
NEW FORMS OF CONTRA-CONTINUITY IN IDEAL

TOPOLOGY SPACES

WADEI AL-OMERI, MOHD. SALMI MD. NOORANI, AND A. AL-OMARI

Abstract. In this paper, we apply the notion of e-I-open sets [1]
in ideal topological spaces to present and study new classes of func-

tions called contra e-I-continuous functions, almost-e-I-continuous,
almost contra-e-I-continuous, and almost weakly-e-I-continuous along
with their several properties, characterizations and mutual relation-
ships. Relationships between their new classes and other classes of
functions are established and some characterizations of their new
classes of functions are studied. Further, we introduce new types
of graphs, called e-I-closed, contra-e-I-closed, and strongly contra-
e-I-closed graphs via e-I-open sets. Several characterizations and
properties of such notions are investigated.

1. Introduction and Preliminaries

In 1996, Dontchev [4] introduced a new class of functions called contra-
continuous functions. He defined a function f : X → Y to be contra-
continuous if the preimage of every open set of Y is closed in X . A new
weaker form of this class of functions, called contra-e-continuous functions,
contra e-continuous functions, and contra a-continuous functions were in-
troduced and investigated by Ekici [6]. In this direction, we will intro-
duce the concept of contra e-I-continuous functions. In Section 2 we in-
troduce and study fundamental properties of contra-e-I-continuous func-
tions, almost contra-e-I-continuous, almost-e-I-continuous etc.; and using
such functions we characterize e-I-connectedness. Section 3 is devoted to
the investigation of almost contra-e-continuous functions. Section 4 deals
with notions of e-I-closed, contra-e-I-closed, and strongly contra e-I-closed
graphs.

An ideal I on a topological space (X, τ ) is a nonempty collection of
subsets of X which satisfies the following conditions:

A ∈ I and B ⊂ A implies B ∈ I; A ∈ I and B ∈ I implies A ∪B ∈ I.
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Applications to various fields were further investigated by Jankovic and
Hamlett [9], Dontchev et al. [4], Mukherjee et al. [12], Arenas et al. [2],
Nasef and Mahmoud [13], etc. Given a topological space (X, τ) with an
ideal I on X and if ℘(X) is the set of all subsets of X , a set operator
(.)

∗

: ℘(X) → ℘(X), called a local function [20, 9] of A with respect to τ
and I is defined as follows: for A ⊆ X ,

A∗(I, τ) = {x ∈ X : U ∩ A /∈ I, for every U ∈ τ(x)}

where τ(x) = {U ∈ τ | x ∈ U}. A Kuratowski closure operator is defined
as Cl∗(x) = A ∪ A∗ for τ∗. When there is no chance for confusion, we will
simply write A∗ for A∗(I, τ). X∗ is often a proper subset of X .

A subset A of a space (X, τ, I) is said to be regular open (resp. regular
closed) [19] if A = Int(Cl(A)) (resp. A = Cl(Int(A))). A is called δ-open
[21] if for each x ∈ A, there exist a regular open set G such that x ∈ G ⊂ A.
The complement of δ-open set is called δ-closed. A point x ∈ X is called a
δ-cluster point of A if Int(Cl(U)) ∩ A 6= ∅ for each open set U containing
x. The set of all δ-cluster points of A is called the δ-closure of A and is
denoted by Clδ(A) [21]. The set δ-interior of A [21] is the union of all
regular open sets of X contained in A and is denoted by Intδ(A). A is
δ-open if Intδ(A) = A. δ-open sets forms a topology τδ. The collection of
all δ-open sets in X is denoted by δO(X).

A subset A of an ideal topological space (X, τ) is said to be R-I-open
(resp. R-I-closed) [22] if A = Int(Cl∗(A)) (resp. A = Cl∗(Int(A))). A
point x ∈ X is called a δ-I-cluster point of A if Int(Cl∗(U)) ∩ A 6= ∅ for
each open set U containing x. The family of all δ-I-cluster points of A is
called the δ-I-closure of A and is denoted by δClI(A). The set δ-I-interior
of A is the union of all R-I-open sets of X contained in A and is denoted
by δIntI(A). A is said to be δ-I-closed if δClI(A) = A [22]. The class of
e-open sets contains all δ-preopen [15] sets and δ-semiopen [14] sets.

