−qk+1

)

[

−qk+1 log(q)
]

(

1
1−qk

)

[−qk log(q)]

∣

∣

∣

∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

−q(1− qk)

1− qk+1

∣

∣

∣

∣

= q

< 1.
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Next, we wish to see

lim sup





n−1
∏

j=N0

qn−j

1− qn−j





1
n

= 0,

or equivalently

lim sup
n→∞

∑n−1
j=N0

log
(

qn−j

1−qn−j

)

n
= −∞.

But note, since
∑∞

`=1 | log(1 − q`)| =
∑∞

`=1 log
(

1
1−q`

)

converges, as be-

fore, we have

lim sup

∑n−1
j=N0

log
(

qn−j

1−qn−j

)

n

= lim sup
log(q)

∑n−1
j=N0

(n− j)−
∑n−1

j=N0
log(1 − qn−j)

n

= lim sup
log(q)

∑n−1
j=N0

(n− j) +
∑n−1

j=N0
| log(1− qn−j)|

n

= lim sup
log(q)

∑n−N0

`=1 `+
∑n−N0

`=1 | log(1− q`)|

n

≤ lim sup
log(q) (n−N0)(n−N0−1)

2 +
∑∞

`=1 | log(1− q`)|

n
= −∞.

Finally, notice that since |λn| −→ ∞ for each fixed j, we get that for

each j with 0 ≤ j ≤ N0 − 1,
|λj |

|λj−λn|
−→ ∞ as n −→ ∞. Therefore, for

each j with 0 ≤ j ≤ N0− 1, there exists a positive integer Mj such that for
all n ≥ Mj ,

|λj |

|λj − λn|
<

1

2
.

Therefore, for all n ≥ M := max{Mj : 0 ≤ j ≤ N0},

N0−1
∏

j=0

|λj |

|λj − λn|
<

(

1

2

)N0

,

and hence,

lim sup
n→∞





N0−1
∏

j=0

|λj |

|λj − λn|





1
n

≤ 1. (5)
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Thus, lim sup |β|
1
n ≤ (1)(0)(1) = 0, which proves lim sup |βn|

1
n = 0.

Now, define ωn := βnλn for all n ≥ 0. Note that sinceD is continuous, we
know lim sup |λn|

1/n < ∞ (see Theorem 2), and hence, lim sup |ωn|
1/n = 0.

We now show for all k ≥ 0,

∞
∑

n=0

ωnλ
k
n = 0,

or equivalently that for all k ≥ 0,

∞
∑

n=0

βnλ
k+1
n = 0.

Now, if we let m = k + 1, it is equivalent to show that for all m ≥ 1,

∞
∑

n=0

βnλ
m
n = 0.

Fix m ≥ 1. Recall Lemma 1, which tells us that
∑N

n=0 β
(N)
n λm

n = 0 for
N ≥ m, and observe

lim
N→∞

∣

∣

∣

∣

∣

N
∑

n=0

βnλ
m
n

∣

∣

∣

∣

∣

= lim
N→∞

∣

∣

∣

∣

∣

N
∑

n=0

βnλ
m
n −

N
∑

n=0

β(N)
n λm

n

∣

∣

∣

∣

∣

≤ lim
N→∞

N
∑

n=0

|λn|
m
∣

∣

∣βn − β(N)
n

∣

∣

∣

= lim
N→∞

∞
∑

n=0

fN(n),

where

fN (n) :=

{

0 if n > N

|λn|
m
∣

∣

∣βn − β
(N)
n

∣

∣

∣ if n ≤ N.

Now consider for all n ≥ N0 + 1,

f(n) := 2|λn|
m

N0−1
∏

j=0

|λj |

|λj − λn|

n−1
∏

j=N0

qn−j

1− qn−j

∞
∏

j=n+1

1

1− qj−n
.

