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Abstract. A number of landmark existence theorems of nonlinear
functional analysis follow in a simple and direct way from the basic
separation of convex closed sets in finite dimension via elementary
versions of the Knaster-Kuratowski-Mazurkiewicz principle - which
we extend to arbitrary topological vector spaces - and a coincidence
property for so-called von Neumann relations. The method avoids
the use of deeper results of topological essence such as the Brouwer
Fixed Point Theorem or the Sperner’s Lemma and underlines the
crucial role played by convexity. It turns out that the convex KKM
Principle is equivalent to the Hahn-Banach Theorem, the Markov-
Kakutani Fixed Point Theorem, and the Sion-von Neumann Minimax
Principle.

1. Introduction

The aim of this expository paper is to show that a number of landmark
results of nonlinear functional analysis can be quickly obtained from a par-
ticular version of the KKM Principle at little cost. This Elementary KKM
Principle is due to A. Granas and M. Lassonde in the framework of super-
reflexive Banach spaces [10]. It is extended to arbitrary topological vector
spaces, under a more general compactness hypothesis, with a simpler proof
based on the separation of closed convex subsets in a Euclidean space (a
result usually discussed in a first course of continuous optimization) and an
intersection theorem of V. L. Klee [17]. A similar approach is followed to
formulate a coincidence theorem for so-called von Neumann relations.

The methods outlined here allow for a shorter and simpler alternative
treatment of existence results of functional analysis that avoids involved
and deeper principles that require sophistication and investment in time.
The KKM Principle is a striking example of such fundamental results. In-
deed, using the Sperner lemma as a starting point, three of the greatest
topologists of all times, Polish academician S. Mazurkiewicz and two of his
former doctoral students, B. Knaster and K. Kuratowski published in 1929
the celebrated KKM Lemma: a remarkable intersection theorem for closed
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covers of a Euclidean simplex [18]. They used the KKM Lemma to pro-
vide a combinatorial proof of the Brouwer Fixed Point Theorem (the two
results being, in fact, equivalent). In 1961, Ky Fan extended the KKM
Lemma to vector spaces of arbitrary dimensions in what became known
as the KKM Principle [12]. The KKM Principle inspired countless math-
ematicians, yielding a formidable body of work in nonlinear and convex
analysis; a production known today as the KKM Theory. The reader is
referred to Dugundji-Granas [7], Park [20] and Yuan [22] for surveys of
results, methods, and applications of the KKM Theory.

The particular version of the KKM Principle discussed here, which we
call the convex KKM Principle, is more than sufficient to prove in a direct
and economical way, such fundamental results as the Stampacchia Theorem
on variational inequalities, the Mazur-Schauder Theorem on the minimiza-
tion of lower semicontinuous quasiconvex and coercive functionals, and the
Markov-Kakutani Fixed Point Theorem for commuting families of affine
transformations (see e.g., Brézis [6]). It is well-known, since Kakutani [16],
that the Hahn-Banach Theorem can be derived from the Markov-Kakutani
Fixed Point Theorem. Thus, the equivalence between the Hahn-Banach
Theorem, Klee’s intersection theorem, the convex KKM Principle, and the
Markov-Kakutani Fixed Point Theorem is thus established.

2. Preliminaries

The fundamental tool for our proof of the convex KKM Theorem is the
separation of a point and a closed convex set in a finite dimensional space.
For the sake of completeness, we include the basic separation properties in
finite dimensions with the simplest of proofs (see e.g., Magill and Quinzii
[19]).

Lemma 1. Let C be a non-empty closed convex subset of Rn and let x /∈ C.
Denote by y = PC(x) the projection of x onto C. Then the hyperplane Hx

C ,
orthogonal to u = x − y, passing through y strictly separates x and C,
namely

〈u, z〉 ≤ 〈u, y〉 < 〈u, x〉, for all z ∈ C.

Proof. Since C is closed and convex, the projection y = PC(x) of x onto C
is unique. Define, for any given z ∈ C, a functional ϕz : [0, 1] −→ R by

ϕz(t) := ‖x− (tz + (1− t)y‖2.

As y is closest to x, ϕz(t) achieves its minimum on [0, 1] at t = 0, thus
ϕ′
z(0) ≥ 0. Since ϕ′

z(t) = 2t‖y − z‖2 + 2〈x − y, y − z〉, it follows ϕ′
z(0) =

2〈x − y, y − z〉 = 2〈u, y − z〉 ≥ 0, i.e., 〈u, z〉 ≤ 〈u, y〉. On the other hand,
0 < ‖x−y‖2 = 〈u, x−y〉 = 〈u, x〉−〈u, y〉. Thus, 〈u, z〉 ≤ 〈u, y〉 < 〈u, x〉. �
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Proposition 2. Let K and C be disjoint convex subsets of Rn with K
compact and C closed. Then, C and K are strictly separated by a hyperplane
H, i.e.,

there exists u ∈ Rn, u 6= 0, with sup
x∈C

〈u, x〉 < min
x′∈K

〈u, x′〉.

Proof. Since C is closed and K is compact, the set C−K := {y ∈ Rn : y =
x−x′, x ∈ C, x′ ∈ K} is also closed. Moreover, it is convex as the difference
of convex sets. Since C∩K = ∅, then 0 /∈ C−K. Lemma 1 applies, yielding
for u = 0− PC−K(0), the inequalities: 〈u, z〉 ≤ 〈u,−u〉 < 〈u, 0〉 = 0, for all
z ∈ C −K. Thus, as z = x− x′, x ∈ C, x′ ∈ K,

〈u, x〉 ≤ 〈u, x′〉 − ‖u‖2 < 〈u, x′〉, for all x ∈ C, for all x′ ∈ K.