Definition 1.1. A subset A of an ideal topological space (X, τ, I) is said
to be

(1) e-I-open if [1] A ⊂ Cl(δIntI(A)) ∪ Int(δClI(A)) and e-I-closed
[1] if Cl(δIntI(A)) ∩ Int(δClI(A)) ⊂ A.

The class of all e-I-open sets of an ideal topological space (X, τ, I) is
denoted by EIO(X).

Theorem 1.2. [1]

(1) The union of any family of e-I-open sets is an e-I-open set;
(2) The intersection of even two e-I-open open sets need not be e-I-

open.

Definition 1.3. [6] A function f : (X, τ) −→ (Y, σ) is called contra e-
continuous if f−1(B) is e-closed in X for every open set B of Y .
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2. Contra e-I-Continuous Functions

Definition 2.1. A function f : (X, τ, I) −→ (Y, σ) is called contra e-I-
continuous functions if f−1(V ) is e-I-closed in (X, τ, I) for every open set
V in (Y, σ).

Example 2.2. Let X = {a, b, c, d} with a topology τ = {∅, X, {b}, {c}, {b, c},
{a, b}, {a, b, c}, {c, b, d}} and an ideal I = {Ø, {c}}. Let f : (X, τ, I) −→
(X, τ) be defined by f(a) = b, f(b) = a, f(c) = d, and f(d) = c. Observe
that f is contra-e-continuous. But f is not contra-e-I-continuous, since
{a, b} is open and f−1{a, b} = {a, b} is not e-I-closed.

Definition 2.3.

(1) Let A be a subset of an ideal topological space (X, τ, I). Then the
set ∩{U ∈ τ : A ⊂ U} is called the kernel of A and denoted by
Ker(A) [11].

(2) The intersection of all e-I-closed containing A is called the e-I-
closure of A and its denoted by Cl∗e(A) [1].

(3) The e-I-interior of A, denoted by Int∗e(A), is defined by the union
of all e-I-open sets contained in A [1].

Lemma 2.4. [8] Let A be a subset of an ideal topological space (X, τ, I).

(1) x ∈ Ker(A) if and only if A ∩ F 6= ∅ for any closed subset of X
with x ∈ F ,

(2) A ⊂ Ker(A) and A = Ker(A) if A is open in X,
(3) if A ⊂ B, then Ker(A) ⊂ Ker(B).

Lemma 2.5. The following properties hold for a subset A of an topological
ideal space (X, τ, I).

(1) Int∗e(A) = X − Cl∗e(X −A).
(2) x ∈ Cl∗e(A) iff A ∩ U 6= ∅ for each U ∈ EIO(X, x).
(3) A is e-I-closed if and only if Cl∗e(A) = A [1].
(4) B is e-I-open if and only if Int∗e(B) = B [1].

Theorem 2.6. The following statements are equivalent for a function
f : (X, τ, I) −→ (Y, σ).

(1) f is contra e-I-continuous,
(2) for each x ∈ X and each closed set F in Y with f(x) ∈ F , f−1(F )

is e-I-open in X,
(3) for each x ∈ X and each closed set F in Y with f(x) ∈ F , there

exist e-I-open set U containing x such that f(U) ⊂ F ,
(4) for every subset A of X, f(Cl∗e(A)) ⊂ Ker(f(A)),
(5) for every subset B of Y , Cl∗e(f

−1(B)) ⊂ f−1(Ker(B)).
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Proof.
(1)⇒(3). Let x ∈ X and let F be any closed set in Y such that f(x) ∈ F .
Since f is contra e-I-continuous, we have f−1(Y −F ) = X−f−1(F ) is e-I-
closed in X and so f−1(F ) is e-I-open. By butting U = f−1(F ) containing
x, we have f(U) ⊂ F .
(3)⇒(2). Let F be an closed set in Y and x ∈ f(x). Then f(x) ∈ F
and there exists e-I-open subset Ux containing x such that f(Ux) ⊂ F .
Therefore, we obtain f−1(F ) = ∪{Ux : x ∈ f−1(F )} which is e-I-open in
X .
(2)⇒(1). Let U be any open set of Y . Then since (Y − U) is closed in Y ,
by (2), f−1(Y − U) = X − f−1(U) is e-I-open in X . Therefore, f−1(U) is
e-I-closed in X .
(2)⇒(4). Let A be any subset of X . Suppose that y /∈ Ker(A). Then,
by Lemma 2.4, there exists a closed set F of Y such that y ∈ F and
f(A)∩F = ∅. This implies that A∩f−1(F ) = ∅ and Cl∗e(A)∩f

