WHEN A MATRIX AND ITS INVERSE ARE NONNEGATIVE

J. DING AND N. H. RHEE

Abstract

In this article we prove that A and A^{-1} are stochastic if and only of A is a permutation matrix. Then we extend this result to show that A and A^{-1} are nonnegative if and only if it is a product of a diagonal matrix with all positive diagonal entries and a permutation matrix.

1. Introduction

Applications abound with nonnegative matrices. For example, the discrete Laplacian leads to a nonnegative matrix. The matrix $\exp (A t)$ that defines the solution of the system of differential equations is nonnegative in some applications. The system of difference equations $p(k)=A p(k-1)$ has a nonnegative coefficient matrix A in many applications. Nonnegative matrices are so pervasive that any result of nonnegative matrices should be interesting.

A short proof of the fact that A and A^{-1} are stochastic matrices if and only if A is a permutation matrix is given in [1]. Here we present another proof of this fact. This proof is longer, but shows the power of canonical forms of stochastic matrices. Then we extend this result to show that A and A^{-1} are nonnegative if and only if it is a product of a diagonal matrix with all positive diagonal entries and a permutation matrix.

A matrix is called stochastic if it is a nonnegative matrix for which each of its row sums equals 1 . Clearly, if A is a permutation matrix, then A and A^{-1} are stochastic. Now we prove in three steps that if A and A^{-1} are stochastic, then A is a permutation matrix. In Section 2 we state a key spectral property of A when A and A^{-1} are stochastic. In Section 3 we mention a canonical form of a stochastic matrix. In Section 4 we develop a canonical form of A when A and A^{-1} are stochastic. This canonical form immediately gives us the result that if A and A^{-1} are stochastic, then A is a permutation matrix. Finally, in Section 5 we extend this result to the case when A and A^{-1} are nonnegative.

2. Spectral Property

Here we state a key spectral property of A when A and A^{-1} are stochastic.

Theorem 2.1. If A and A^{-1} are stochastic, then all eigenvalues of A lie on the unit circle in the complex plane.

Proof. We use the fact [3] that all eigenvalues of a stochastic matrix A are on the closed unit disk $\{\lambda \in \mathbf{C}:|\lambda| \leq 1\}$. Suppose A has eigenvalues which are inside the unit circle $\{\lambda \in \mathbf{C}:|\lambda|=1\}$. Then A^{-1} has eigenvalues which are outside the unit circle. But that is impossible because A^{-1} is stochastic. So all eigenvalues of A must be on the unit circle.

3. Canonical Form of Stochastic Matrices

What we discuss in this section can be found in [2] or [3]. But for the convenience of readers, we present it here. If a stochastic matrix A is reducible, then, by definition, there exists a permutation matrix P and square matrices X and Z such that

$$
P^{T} A P=\left[\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right]
$$

We denote this by writing

$$
A \sim\left[\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right]
$$

If X or Z is reducible, then another symmetric permutation can be performed to produce

$$
\left[\begin{array}{cc}
X & Y \\
0 & Z
\end{array}\right] \sim\left[\begin{array}{ccc}
R & S & T \\
0 & U & V \\
0 & 0 & W
\end{array}\right]
$$

where R, U, and W are square. Repeating this process eventually yields

$$
A \sim\left[\begin{array}{cccc}
X_{11} & X_{12} & \cdots & X_{1 m} \\
0 & X_{22} & \cdots & X_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & X_{m m}
\end{array}\right]
$$

where each $X_{i i}$ is irreducible. Finally, if there exist rows having nonzero entries only in diagonal blocks, then symmetrically permute all such rows

J. DING AND N. H. RHEE

to the bottom to produce

$$
A \sim\left[\begin{array}{cccc|cccc}
A_{11} & A_{12} & \cdots & A_{1 r} & A_{1, r+1} & A_{1, r+2} & \cdots & A_{1 m} \tag{1}\\
0 & A_{22} & \cdots & A_{2 r} & A_{2, r+1} & A_{2, r+2} & \cdots & A_{2 m} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{r r} & A_{r, r+1} & A_{r, r+2} & \cdots & A_{r m} \\
\hline 0 & 0 & \cdots & 0 & A_{r+1, r+1} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & A_{r+2, r+2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & A_{m m}
\end{array}\right],
$$

where each $A_{i i}$ is irreducible for $1 \leq i \leq m$. The form given on the righthand side of (1) is called the canonical form of a stochastic matrix A.

Now we mention an important spectral property of $A_{i i}$ for $1 \leq i \leq r$ in the canonical form (1).

Theorem 3.1. In the canonical form (1), we have $\rho\left(A_{i i}\right)<1$ for $1 \leq i \leq r$. Here $\rho\left(A_{i i}\right)$ denotes the spectral radius of $A_{i i}$.

Proof. This is clearly true when $A_{i i}$ is 1×1. So suppose that the order of $A_{i i}$ is at least 2. Because there must be at least one $A_{i j}$, with $i<j$, which is nonnegative and not zero, it follows that

$$
A_{i i} e \leq e \text { and } A_{i i} e \neq e
$$

where e is the vector of all 1's. It is clear that $\rho\left(A_{i i}\right) \leq 1$. Suppose $\rho\left(A_{i i}\right)=1$. Let $y>0$ be the left Perron vector of $A_{i i}$ so that $y^{T} A_{i i}=y^{T}$ and let $x=e-A_{i i} e \geq 0$. Since $A_{i i} e \neq e, x$ has a positive component. So $y^{T} x>0$. On the other hand,

$$
y^{T} x=y^{T}\left(e-A_{i i} e\right)=y^{T} e-y^{T} A_{i i} e=y^{T} e-y^{T} e=0
$$

which is a contradiction. So we see that $\rho\left(A_{i i}\right)<1$.