�

A refinement of a fundamental intersection theorem of V. L. Klee for
families of closed convex subsets of Rn (see Klee [17] and Berge [5]) plays a
crucial role in our proof. We provide here a simple proof based on Propo-
sition 2.

Topological vector spaces (t.v.s. for short), as well as topological spaces,
are assumed to be Hausdorff (T2). Vector spaces are assumed real (or
complex) and the convex hull of a subset A of a vector space is denoted by
conv(A).

Proposition 3. ([11]) Let C1, . . . , Cn, be non-empty closed convex sets in
a t.v.s. E such that:

(i) C =
⋃n

i=1
Ci is convex, and

(ii) each k of them, 1 ≤ k < n, have a common point.

Then
⋂n

i=1
Ci 6= ∅.

Proof. The proof goes along the lines of Klee’s proof [17]. One may assume
with no loss of generality that the sets Ci, i = 1, . . . , n, are compact convex
subsets of a finite dimensional space. Indeed, one could consider the convex
finite polytope Ĉ := Conv({yj : j = 1, . . . , n}), where, for each j = 1, . . . , n,

the points yj ∈
⋂n

i=1,i6=j Ci are provided by (ii), and define Ĉi := Ci ∩ Ĉ.

Clearly, all the sets Ĉ1, . . . , Ĉn, Ĉ =
⋃n

i=1
Ĉi are compact convex sets in a

finite dimensional subspace of E and
⋂n

i=1
Ci 6= ∅ ⇐⇒

⋂n

i=1
Ĉi 6= ∅.

If n = 1, the thesis clearly holds. Assume, for a contradiction that for
n ≥ 2,

⋂n

i=1
Ci = ∅ and let us show that (i) must fail if (ii) holds true. The

proof is by induction on n.
If n = 2, (ii) asserts that both C1 and C2 are non-empty and, while they

are disjoint, their union C = C1 ∪ C2 cannot be convex and thus (i) fails.
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Suppose that for n = k − 1, it holds (
⋂k−1

i=1
Ci = ∅ and

⋂k−1

i=1,i6=j Ci 6=

∅) =⇒
⋃k−1

i=1
Ci is not convex.

Let n = k, and let {Ci}
k
i=1 be a collection of compact convex sets such

that Ck ∩
⋂k−1

i=1
Ci = ∅ and for all j = 1, . . . , k,

⋂k

i=1,i6=j Ci 6= ∅. By

Proposition 2, the disjoint compact convex sets Ck and
⋂k−1

i=1
Ci can be

strictly separated by a hyperplane H . Putting, for each i = 1, . . . , k, C ′
i :=

H ∩ Ci, it follows that C ′
k and

⋂k−1

i=1
C′

i are empty. Moreover, for a given

arbitrarily chosen j0 ∈ {1, . . . , k − 1}, let y0 ∈
⋂k

i=1,i6=j0
Ci, thus y0 ∈

Ck, and let yk ∈
⋂k−1

i=1
Ci be arbitrarily chosen. Clearly, the points y0

and yk are both in the larger convex set
⋂k−1

i=1,i6=j0
Ci and are also strictly

separated by H . The intersection z̄ of the line segment [y0, yk] with H

belongs to
⋂k−1

i=1,i6=j0
Ci ∩H . Since j0 is arbitrary, hypothesis (ii) is verified

for the collection {C′
i}

k−1

i=1
and

⋂k−1

i=1
C′

i = ∅. By the induction hypothesis,
⋃k−1

i=1
C′

i =
⋃k−1

i=1
(Ci ∩H) is not convex. Since H ∩ Ck = ∅, it follows that

⋃k

i=1
(Ci∩H) =

⋃k−1

i=1
(Ci∩H) is not convex and the proof is complete. �

Remark 4. Proposition 3 is due to A. Ghouila-Houri [11] and slightly
extends the following result of V. L. Klee (see also C. Berge [6]).

Theorem 5. (Klee’s Theorem) [17]. Let C and C1, . . . , Cn be closed convex
sets in a Euclidean space satisfying

(i) C ⊆
⋃n

i=1
Ci

(ii) C ∩
⋂n

i=1,i6=j Ci 6= ∅ for any j = 1, 2, . . . , n.

Then C ∩
⋂n

i=1
Ci 6= ∅.

This can be restated: (C ∩
⋂n

i=1,i6=j Ci 6= ∅ and C ∩
⋂n

i=1
Ci = ∅) =⇒

C *
⋃n

i=1
Ci.

3. The Convex KKM Theorem

We use the following terminology of Dugundji-Granas (see [7]).

Definition 6. Given an arbitrary subset X be of a vector space E, a set-
valued map Γ : X −→ 2E is said to be a KKM map if for every finite subset
{x1, . . . , xn} ⊆ X it holds:

conv({x1, . . . , xn}) ⊂
⋃n

i=1
Γ(xi).

Theorem 7. (Convex KKM Theorem) Let E be a t.v.s., ∅ 6= X ⊆ Y ⊆ E
with Y convex. If Γ : X −→ 2Y is a set-valued map verifying:

(i) Γ is a KKM map;
(ii) all values of Γ are non-empty, closed and convex.
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Then, the family {Γ(x)}x∈X has the finite intersection property.
If in addition, there exists a non-empty subset X0 of X contained in a
convex compact subset D of Y such that

⋂

x∈X0
Γ(x) is compact, then

⋂

x∈X Γ(x) 6= ∅.