−1(F ) = ∅.
Therefore, we obtain f(Cl∗e(A))∩ (F ) = ∅ and y /∈ f(Cl∗e(A)). This implies
that f(Cl∗e(A)) ⊂ Ker(f(A)).
(4)⇒(5). Let B be any subset of Y . By (4) and Lemma 2.4, we have
f(Cl∗e(f

−1(B))) ⊂ Ker(f(f−1(B))) ⊂ Ker(B) and
Cl∗e(f

−1(B)) ⊂ f−1(Ker(B)).
(5)⇒(1). Let V be any subset of Y . By (5) and Lemma 2.4, we have
Cl∗e(f

−1(V )) ⊂ f−1(Ker(V ))=f−1(V ) and Cl∗e(f
−1(V ))=f−1(V ). This

shows that f−1(V ) is e-I-closed in X . �

Lemma 2.7. [1] The following statements are equivalent for a function
f : (X, τ, I) −→ (Y, σ).

(1) f is e-I-continuous,
(2) for each x ∈ X and each open set V in Y with f(x) ∈ V , there

exist e-I-open set U containing x such that f(U) ⊂ V .

Definition 2.8. If a function f : (X, τ, I) −→ (Y, σ) is e-I-continuous [1]
if f−1(B) is e-I-open in X for every open set B of Y .

Theorem 2.9. If a function f : (X, τ, I) −→ (Y, σ) is contra e-I-continuous
functions and Y is regular, then f is an e-I-continuous functions.

Proof. Let x be an arbitrary point of X and V be an open set of Y contain-
ing f(x). Since Y is regular, there exists an open set W in Y containing
f(x) such that Cl(W ) ⊂ V . Since f is contra e-I-continuous, by Theorem
2.6 there exists U ∈ EIO(X) containing x such that f(U) ⊂ Cl(W ). Then
f(U) ⊂ Cl(W ) ⊂ V . Hence, f is e-I-continuous. �

Definition 2.10. An ideal topological space (X, τ, I) is said to be e-I-
connected if X is not the union of two disjoint non-empty e-I-open subsets
of X.
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Theorem 2.11. If f : (X, τ, I) −→ (Y, σ) is a contra e-I-continuous func-
tion from an e-I-connected space X onto any space Y , then Y is not a
discrete space.

Proof. Suppose that Y is discrete. Let A be a proper non-empty clopen set
in Y . Then f−1(A) is a proper non-empty e-I-clopen subset of X , which
contradicts the fact that X is e-I-connected. �

Theorem 2.12. If f : (X, τ, I) −→ (Y, σ) is a contra e-I-continuous sur-
jection function and X is e-I-connected, then Y is connected.

Proof. Let f : (X, τ, I) −→ (Y, σ) be a contra e-I-continuous function from
an e-I-connected space X onto a space Y . If possible assume that Y is
disconnected. Then Y = A∪B, where A and B are non-empty clopen sets
in Y with A∩B = ∅. Since f is contra e-I-continuous, we have that f−1(A)
and f−1(B) are e-I-open non-empty sets in X with f−1(A) ∪ f−1(B) =
f−1(A∪B) = f−1(Y ) = X and f−1(A)∩f−1(B) = f−1(A∩B) = f−1(∅) =
∅. This means that X is not e-I-connected, which is a contradiction. Then
Y is connected. �

Definition 2.13. A function f : (X, τ, I) −→ (Y,J ) is called almost-e-I-
continuous if, for each x ∈ X and for each open set V of Y containing
f(x), there exist U ∈ EIO(X, x) such that f(U) ⊂ Int∗e(Cl(V )).

Definition 2.14. A function f : (X, τ, I) −→ (Y,J ) is called Pre-e-I-open
if image of each e-I-open set of X is an e-J -open set in Y .

Definition 2.15. The e-I-frontier of a subset A of a space X, denoted by
e-I-Fr(A), is denoted as e-I-Fr(A) = Cl∗e(A) ∩ Cl

∗

e(X − A) = Cl∗e(A) ∩
Int∗e(A).

Theorem 2.16. The set of all points x of X at which f : (X, τ, I) −→
(Y, σ) is not contra-e-I-continuous is identical with the union of e-I-frontier
of the inverse images of closed sets of Y containing f(x).