4. Canonical Form When A and A^{-1} are Stochastic

Throughout this section we assume that A and A^{-1} are stochastic. Since all eigenvalues of A are on the unit circle by Theorem 2.1 and $\sigma(A)=$ $\bigcup_{i=1}^{m} \sigma\left(A_{i i}\right)$, Theorem 3.1 implies that $r=0$ in (1), and hence the canonical form (1) reduces to

$$
A \sim\left[\begin{array}{cccc}
A_{11} & 0 & \cdots & 0 \tag{2}\\
0 & A_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & A_{m m}
\end{array}\right]
$$

where each $A_{k k}$ for $1 \leq k \leq m$ is irreducible.

Now we find further structure in (2). We divide $A_{k k}$ for $k=1,2, \ldots, m$ into two groups. Let the first group be made of all $A_{k k}$ which are 1×1, and the second group all $A_{k k}$ whose orders are greater than 1 . Without loss of generality, we may assume that $A_{k k}$ are 1×1 for $1 \leq k \leq s$ and that the orders of $A_{k k}$ are greater than 1 for $s+1 \leq k \leq t$ with $s+t=m$.

Since each $A_{k k}$ is stochastic, we have

$$
\begin{equation*}
A_{k k}=1 \text { for } 1 \leq k \leq s \tag{3}
\end{equation*}
$$

Now consider $A_{k k}$ with $s+1 \leq k \leq m$. Observe that all the eigenvalues of $A_{k k}$ are on the unit circle. Since the order of $A_{k k}$ is greater than 1 and $A_{k k}$ is irreducible, it has more than one eigenvalue on the unit circle. So $A_{k k}$ is an imprimitive matrix.

Let us recall the following Frobenius canonical form for imprimitive matrices [4].

Theorem 4.1. For each imprimitive matrix B with index of imprimitivity $h \geq 2$,

$$
B \sim\left[\begin{array}{ccccc}
0 & B_{12} & 0 & \cdots & 0 \\
0 & 0 & B_{23} & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & B_{h-1, h} \\
B_{h 1} & 0 & \cdots & 0 & 0
\end{array}\right]
$$

where the zero blocks on the main diagonal are square. Recall that \sim denotes permutation similarity.

Suppose that the order of the imprimitive stochastic matrix $A_{k k}$ is h. Since all eigenvalues of $A_{k k}$ are on the unit circle and they are all simple, it follows that the index of imprimitivity of $A_{k k}$ is also h. Hence, using Theorem 4.1 with $B=A_{k k}$ and using the fact that $A_{k k}$ is stochastic we see that, for $s+1 \leq k \leq m$,

$$
A_{k k} \sim\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{4}\\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right] \equiv P_{k}
$$

J. DING AND N. H. RHEE

Using (3) and (4), we see that (2) further reduces to

$$
A \sim\left[\begin{array}{cccc|cccc}
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \tag{5}\\
0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
\hline 0 & 0 & \cdots & 0 & P_{s+1} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & P_{s+2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & P_{t}
\end{array}\right]
$$

where the $(1,1)$-block is the $s \times s$ identity matrix. Since each P_{k} for $s+1 \leq$ $k \leq t$ is a permutation matrix, it follows that A is a permutation matrix. In summary we have the following result.

Theorem 4.2. A matrix and its inverse are stochastic if and only if is a permutation matrix.

5. Extension to Nonnegative Matrices

We extend our result from stochastic matrices to nonnegative matrices. In fact we have the following theorem.

Theorem 5.1. A matrix and its inverse are nonnegative matrices if and only if it is the product of a diagonal matrix with all positive diagonal entries and a permutation matrix.

Proof. Suppose that $A=D P$, where D is a diagonal matrix with all positive diagonal entries and P is a permutation matrix. Then clearly both A and $A^{-1}=P^{-1} D^{-1}$ are nonnegative matrices.

Conversely, suppose that A and A^{-1} are nonnegative matrices. Since A is invertible and nonnegative, each row of A has at least one positive entry. So if we let D be a diagonal matrix with each diagonal entry the sum of the corresponding row of A, then D is a diagonal matrix with all positive diagonal entries. Observe that if we let $P=D^{-1} A$, then P is an invertible stochastic matrix. Since $P^{-1}=A^{-1} D$ is nonnegative and

$$
e=I e=P^{-1} P e=P^{-1} e
$$

P^{-1} is a stochastic matrix. So by Theorem 4.2 P is a permutation matrix, and $A=D P$.

References

[1] J. Ding and N. H. Rhee, When a matrix and its inverse are stochastic, The College Mathematics Journal, 44.2, (2013), 108-109.
[2] J. Ding and A. Zhou, Nonnegative Matrices, Positive Operators, and Applications, World Scientific, 2009.
[3] C. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, PA, 2000.
[4] R. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
MSC2010: 15A18
Key words and phrases: stochastic matrix, permutation matrix, nonnegative matrix

Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS 39406-5045

E-mail address: jiu.ding@usm.edu
Department of Mathematics and Statistics, University of Missouri - Kansas City, Kansas City, MO 64110-2499

E-mail address: rheen@umkc.edu