Proof. We prove that Proposition 3 is equivalent to Theorem 7.
(=⇒) Let Γ : X −→ 2Y be a KKM map with closed convex values. We

show by induction on n that conv({x1, . . . , xn}) ∩
⋂n

i=1
Γ(xi) 6= ∅, for any

finite subset {x1, . . . , xn} of X .
When n = 1, x1 = conv({x1}) ⊂ Γ(x1).
Assume that the conclusion holds true for any set with n = k elements,

and let n = k + 1. Put C = conv({x1, . . . , xn}) and Ci = Γ(xi) ∩ C.
Since Γ is KKM, C ⊆

⋃n

i=1
Γ(xi) which implies C =

⋃n

i=1
(Γ(xi) ∩ C) =

⋃n

i=1
Ci, a convex set. By the induction hypothesis, for each i, we have

conv({x1, . . . , x̂i, . . . , xn})∩
⋂n

j=1,j 6=i Γ(xj) 6= ∅. Proposition 3 implies that
⋂n

i=1
(Γ(xi) ∩ C) 6= ∅, i.e.,

⋂n

i=1
Γ(xi) 6= ∅.

(⇐=) Assume C1, . . . , Cn, C =
⋃n

i=1
C are closed convex sets in a topo-

logical vector space satisfying hypotheses (i) and (ii) of Proposition 3 above.
For each j, let xj ∈

⋂n

i=1,i6=j Ci and consider X = {xj}
n
j=1. The set C

being convex, conv(X) ⊆ C and for all j, i with j 6= i, xj ∈ Ci, which
implies that Ai = conv({xj}nj=1,j 6=i) ⊂ Ci. Define Γ : X −→ 2C by

Γ(xi) := Ci for each i = 1, . . . , n. The values of Γ are clearly closed and
convex. Also, conv(X) ⊆ C =

⋃n

i=1
(Ci ∩ C) =

⋃n

i=1
Γ(xi), and for each

{xi1 , . . . , xik} ⊂ X , we have conv({xi1 , . . . , xik}) ⊂ Aij ⊂ Cij = Γ(xij )

for some j 6= 1, . . . , k. Hence, conv({xi1 , . . . , xik}) ⊂
⋃k

j=1
Γ(xij ), i.e.,

Γ is a KKM map. By the convex KKM Theorem,
⋂n

i=1
Γ(xi) 6= ∅, thus

⋂n

i=1
Ci 6= ∅.

Assuming for a moment that
⋂

x∈X Γ(x) is contained in a compact subset
K of Y , then the conclusion

⋂

x∈X Γ(x) 6= ∅ would follow at once from the
characterization of compactness in terms of families of closed subsets having
the finite intersection property.

Observe now that the restriction/compression map Γ0 : X0 −→ 2D de-
fined by Γ0(x) := Γ(x)∩D, x ∈ X0, has compact convex values and is also a
KKMmap. Indeed, for any subset {x1, . . . , xn} ⊆ X0, conv({x1, . . . , xn}) ⊂
(
⋃n

i=1
Γ(xi)) ∩D =

⋃n

i=1
Γ0(xi). Therefore,

⋂

x∈X0
Γ(x) ⊇

⋂

x∈X0
Γ0(x) 6=

∅. The conclusion follows immediately from the fact that
⋂

x∈X Γ(x) ⊆
⋂

x∈X0
Γ(x) is compact and non-empty. �
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Remark 8.

(i) Theorem 7 is an extension to topological vector spaces of the ele-
mentary KKM Theorem of Granas-Lassonde, stated in the context
of super-reflexive Banach spaces [10].

(ii) Theorem 7 obviously follows from the KKM Principle of Ky Fan
[12] where the values of Γ are not assumed to be convex. However,
the latter requires much more involved analytical or topological re-
sults. Indeed, the Ky Fan KKM Principle is equivalent to Sperner’s
Lemma, to the Brouwer Fixed Point Theorem, and to the Browder-
Ky Fan Fixed Point Theorem (see e.g., [1, 2, 3]).

(iii) In this generality, the compactness condition in the KKM Principle
is due to Ky Fan [14]. It obviously extends the earlier compactness
conditions: Y is also compact, or all values of Γ are compact, or
a single value Γ(x0) is compact, or

⋂n

i=1
Γ(xi) is compact for some

finite subset {x1, . . . , xn) of X.

Naturally, the convex KKM Theorem can be expressed as an equivalent
fixed point property for what we call a von Neumann relation. Given a
subset A of a cartesian product of two sets X × Y , denote by A(x) and
A−1(y) the respective sections {y ∈ Y : (x, y) ∈ A} and {x ∈ X : (x, y) ∈
A}; denote by A−1 the subset {(y, x) : (x, y) ∈ A}.

Definition 9. A von Neumann relation is a subset A of a cartesian product
X × Y , where X and Y are subsets of topological vector spaces, satisfying

(i) for every x ∈ X, the section A(x) is convex and non-empty;
(ii) for every y ∈ Y , the section A−1(y) is open in X and X \ A−1(y)

is convex.

Denote by N (X,Y ) the class of von Neumann relations in X × Y and by
N−1(X,Y ) := {A : X −→ 2Y : A−1 ∈ N (Y,X)}.

Note that von Neumann relations are particular cases of F ∗−maps (ap-
plications de Ky Fan) introduced in [3].

Theorem 10. (Fixed Point for N−maps) Let E be a t.v.s., ∅ 6= Y ⊆ X ⊆
E with X convex, and let A ∈ N (X,Y ). If there exist a compact subset K
of X and a compact convex subset D of Y such that for every x ∈ X \K,
A(x) ∩D 6= ∅, then A has a fixed point, i.e., (x̂, x̂) ∈ A for some x̂ ∈ X.