Proof.
Necessity. Let f be not contra-e-I-continuous at a point x of X . Then by
Theorem 2.6, there exists a closed set F of Y containing f(x) such that
f(U)∩ (Y −F ) 6= ∅, for every U ∈ EIO(X, x), which implies U ∩ f−1(Y −
F ) 6= ∅. Therefore, x ∈ Cl∗e(f

−1(Y −F )) = Cl∗e(X−f−1(F )). Again, since
x ∈ f−1(F ), we get x ∈ Cl∗e(f

−1(F )) and so x ∈ e-I − Fr(f−1(F )).
Sufficiency. Suppose that x ∈ e-I − Fr(f−1(F )) for some closed set F of
Y containing f(x) and f is contra-e-I-continuous at x. Then there exists
U ∈ EIO(X, x) such that f(U) ⊂ F . Therefore, x ∈ U ⊂ f−1(F ) and
hence, x ∈ Int∗e(f

−1(F )) ⊂ X − e-I-Fr(f−1(F )), which is a contradiction.
So f is not contra-e-I-continuous at x. �
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Theorem 2.17. If f : (X, τ, I) −→ (Y,J ) is pre-e-I-open, contra-e-I-
continuous then its almost-e-I-continuous.

Proof. Let x ∈ X and V be an open set containing f(x). Since f is contra-
e-I-continuous, then by Theorem 2.6, there exists U ∈ EIO(X, x) such
that f(U) ⊂ Cl(V ). Again, since f is pre-e-I-open, f(U) is e-J -open in
Y . Therefore, f(U) = Int∗e(f(U)) and hence, f(U) ⊂ Int∗e(Cl(f(V ))) ⊂
Int∗e(Cl(V )). So f is almost-e-Icontinuous. �

Definition 2.18. A function f : (X, τ, I) −→ (Y, σ) is called almost weakly-
e-I-continuous if, for each x ∈ X and for each open set V of Y containing
f(x), there exist U ∈ EIO(X, x) such that f(U) ⊂ Cl(V ).

Theorem 2.19. If function f : (X, τ, I) −→ (Y, σ) is contra e-I-continuous
then f is almost weakly-e-I-continuous.

Proof. For any open set V of Y , Cl(V ) is closed in Y . Since f is contra e-
I-continuous, f−1(Cl(V )) is e-I-open set in X . We take U = f−1(Cl(V )),
then f(U) ⊂ Cl(V ). Hence, f is almost weakly-e-I-continuous. �

Example 2.20. Let X = {a, b, c} with a topology τ = {∅, X, {a}, {b}, {a, b}}
and an ideal I = {Ø, {a}}. Let f : (X, τ, I) −→ (X, τ) be the identity
function. Observe that f is almost weakly-e-I-continuous. But f is not
contra-e-I-continuous.

Definition 2.21. An ideal topological space (X, τ, I) is said to be e-I-T1
if for each pair of distinct points x and y in X, there exist e-I-open sets U
and V containing x and y, respectively, such that y /∈ U and x /∈ V .

Definition 2.22. An ideal topological space (X, τ, I) is said to be e-I-T2
if for each pair of distinct points x and y in X, there exist e-I-open sets U
and V containing x and y, respectively, such that U ∩ V = ∅.

Theorem 2.23. Let f : (X, τ, I) −→ (Y, σ) be a contra e-I-continuous
injection. If Y is a Urysohn space, then X is e-I-T2.

Proof. Let x and y be a pair of distinct points in X . Then f(x) 6= f(y).
Since Y is a Urysohn space, there exist open sets U and V of Y such
that f(x) ∈ U , f(y) ∈ V and Cl(U) ∩ Cl(V ) = ∅. Since f is contra e-I-
continuous at x and y, there exist e-I-open sets A and B in X such that
x ∈ A, y ∈ B and f(A) ⊂ Cl(U), f(B) ⊂ Cl(V ). Then, f(A) ∩ f(B) = ∅,
so A ∩B = ∅. Hence, X is e-I-T2. �

Proposition 2.24. Let (X, τ, I) be an e-I-connected space and (Y, σ) a
T1-space. If f : (X, τ, I) −→ (Y, σ) is a contra e-I-continuous function,
then f is constant.
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Proof. Let X be e-I-connected. Now, since Y is a T1 space, 0 = {f−1(y) :
y ∈ Y } is disjoint e-I-open partition of X . If |0| ≥ 2 (where |0| denotes the
cardinality of 0), then X is the union of two nonempty disjoint e-I-open
sets. Since X is e-I-connected, we get |0| = 1. Hence, f is constant. �

Definition 2.25. A function f : (X, τ, I) −→ (Y, σ) is said to be e-I-
irresolute if f−1(B) ∈ EIO(X) for each B ∈ EIO(Y ).