We shall see that |fN (n)| ≤ f(n) for all n ≥ N0 + 1.
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Notice that for N > n ≥ N0 + 1, equation 1 gives us

|β(N)
n | ≤

N0−1
∏

j=0

|λj |

|λj − λn|

n−1
∏

j=N0

|λj |

|λn| − |λj |

N
∏

j=n+1

|λj |

|λj | − |λn|

≤

N0−1
∏

j=0

|λj |

|λj − λn|

n−1
∏

j=N0

|λj |

|λn| − |λj |

∞
∏

j=n+1

|λj |

|λj | − |λn|

≤

N0−1
∏

j=0

|λj |

|λj − λn|

n−1
∏

j=N0

qn−j |λn|

|λn| − qn−j |λn|

∞
∏

j=n+1

|λj |

|λj | − qj−n|λj |

=

N0−1
∏

j=0

|λj |

|λj − λn|

n−1
∏

j=N0

qn−j

1− qn−j

∞
∏

j=n+1

1

1− qj−n
.

By this result and equation 4, we conclude that for N > n ≥ N0 + 1,

both βn and β
(N)
n are bounded by

N0−1
∏

j=0

|λj |

|λj − λn|

n−1
∏

j=N0

qn−j

1− qn−j

∞
∏

j=n+1

1

1− qj−n
.

Thus, if N > n ≥ N0 + 1,

|fN(n)| ≤ |λn|
m
(

|βn|+
∣

∣

∣β
(N)
n

∣

∣

∣

)

≤ f(n).

Also, if n ≥ N0 + 1 and n > N ,

|fN(n)| = 0 ≤ f(n).

Thus, for all n ≥ N0 + 1,

|fN(n)| ≤ f(n).

Next, we need to show that
∑∞

n=0 f(n) converges. We will do so by the
root test. Note that by arguments given earlier in this proof and by the
continuity condition on D provided by Theorem 2, it is enough to show

lim sup





n−1
∏

j=N0

qn−j

|1− qn−j |





1/n

lim sup





∞
∏

j=n+1

1

|1− qj−n|





1/n

= 0.

However, by prior arguments,

lim sup





n−1
∏

j=N0

qn−j

1− qn−j





1/n

lim sup





∞
∏

j=n+1

1

1− qj−n





1/n

= (0)(1),

proving lim sup |f(n)|
1
n = 0 < 1. Thus,

∑∞
n=1 f(n) converges.

Now, we can apply the Lebesgue Dominated Convergence Theorem,
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lim
N→∞

∞
∑

n=0

fN(n) = lim
N→∞

[

N0
∑

n=0

fN(n) +

∞
∑

n=N0+1

fN (n)

]

=

N0
∑

n=0

lim
N→∞

fN (n) +

∞
∑

n=N0+1

lim
N→∞

fN(n)

= 0.

This proves that limN→∞

∣

∣

∣

∑N
n=0 βnλ

m
n

∣

∣

∣
= 0, and thus,

∑∞
n=0 βnλ

m
n = 0

for all integers m ≥ 1.
Now recall that no βn is zero, and no λn is zero. Thus, {ωn} is a sequence

of well-defined complex numbers which are never zero, and hence nontrivial.
Therefore, {ωn} satisfies condition (v) in Theorem 3 needed for an

operator to fail spectral synthesis on H(C), and we can conclude that
D : H(C) → H(C) defined as D(

∑∞
n=0 anz

n) =
∑∞

n=0 anλnz
n is a non-

synthetic cyclic diagonal operator. �

4. Conclusion

Before this particular theorem, it was not known if there existed even
one operator failing spectral synthesis on the space H(C). Now we have
an infinite class of operators doing just that. For example, if D is a diag-
onal operator with eigenvalues λn := bn for any b > 1, D is nonsynthetic
on H(C). Equation 1 leads us to the general statement that a diagonal
operator on H(C) whose eigenvalues “grow exponentially” is nonsynthetic.
Even without a solid background in operator theory, one can appreciate the
novelty of this sequence of complex numbers that, although nontrivial, can
be used to represent zero. Perhaps there are implications beyond those in
the study of spectral synthesis that will make this discovery of even more
relevance in the pure mathematics community.
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