Proof. Define Γ : Y −→ 2X as Γ(y) := Y \ A−1(y), y ∈ Y . Clearly, Γ
has closed and convex values. Also, obviously, A(x) = Y \ Γ−1(x), for any
x ∈ X .

One readily verifies that the compactness condition in Theorem 10 is
equivalent to the compactness condition in Theorem 7. Indeed, (x /∈ K =⇒
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there exists y ∈ A(x) ∩ D) ⇐⇒ (( for all y ∈ D, y /∈ A(x)) =⇒ x ∈
K) ⇐⇒ (

⋂

y∈D Γ(y) ⊆ K). The intersection
⋂

y∈D Γ(y) being closed in K

is compact. For any subset Y0 of D, it also holds
⋂

y∈Y0
Γ(y) is a compact

subset of K.
The fact that all sections A(x), x ∈ X , are non-empty rules out the thesis

of Theorem 7 (indeed, (A(x) 6= ∅, for all x ∈ X) ⇐⇒
⋂

y∈Y Γ(y) = ∅).

Therefore Γ cannot be a KKM map, i.e., there exist {y1, . . . , yn} ⊆ Y and
ŷ ∈ conv({y1, . . . , yn}) with ŷ /∈

⋃n

i=1
Γ(yi), which (by DeMorgan’s law)

is equivalent to ŷ ∈
⋂n

i=1
A−1(yi) ⇐⇒ {y1, . . . , yn} ⊆ A(ŷ). Since A(ŷ) is

convex, ŷ ∈ A(ŷ) and the proof is complete. �

Remark 11.

(i) The proof of Theorem 10 clearly establishes its equivalence with
Theorem 7.

(ii) Theorem 10 is a particular instance of the Browder-Ky Fan fixed
point theorem (where the convexity of X \ A−1(y) in Definition 9
is dispensed with; see e.g., [2, 3, 4]).

(iii) Note that if X is compact, the compactness condition in Theorem
10 is vacuously satisfied with K = X. To the best of our knowl-
edge, in this generality and in the context of the Browder-Ky Fan
Fixed Point Theorem, this condition was first introduced in [2, 3] in
1982. It builds on the so-called Karamardian coercivity condition
for complementarity problems (early seventies), taken up in 1977
by Allen in the context of fixed point theorems for set-valued maps
(case where K = C); see [2, 3, 9] for references and details.

We end this section with a coincidence theorem between N and N−1

maps with a direct proof based on Proposition 3. We shall make use of a
well-known selection property enjoyed by F ∗−maps of [2], thus byN−maps
(see [2, 3]).

Lemma 12. Let A ∈ N (X,Y ) with Y convex. For any compact subset K
of X, there exist a continuous (single-valued) mapping s : K −→ Y and
a convex compact finite polytope P ⊆ Y such that s(x) ∈ A(x) ∩ P for all
x ∈ K.

Proof. Since for all x ∈ X,A(x) 6= ∅, then X =
⋃

y∈Y A−1(y), a union of

open subsets of X . By compactness, K ⊆
⋃n

i=1
A−1(yi) for some finite sub-

set {y1, . . . , yn} ⊂ Y . Let {λi : K −→ [0, 1]}ni=1 be a continuous partition
of unity subordinated to the open cover {A−1(yi)}ni=1, and define s : K −→
P = conv({y1, . . . , yn}) ⊂ Y by putting s(x) :=

∑n

i=1
λi(x)yi, x ∈ K.

Clearly, for a given x ∈ K, λi(x) 6= 0 =⇒ x ∈ A−1(yi) ⇐⇒ yi ∈ A(x). The
section A(x) being convex, the convex combination s(x) ∈ A(x) ∩ P . �
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Theorem 13. (Coincidence (N ,N−1)) Let X and Y be two non-empty
convex subsets in topological vector spaces, and let A ∈ N (X,Y ), B ∈
N−1(X,Y ).

If one of the following compactness conditions holds

(i) Y is compact; or
(ii) X is compact; or
(iii) there exist a compact subset K of X and a compact convex subset

C of Y with A(x) ∩ C 6= ∅ , for all x ∈ X \K;

then A ∩B 6= ∅.

Proof. Let it be made clear, first, that (i) =⇒ (iii) and (ii) =⇒ (iii).
Indeed, if Y is compact, take C = Y and K = ∅ in (iii). If X is compact,
take K = X and (iii) is vacuously satisfied. Moreover, due to Lemma 12,
(iii) can be reduced to (i). Indeed, assume that (iii) holds. Lemma 12
implies the existence of a convex finite polytope P ⊂ Y and a continuous
mapping s : K −→ Y with s(x) ∈ A(x) ∩ P for all x ∈ K. Now, if
x ∈ X \K,A(x) ∩ C 6= ∅ where C ⊂ Y is convex and compact. Consider

the convex hull Ŷ = conv(P ∪ C), a compact subset of Y (the convex
envelope of two compact convex sets in a topological vector space is also

compact convex). It is clear that the map Â : X −→ 2Ŷ given by Â(x) :=

A(x)∩ Ŷ , x ∈ X , defines a von Neumann relation, i.e., Â ∈ N (X, Ŷ ). Also,

the mapping B̂ : X −→ 2Ŷ given by B̂(x) := B(x) ∩ Ŷ , x ∈ X , verifies

B̂ ∈ N−1(X, Ŷ ). A coincidence for the pair (Â, B̂) is also a coincidence for
(A,B).