Theorem 2.26. For the function f : (X, τ, I) −→ (Y, σ,J ) and
g : (Y, σ,J ) −→ (Z, η) the following hold.

(1) If f is contra-e-I-continuous function and g is a continuous func-
tion, then g ◦ f is contra-e-I-continuous.

(2) If f is e-I-irresolute function and g is a contra-e-I-continuous,
then g ◦ f is contra-e-I-continuous.

Proof.
(1) For x ∈ X , let W be any closed set of Z containing (g ◦ f)(x). Since
g is continuous, V = g−1(W ) is closed in Y . Also, since f is contra-e-I-
continuous, there exists U ∈ EIO(X, x) such that f(U) ⊂ V . Therefore,
(g ◦ f(U)) ⊂W . Hence, g ◦ f is contra-e-I-continuous.
(2) For x ∈ X , let W be any closed set of Z containing g ◦ f(x). Since g
is contra-e-I-continuous, there exist V ∈ EJO(Y, f(x)) such that g(V ) ⊂
W . Again, since f is e-I-irresolute there exist U ∈ EIO(X, x) such that
f(U) ⊂ V . This shows that (g ◦ f(U)) ⊂ W . Hence, g ◦ f is contra-e-I-
continuous. �

Definition 2.27. A space (X, τ, I) is said to be e-I-normal if each pair of
nonempty disjoint closed sets can be separated by disjoint e-I-open sets.

Definition 2.28. [18] A space (X, τ) is said to be ultra normal if each pair
of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Theorem 2.29. If f : (X, τ, I) −→ (Y, σ,J ) is a contra e-I-continuous,
closed injection and Y is ultra normal, then X is e-I-normal.

Proof. Let C1 and C2 be disjoint closed subsets of X . Since f is closed and
injective, f(C1) and f(C2) are disjoint closed subsets of Y . But Y is ultra
normal, so f(C1) and f(C2) are separated by disjoint clopen sets V1 and V2,
respectively. Since f is contra e-I-continuous, f−1(V1), and f−1(V2) are
e-I-open, with C1 ⊂ f−1(V1), C2 ⊂ f−1(V2) and f−1(V1) ∩ f

−1(V2) = ∅.
Hence, X is e-I-normal. �

Definition 2.30. A topological space (X, τ) is ultra Hausdorff [18] if for
each pair of distinct points x and y of X there exist closed sets U and V
such that x ∈ U , y ∈ V , and U ∩ V = ∅. A topological space (X, τ) is said

MISSOURI J. OF MATH. SCI., SPRING 2014 39



W. AL-OMERI AND M. S. M. NOORANI

to be weakly Hausdorff [17] each element of X is the intersection of regular
closed sets of X.

Theorem 2.31. If f : (X, τ, I) −→ (Y, σ,J ) is a contra e-I-continuous
injection and Y is ultra Hausdorff, then X is e-I-T2.

Proof. Let x, y ∈ X where x 6= y. Then, since f is an injection and Y
is ultra Hausdorff, f(x) 6= f(y) and there exist disjoint closed sets U and
V containing f(x) and f(y), respectively. Again, since f is contra-e-I-
continuous, f−1(U) ∈ EIO(X, x) and f−1(V )EIO(X, y) with f−1(U) ∩
f−1(V ) = ∅. This shows that X is e-I-T2. �

Definition 2.32. An ideal topological space (X, τ, I) is said to be e-I-
compact [1] if every e-I-open cover of X has a finite subcover.

3. Almost Contra e-I-Continuous

Definition 3.1. A function f : (X, τ, I) −→ (Y, σ) is called almost contra
e-I-continuous if f−1(V ) is e-I-closed in (X, τ, I) for every regular open
set V in (Y, σ).