It suffices, thus, to show that A∩B 6= ∅ under hypothesis (i), i.e., when
Y is compact. Since for all y ∈ Y,B−1(y) 6= ∅, it follows that {B(x)}x∈X

forms an open cover of Y . Similarly, {A−1(y)}y∈Y is an open cover of X .
Let {B(xi)}

n
i=1 be a finite subcover of Y , let D := conv({x1, . . . , xn}), a

convex compact subset of X , and let {A−1(yj)}mj=1 be an open subcover

of D. Consider the convex compact subset M := conv({y1, . . . , ym}) of
Y . M can be covered by a subfamily of {B(xi)}ni=1, which, for simplicity
we also denote {B(xi)}ni=1. We can assume with no loss of generality that
{B(xi)}

n
i=1 and {A−1(yj)}

m
j=1 are minimal covers ofM and D, respectively.

That is, for any k ∈ {1, . . . , n},M *
⋃n

i=1,i6=k B(xi), and for any l ∈

{1, . . . ,m}, D *
⋃m

j=1,j 6=l A
−1(yj). Consider the compact convex sets Mi =

M \ B(xi) for for i = 1, . . . , n, and Dj = D \ A−1(yj) for j = 1, . . . ,m.
The fact that M ⊆

⋃n

i=1
B(xi) is equivalent to

⋂n

i=1
Mi = ∅, and D ⊆

⋃m

j=1
A−1(yj) is equivalent to

⋂m

j=1
Dj = ∅. The minimality of the covers

{B(xi)}ni=1 and {A−1(yj)}mj=1 amounts to M ∩
⋂n

i=1,i6=k Mi 6= ∅ for any

k ∈ {1, . . . , n}, and D ∩
⋂m

j=1,j 6=l Dj 6= ∅ for any l ∈ {1, . . . ,m}. All

conditions of Klee’s Theorem (see Remark 4) are thus satisfied for both
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families of compact convex sets {M,M1, . . . ,Mn} and {D,D1, . . . , Dm}.
Hence, M *

⋃n

i=1
Mi and D *

⋃m

j=1
Dj . Let y0 ∈ M but y0 /∈ Mi for all

i = 1, . . . , n, and let x0 ∈ D but x0 /∈ Dj for all j = 1, . . . ,m. Clearly,
y0 ∈ B(xi) ⇐⇒ xi ∈ B−1(y0) for all i = 1, . . . , n, and x0 ∈ A−1(yj) ⇐⇒
yj ∈ A(x0) for all for all j = 1, . . . ,m. The sections B−1(y0) and A(x0)
being convex sets, it follows that x0 ∈ D = conv({x1, . . . , xn}) ⊂ B−1(y0)
and y0 ∈ M = conv({y1, . . . , ym}) ⊂ A(x0). The proof is finished as
(x0, y0) ∈ A ∩B. �

4. Analytic Formulations and Applications

This section illustrates how the geometric results in the preceding sec-
tion, Theorems 7, 10, and 13, are key in deriving a number of landmark re-
sults in functional analysis. Intersection theorems as well as fixed point and
coincidence theorems have analytical formulations as solvability theorems
for systems of nonlinear inequalities (see [1, 2, 3, 4, 9]). These analytical
formulations are often more practical when it comes to applications. We
start with the analytical formulation of the convex KKM Principle (equiv-
alently, the fixed point theorem for von Neumann relations) and we derive
from it, in a simple and straightforward way, two fundamental results.

4.1. Alternatives for Systems of Nonlinear Inequalities and Appli-

cations. Theorems 7 and 10 can be expressed in terms of an alternative
for nonlinear systems of inequalities à la Ky Fan.

Recall first the basic concepts of semicontinuity and quasiconvexity for
real functions.

Definition 14. A real function f : X −→ R defined on a subset X of a
t.v.s is:

(i) quasiconvex if for all λ ∈ R, the level set {x ∈ X ; f(x) ≤ λ} is a
convex subset of X;

(ii) quasiconcave if −f is quasiconvex;
(iii) lower semicontinuous (l.s.c.) if for all λ ∈ R, the level set {x ∈

X ; f(x) ≤ λ} is a closed subset of X;
(iv) upper semicontinuous (u.s.c.) if −f is l.s.c.

Naturally, every convex functional is quasiconvex and the converse is
false. Also, a real function on a topological space is continuous if and only
if it is both upper and lower semicontinuous.

Theorem 15. Let X be a convex subset of a t.v.s. E, Y a non-empty
subset of X, and f : X × Y −→ R a function satisfying

(i) x 7→ f(x, y) is l.s.c. and quasiconvex on X, for each fixed y ∈ Y .
(ii) y 7→ f(x, y) quasiconcave on Y , for each fixed x ∈ X.
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Assume that for a given λ ∈ R, there exist a compact subset K of X and
a convex compact subset D of Y such that for all x ∈ X \K, there exists
y ∈ D with f(x, y) > λ.

Then the following alternative holds:

(A) there exists x0 ∈ X such that f(x0, x0) > λ, or
(B) there exists x̄ ∈ Y such that f(x̄, y) ≤ λ, for all y ∈ Y .

Consequently, when λ = supx∈X f(x, x), (A) is impossible and

inf
x∈X

sup
y∈Y

f(x, y) ≤ sup
x∈X

f(x, x).

Proof. Let A(x) := {y ∈ Y : f(x, y) > λ}, x ∈ X . All hypotheses of
Theorem 10 are satisfied except, possibly, the non-emptiness of the sections
A(x). Thus, either A(x) 6= ∅, for all x ∈ X , hence A is a von Neumann
relation, and therefore has a fixed point ((A) holds), or A(x̄) = ∅ for some
x̄ ∈ X , i.e., A is not a von Neumann relation and (B) is satisfied. �

This is a particular instance of the celebrated Infsup Inequality of Ky
Fan with a weaker compactness condition.

Landmark theorems of nonlinear functional analysis follow immediately
from Theorem 15; therefore, indirectly, from the separation of closed convex
sets in finite dimension (Proposition 2). We refer to H. Brézis [6] for an
account and applications of the next two fundamental results.

Corollary 16. (Mazur-Schauder Theorem). Let X be a non-empty closed
convex subset of a reflexive Banach space E and let ϕ : X −→ R be a
lower semicontinuous, quasiconvex and coercive (i.e. lim||x||→∞ ϕ(x) = ∞)
functional. Then ϕ achieves its minimum on X.

Proof. Let λ = 0, Y = X , and f(x, y) = ϕ(x) − ϕ(y) in Theorem 15. Let
K be the intersection of X with a closed ball with radius M > 0 centered
at the origin of E and such that if x ∈ X with ‖x‖ > M then ϕ(x) > ϕ(y)
for some y ∈ K. Such a non-empty set K exists due to the coercivity of
ϕ. Since E is reflexive, K is weakly compact. One readily verifies that the
hypotheses of Theorem 15 with X,Y, f,K,D = K, and λ = 0 all hold: f is
l.s.c. and quasiconvex in x, and quasiconcave in y. Clearly, possibility (A)
of Theorem 15 cannot hold. Hence (B) is true: there exists x̄ ∈ X such
that f(x̄, y) = ϕ(x̄)− ϕ(y) ≤ 0, for all y ∈ X .

We now derive from the nonlinear alternative in Theorem 15 the cel-
ebrated theorem of Stampacchia for variational inequalities. Recall that
given a normed space E, a form a : E × E −→ R is said to be

(i) bilinear if it is linear in each of its arguments;
(ii) continuous if there exists a constant C > 0 with |a(x, y)| ≤ C||x||||y||

for all x, y ∈ E; and
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(iii) coercive if there exists a constant α > 0 with a(x, x) ≥ α||x||2 for
all x ∈ E.

�

Corollary 17. (Stampacchia Theorem). Let E be a reflexive Banach space,
a : E×E −→ R be a continuous and coercive bilinear form, and let ` : E −→
R be a bounded linear functional. Given a non-empty closed and convex
subset X in E, there exists a unique x̄ ∈ X such that a(x̄, x̄−y) ≤ `(x̄)−`(y)
for all y ∈ X.

Proof. For the existence, we apply Theorem 15 to f : X×X −→ R defined
by f(x, y) := a(x, x − y) − `(x − y), (x, y) ∈ X ×X,λ = 0, D = {y0} with
0 6= y0 ∈ X arbitrary, and K := {x ∈ X : ‖x‖ ≤ M} where

M :=
1

2
(β +

√

β2 + 4γ),

β = (C||y0||+ ||`||)/α and γ = ||`||||y0||/α.
Indeed, first note that if E is equipped with the weak topology, then

f(x, y) is l.s.c. and quasiconvex in x and quasiconcave in y (it is in fact
linear and continuous for the norm topology in both arguments). Since X
is closed and convex, it follows that K is a closed, convex and bounded,
hence weakly compact, subset of X . D is obviously a weakly compact
subset of X . Note now that if f(x, y0) ≤ 0 for any given x ∈ X , i.e.,
a(x, x) ≤ a(x, y0) + `(x− y0), then ‖x‖ satisfies a quadratic inequality and
is bounded above by M :

=⇒
⇐⇒
=⇒

α||x||2 ≤ a(x, x) ≤ C‖x‖‖y0‖+ ‖`‖‖x‖+ ‖`‖‖y0‖
α||x||2 − (C‖y0‖+ ‖`‖)‖x‖ − ‖`‖‖y0‖ ≤ 0
||x||2 − β‖x‖ − γ ≤ 0

‖x‖ ≤ 1

2
(β +

√

β2 + 4γ) = M.

Consequently, if x ∈ X, ‖x‖ > M , then f(x, y0) > 0 and the compactness
condition in Theorem 15 is satisfied. Since f(x, x) = 0 for any x ∈ X , (A)
of Theorem 15 is impossible, and (B) holds, i.e., f(x̄, y) = a(x̄, x̄ − y) −
`(x̄)+ `(y) ≤ 0 for some x̄ ∈ X and all y ∈ X and the proof of the existence
is complete.

The uniqueness follows at once from the bilinearity and the coercivity of
the form a as follows: if a(x̄i, x̄i − y) − `(x̄i) + `(y) ≤ 0 for two elements
x̄i ∈ X, i = 1, 2, and all y ∈ X , then adding a(x̄1, x̄1− x̄2) ≤ `(x̄1)−`(x̄2) to
a(x̄2, x̄2−x̄1) ≤ `(x̄2)−`(x̄1) gives 0 ≤ α‖x̄1−x̄2‖2 ≤ a(x̄1−x̄2, x̄1−x̄2) ≤ 0,
i.e., x̄1 = x̄2. �

The coincidence (N ,N−1) (Theorem 13) can be expressed in analytical
terms as a second alternative for nonlinear systems of inequalities as follows.
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Theorem 18. Let X and Y be two convex subsets of topological vector
spaces and let f, g : X × Y −→ R be two functions satisfying

(i) f(x, y) ≤ g(x, y) for all (x, y) ∈ X × Y ;
(ii) x 7→ f(x, y) is quasiconcave on X, for each fixed y ∈ Y ;
(iii) y 7→ f(x, y) is l.s.c. and quasiconvex on Y , for each fixed x ∈ X;
(iv) x 7→ g(x, y) is u.s.c. and quasiconcave on X, for each fixed x ∈ X;
(v) y 7→ g(x, y) is quasiconvex on Y , for each fixed x ∈ X.
(vi) Given λ ∈ R arbitrary, assume that either Y is compact, or X

is compact, or there exist a compact subset K of X and a convex
compact subset C of Y such that for any x ∈ X \ K there exists
y ∈ C with g(x, y) < λ.