Theorem 3.2. The following statements are equivalent for a function
f : (X, τ, I) −→ (Y, σ):

(1) f is almost contra e-I-continuous,
(2) f−1(F ) is e-I-open in X for each regular closed set F of Y ,
(3) for each x ∈ X and each regular closed set F of Y with f(x) ∈ F ,

there exist e-I-open set U containing x such that f(U) ⊂ F ,
(4) for each x ∈ X and each regular open set F of Y non-containing

f(x), there exist an e-I-closed set K of X non-containing x such
that f−1(F ) ⊂ K,

Proof.
(1)⇒(2). Let x ∈ X and let F be any regular closed set in Y such that
f(x) ∈ F . Then (Y −F ) is regular open. Since f is contra e-I-continuous,
we have f−1(Y − F ) = X − f−1(F ) is e-I-closed in X and so f−1(F ) is e-
I-open. By butting U = f−1(F ) which is containing x, we have f(U) ⊂ F .
(2)⇒(3). Let F be an regular closed set in Y such that f(x) ∈ F . Then
f−1(F ) is e-I-open in X and x ∈ f−1(F ). Taking U = f−1(F ) we get
f(U) ⊂ F .
(3)⇒(2). Let F be any regular closed set of Y and x ∈ f−1(F ). Then there
exist Ux ∈ EIO(X, x) such that f(Ux) ⊂ F and so Ux ⊂ f−1(F ). Also, we
have f−1(F ) ⊂ ∪{Ux : x ∈ f−1(F )}. Hence, f−1(F ) ∈ EIO(X).
(3)⇒(4). Let V be any regular open set of Y non-containing f(x). Then
(Y − V ) is a regular closed set of Y containing f(x). Hence by (3), there
exist U ∈ EIO(X, x) such that f(U) ⊂ (Y −V ). Hence, U ⊂ f−1(Y −V ) ⊂
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X − f−1(V ) and so f−1(V ) ⊂ (X −U). Now, since U ∈ EIO(X), (X −U)
is e-I-closed set of X not containing x. The converse part is obvious. �

Proposition 3.3. If f : (X, τ, I) −→ (Y, σ) is almost contra e-I-continuous
then f is almost weakly-e-I-continuous.

Proof. For x ∈ X , let Q be any open set of Y containing f(x). Then
Cl(Q) is a regular closed set of Y containing f(x). Then by Theorem 3.2
(3), there exist P ∈ EIO(X, x) such that f(P ) ⊂ Cl(Q). So f is almost
weakly-e-Icontinuous. �

The following Lemma can be easily verified.

Lemma 3.4. A function f : (X, τ, I) −→ (Y, σ) is almost e-I-continuous,
if and only if for each x ∈ X and each regular open set V of Y containing
f(x), there exist U ∈ EIO(X, x) such that f(U) ⊂ V .

We recall that a topological (X, τ) is said to be extremely disconnected
if the closure of every open set of X is open in X .

Theorem 3.5. If f : (X, τ, I) −→ (Y, σ) be a function, where Y is ex-
tremely disconnected. Then f is almost contra-e-I-continuous if and only
if it is almost e-I-continuous.

Proof. Suppose x ∈ X and V is a regular open set of Y containing f(x).
Since Y is extremely disconnected, V is clopen and so it is regular closed.
Then using Theorem 3.2, there exist U ∈ EIO(X, x) such that f(U) ⊂ V .
Hence by Lemma 3.4, f is almost e-I-continuous.
Conversely, let f be almost e-I-continuous and W be any regular closed
set of Y . Since Y is extremally disconnected, W is also regular open in
Y . Therefore, f−1(W ) is e-I-open in X . This shows that f is almost
contra-e-I-continuous. �

Theorem 3.6. If f : (X, τ, I) −→ (Y, σ) is almost a contra-e-I-continuous
injection and Y is weakly Hausdorff, then X is e-I-T1.

Proof. Let x, y ∈ X where x 6= y. Then, since f is an injection and Y
is weakly Hausdorff, f(x) 6= f(y) and there exist disjoint regular closed
sets U and V such that f(x) ∈ U , f(y) /∈ U and f(y) ∈ V , f(x) /∈ V .
Assuming f is almost contra-e-I-continuous, f−1(U) ∈ EIO(X, x) and
f−1(V ) ∈ EIO(X, y) such that x ∈ f−1(U), y /∈ f−1(U) and y ∈ f−1(V ),
x /∈ f−1(V ). This shows that X is e-I-T1. �

Corollary 3.7. If f : (X, τ, I) −→ (Y, σ) is an almost contra-e-I-continuous
injection and Y is weakly Hausdorff, then X is e-I-T1.