Then one of the following statements holds:

A) there exists x̄ ∈ X such that g(x̄, y) ≥ λ, for all y ∈ Y ; or
B) there exists ȳ ∈ Y such that f(x, ȳ) ≤ λ, for all x ∈ X.

Proof. Simply apply Theorem 13 to A,B ⊂ X × Y defined as

A := {(x, y) : g(x, y) < λ} and B := {(x, y) : f(x, y) > λ}.

Note that in view of (i) a coincidence between A and B is impossible as
it yields λ < λ. Since all hypotheses of Theorem 13 are satisfied save for
A(x) 6= ∅ for all x ∈ X and B−1(y) 6= ∅ for all y ∈ Y , it follows that either
A(x̄) = ∅ for some x̄ ∈ X (thesis (A)) or B−1(ȳ) = ∅ for some ȳ ∈ Y (thesis
(B)). �

Remark 19. Theorem 18 implies α = supX infY g(x, y) ≥ infY supX f(x, y)
= β.

Indeed, assuming that α < β < ∞, let λ be an arbitrary but fixed real
number strictly between α and β. By Theorem 18, either there exists ȳ ∈ Y
such that f(x, ȳ) ≤ λ, for all x ∈ X thus β ≤ λ < β which is impossible,
or there exists x̄ ∈ X such that g(x̄, y) ≥ λ, for all y ∈ Y thus α ≥ λ > α
which is absurd. Hence, α ≥ β.

Maurice Sion’s formulation of the von Neumann Minimax Theorem fol-
lows immediately with f = g (see [1]).

Corollary 20. (Sion-von Neumann Minimax Theorem). Let X and Y be
convex subsets of topological vector spaces and let f be a real function on
X × Y such that:

(i) x 7→ f(x, y) is quasiconcave and u.s.c. on X, for each fixed y ∈ Y ;
(ii) y 7→ f(x, y) is quasiconvex and l.s.c. on Y , for each fixed x ∈ X.

Assume that either X is compact or Y is compact. Then:

α = sup
X

inf
Y

f(x, y) = inf
Y

sup
X

f(x, y) = β
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Proof. The inequality α ≤ β is always true and α ≥ β follows from Remark
19. �

Remark 21. If both X and Y are compact, the infsup equality in Corollary
20 is a minmax equality and is equivalent to the existence of a saddle point
(x0, y0) for the function f(x, y), i.e., f(x, y0) ≤ f(x0, y), for all (x, y) ∈
X × Y .

We end this section with a short proof of the Markov-Kakutani Fixed
Point Theorem for abelian families of continuous affine mappings in linear
topological spaces having separating duals1.

Recall that a mapping φ from a convex set X into a vector space is said
to be affine if and only if φ(

∑n

i=1
λixi) =

∑n

i=1
λiφ(xi) for any convex

combination
∑n

i=1
λixi, λi ≥ 0,

∑n

i=1
λi = 1, in X . The key ingredient is

the following fixed point property for continuous affine transformations of
a compact convex set.

Corollary 22. Let X be a non-empty compact convex subset of a t.v.s.
E with separating dual E′ and let φ : X −→ X be a continuous affine
mapping. Then φ has a fixed point.

Proof. The proof is a simplification of the treatment in [9]. Define f :
X ×E′ −→ R by f(x, `) = `(φ(x)− x), (x, `) ∈ X ×E′. It suffices to prove
the existence of x0 ∈ X such that f(x0, `) ≤ 0, for all ` ∈ E′, for this would
imply `(φ(x0) − x0) = 0, for all ` ∈ E′, i.e., φ(x0) − x0 = 0 and the proof
is complete.

This amounts to showing that
⋂

`∈E′ A(`) 6= ∅ for the relation A :=
{(`, x) ∈ E′ ×X : f(x, `) ≤ 0}.

Since for each fixed ` ∈ E′, the function f(x, `) is l.s.c. in x, then each
A(`) is a closed, hence compact, subset of X . It suffices, therefore, to show
that the collection {A(`) : ` ∈ E′} has the finite intersection property.
Consider, to this aim, a finite collection of bounded linear functionals L :=
{`1, . . . , `n} ⊂ E′, and let Y = conv(L), a convex compact subset of E′.
The restriction of f(x, `) to X × Y is obviously u.s.c. and quasiconcave in
x and l.s.c. and quasiconvex in `. Since both X and Y are compact and
convex, it follows from Remark 21 that there exists (x0, `0) ∈ X × Y with
f(x0, `) ≤ f(x, `0) for all (x, `) ∈ X×Y , i.e., `(φ(x0)−x0) ≤ `0(φ(x)−x) for
all (x, `) ∈ X × Y . Let x̂ be such that `0(x̂) = maxx∈X `0(x). Since φ(x̂) ∈
X , it follows that `0(φ(x̂) − x̂) ≤ 0 and, consequently, `(φ(x0) − x0) ≤ 0,

1A t.v.s. E has separating dual if for each x ∈ E, x 6= 0, there exists a bounded linear
form ` ∈ E′, the topological dual of E, such that `(x) 6= 0. Locally convex topological
vector spaces have separating duals. Sequence spaces `p, 0 < p < 1, and Hardy spaces
Hp, 0 < p < 1, are instances of non-locally convex spaces with separating duals.
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for all ` ∈ Y , in particular, `i(φ(x0) − x0) = f(x0, `i) ≤ 0 for all `i ∈ L,
and the proof is complete. �

The Markov-Kakutani follows by a standard compactness argument. Re-
call that a family F of mappings is said to be abelian if φ1φ2 = φ2φ1 for
all φ1, φ2 ∈ F .