Theorem 3.8. If f : (X, τ, I) −→ (Y, σ) is almost contra e-I-continuous
surjection and X is weakly Hausdorff, then Y is connected.
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Proof. If possible, suppose that Y is not connected. Then there exist dis-
joint non-empty open sets U and V of Y such that Y = U ∪ V . Since
U and V are clopen sets in Y , they are regular open sets of Y . Again,
since f is almost contra-e-I-continuous surjection, f−1(U) and f−1(V ) are
e-I-open sets of X and X = f−1(U) ∪ f−1(V ). This shows that X is not
e-I-connected, a contradiction. Hence, Y is connected. �

Definition 3.9. An ideal topological space (X, τ, I) is said to be

(1) e-I-compact [1] if every e-I-open cover of X has a finite subcover.
(2) countably e-I-compact if every countable cover of X by e-I-open

sets has a finite subcover.
(3) e-I-Lindelöf if every e-I-open cover of X has a countable subcover.

Definition 3.10. A topological space X is called S-closed [10] (resp. count-
ably S-closed [3], S-Lindelöf [7]) if every regular closed (resp. countably reg-
ular closed, regular closed) cover of X has a finite (resp. finite, countable)
subcover. A topological space X is said to be nearly compact [16] (resp.
nearly countably compact [16], nearly Lindelöf [16]) if every regular open
(resp. countable regular open, regular open) cover of X has a finite (resp.
finite, a countably) subcover.

Theorem 3.11. Let f : (X, τ, I) −→ (Y, σ) is an almost contra-e-I-contin-
uous surjection. Then the following statements hold:

(1) If X e-I-compact, then Y is S-closed.
(2) If X e-I-Lindelöf, then Y is S-Lindelöf.
(3) If X countably e-I-compact, then Y is countably S-closed.

Proof.
(1) Let {Vα : α ∈ 4} be any regular closed cover of Y . Since f is almost
contra-e-I-continuous, then {f−1(Vα) : α ∈ 4} is a e-I-open cover of X .
Again, since X is e-I-compact, there exist a finite subset I0 of 4 such that
X = ∪{f−1(V )α : α ∈ I0} and hence, Y = ∪{Vα : α ∈ I0}. Therefore, Y is
S-closed.
Other proofs are similar to (1) and are therefore omitted. �

4. Graphs via e-I-Open Sets

Recall that for a function f : X → Y , the subset f(x, f(x)) : x ∈ X} ⊂
X × Y is called the graph of f and is denoted by G(f).

Definition 4.1. The graph G(f) of a function f : (X, τ, I) −→ (Y, σ) is
said to be e-I-closed (resp. contra-e-I-closed) if for each (x, y) ∈ (X×Y )−
G(f), there exist an U ∈ EIO(X, x) and an open (resp. a closed) set V in
Y containing y such that (U × V ) ∩G(f) = ∅.
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Lemma 4.2. The graph G(f) of a function f : (X, τ, I) −→ (Y, σ) is e-I-
closed (resp. contra-e-I-closed) in X × Y if and only if for each (x, y) ∈
(X ×Y )−G(f) there exist U ∈ EIO(X, x) and an open set (resp. a closed
set) V in Y containing y such that f(U) ∩ V = ∅.

Proof. We shall prove that f(U) ∩ V = ∅, (U × V ) ∩ G(f) = ∅. Let
(U × V ) ∩G(f) 6= ∅. Then there exist (x, y) ∈ (U × V ) and (x, y) ∈ G(f).
This implies that x ∈ U , y ∈ V and y = f(x) ∈ V . Therefore, f(U)∩V 6= ∅.
Hence, the result follows. �

Theorem 4.3. If a function f : (X, τ, I) −→ (Y, σ) is contra-e-I-continuous
and Y is Urysohn, then G(f) is contra-e-I-closed in X × Y .

Proof. Let (x, y) ∈ (X × Y ) − G(f). Then y 6= f(x) and since Y is
Urysohn, there exist open sets S, T in Y such that f(x) ∈ S, y ∈ T
and Cl(S) ∩ Cl(T ) = ∅. Now, since f is contra-e-I-continuous, there exist
U ∈ EIO(X, x) such that f(U) ⊂ Cl(S) which implies that f(U)∩Cl(T ) =
∅. Hence by Lemma 4.2, G(f) is contra-e-I-closed in X × Y . �

Theorem 4.4. If f : (X, τ, I) −→ (Y, σ) and g : (X, τ, I) −→ (Y, σ) are
contra-e-I-continuous functions, where Y is Urysohn, then D = {x ∈ X :
f(x) = g(x)} is e-I-closed in X.