Corollary 23. (Theorem of Markov-Kakutani). Let X be a non-empty
compact convex subset of a t.v.s. E with separating dual E′ and let F be
an abelian family of continuous affine transformations from X into itself.
Then, there exists x0 ∈ X such that φ(x0) = x0 for every φ ∈ F .

Proof. For any given φ ∈ F , let Fix(φ) be the set of its fixed points. We
show that

⋂

φ∈F Fix(φ) 6= ∅. Clearly, for each φ ∈ FourierFix(φ) is non-

empty (by Corollary 21), convex (as φ is affine), and closed hence compact
in X . It suffices to show that the family {Fix(φ) : φ ∈ F} has the finite
intersection property, i.e.,

⋂n

i=1
Fix(φi) 6= ∅ for any {φ1, . . . , φn} ⊂ F .

The proof is by induction on n. For n = 1, clearly Fix(φ1) 6= ∅ (Corollary
21). Assume that the statement is true for any family {φ1, . . . , φk} ⊂ F
with k = n − 1 and let {φ1, . . . , φn} ⊂ F be arbitrary. For any x ∈
⋂n−1

i=1
Fix(φi), φn(x) = φn(φi(x)) = φi(φn(x)) for all i = 1, . . . , n − 1,

i.e., φn(x) ∈
⋂n−1

i=1
Fix(φi). Thus φn maps the non-empty compact convex

set
⋂n−1

i=1
Fix(φi) into itself. By Corollary 21 again, it has a fixed point

x̄ = φn(x̄) ∩
⋂n−1

i=1
Fix(φi), i.e., x̄ ∈

⋂n

i=1
Fix(φi). �

5. Concluding Remarks

It is well established that the Markov-Kakutani Fixed Point Theorem
implies the Hahn-Banach Theorem (Kakutani [16]). The two results are
indeed equivalent (for a short and elegant proof of the converse, see D.
Werner [21]). Since we derived here the convex KKM Theorem from the
theorem on the separation of convex sets, we have thus established the
equivalence of the Hahn-Banach Theorem, Klee’s Intersection Theorem, the
convex KKM Theorem, the fixed point theorem for von Neumann relations,
the Sion-von Neumann Minimax Theorem, and the Markov-Kakutani Fixed
Point Theorem.

Although the convex KKM Theorem is a particular instance of the KKM
Principle of Ky Fan, and since the fixed point and coincidence properties
in Theorems 9 and 12 are special cases of similar results for so-called F
and F ∗ maps (see [2, 3, 4]), the interest here resides in the use of simple
arguments of convexity rather than the Brouwer Fixed Point Theorem or
Sperner’s Lemma. It would be most interesting to know if the Ky Fan
KKM Principle (or any of its equivalent results) can be derived directly
from the convex KKM Theorem. In other words, can any of the question
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marks below be settled? (The smaller arrows are established; FPT stands
for Fixed Point Theorem.)









Convex Klee
(Proposition 3)

�
Convex KKM
(Theorem 7)

�
FPT for N

(Theorem 10)
↑ ↓? ↖ ↘? ↑ ↓? ? ↙ ↗ ↑ ↓?

KKM Lemma � Ky Fan KKM � Browder-Ky Fan FPT









Let us point out, for the reader’s benefit that the following equivalences
have been established in [15]:





Brouwer FPT � Topological Klee

↖↘ ↙↗

Ky Fan KKM





Here, the “topological Klee Theorem” [15] reads:

Theorem 24. A family of n closed convex sets in a topological vector
space has a non-empty intersection if and only if the union of the n sets is
(n− 2)-connected and the intersection of every n− 1 of them is non-empty.

This topological version of Klee’s theorem yields the equivalent formu-
lation of the Brouwer Fixed Point Theorem:

the n-sphere Sn is not n-connected.

Indeed, the n−dimensional faces of the (n + 1)−simplex ∆n+1 form a
family of n + 2 closed convex sets in Rn+2. Moreover, every intersection
of n + 1 of closed convex sets is non-empty, but the whole intersection is
empty. Hence, their union - which consists of the boundary ∂∆n+1 - is
not n−connected. Since ∂∆n+1 is homeomorphic to Sn, it follows that
Sn is not n-connected. This establishes the implication: topological Klee
Theorem =⇒ Brouwer FPT. The equivalence Brouwer FPT ⇐⇒ Ky Fan
KKM Principle is well-established (see e.g., [9]).

Also, since every convex set in a topological vector space is contractible,
hence n−connected for every n ≥ 0, the topological Klee Theorem implies
Proposition 3. Does the converse hold true?

References

[1] H. Ben-El-Mechaiekh and R. W. Dimand, A simpler proof of the Von Neumann
minimax theorem, Amer. Math. Monthly, 118 (2011), 636–641.

[2] H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, Points fixes et coincidences pour
les fonctions multivoques I (applications de Ky Fan), C. R. Acad. Sci. Paris, 295
(1982), 337–340.

[3] H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, Points fixes et coincidences pour
les fonctions multivoques II (applications de type Φ et Φ∗), C. R. Acad. Sci. Paris,
295 (1982), 381–384.

[4] H. Ben-El-Mechaiekh, P. Deguire, and A. Granas, Points fixes et coincidences pour
les fonctions multivoques III (applications de type M et M∗), C. R. Acad. Sc. Paris,
305 (1987), 381–384.

MISSOURI J. OF MATH. SCI., FALL 2015 61



H. BEN-EL-MECHAIEKH
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