Proof. Let x ∈ (X−D). Then f(x) 6= g(x). Since Y is Urysohn, there exist
open sets U and V such that f(x) ∈ U and g(x) ∈ V with Cl(U)∩Cl(V ) =
∅. Again, since f and g are contra-e-I-continuous, then f−1(Cl(U)) and
f−1(Cl(V )) are e-I-open sets in X . Let P = f−1(Cl(U)) and Q =
f−1(Cl(V )), then P and Q are e-I-open sets of X containing x. Let
M = P ∩ Q, then M is e-I-open in X . Hence, f(M) ∩ g(M) = f(P ∩
Q)∩ g(P ∩Q) ⊂ f(P )∩ g(Q) = Cl(U)∩Cl(V ) = ∅. Therefore, D ∩M = ∅
and hence, x /∈ Cl∗e(D). Thus, D is e-I-closed in X . �

Definition 4.5. The graph G(f) of a function f : (X, τ, I) −→ (Y, σ) is
said to be strongly contra-e-I-closed if for each (x, y) ∈ X×Y −G(f), there
exist U ∈ EIO(X, x) and regular closed set V in Y containing y such that
(U × V ) ∩G(f) = ∅.

Lemma 4.6. The graph G(f) of a function f : (X, τ, I) −→ (Y, σ) is
strongly contra-e-I-closed in X×Y if and only if for each (x, y) ∈ (X×Y )−
G(f) there exist U ∈ EIO(X, x) and regular closed set V in Y containing
y such that f(U) ∩ V = ∅.

Theorem 4.7. If a function f : (X, τ, I) −→ (Y, σ) is almost weakly-e-I-
continuous and Y is Urysohn, then G(f) is strongly contra-e-I-closed in
X × Y .
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Proof. Let (x, y) ∈ (X×Y )−G(f). Then y 6= f(x) and since Y is Urysohn
there exist open sets P , Q in Y such that f(x) ∈ P , y ∈ Q and Cl(P ) ∩
Cl(Q) = ∅. Now, since f is almost weakly-e-I-continuous, there exist
U ∈ EIO(X, x) such that f(U) ⊂ Cl(P ). This implies that f(U)∩Cl(Q) =
f(U)∩Cl(Int(Q)) = ∅, where Cl(Int(Q)) is regular closed in Y . Hence by
Lemma 4.6, G(f) is strongly contra-e-I-closed in X × Y . �

A function f : (X, τ, I) −→ (Y, σ) is called almost e-I-continuous if
f−1(V ) is e-I-open in X for every regular open set V of Y .

Lemma 4.8. A function f : (X, τ, I) −→ (Y, σ) is almost e-I-continuous
if and only if for each x ∈ X and each regular open set Q of Y containing
f(x), there exists P ∈ EIO(X, x) such that f(P ) ⊂ Q.

Theorem 4.9. If f : (X, τ, I) −→ (Y, σ) is almost e-I-continuous and Y
is T2, then G(f) is strongly contra-e-I-closed.

Proof. Let (x, y) ∈ (X × Y ) − G(f). Then y 6= f(x) and since Y is T2,
there exist open sets P and Q containing y and f(x), respectively, such
that P ∩ Q = ∅, which is equivalent to Cl(P ) ∩ Int(Cl(Q)) = ∅. Again,
since f is almost e-I-continuous and Q is regular open, by Lemma 4.8,
there exists S ∈ EIO(X, x) such that f(S) ⊂ Q ⊂ Int(Cl(Q)). This
implies that f(S) ∩ Cl(P ) = ∅ and so by Lemma 4.6, G(f) is strongly
contra-e-I-closed. �

Definition 4.10. [1] A subset A of an ideal topological space (X, τ, I) is
called e-I-dense if Cl∗e(A) = X.

Proposition 4.11. Let f : (X, τ, I) −→ (Y, σ) and g : (X, τ, I) −→ (Y, σ)
be any two functions. If Y is Urysohn, f , g are contra-e-I-continuous
functions and f = g on e-I-dense set A ⊂ X, then f = g on X.

Proof. Since f , g are contra-e-I-continuous and Y is Urysohn, using The-
orem 4.4, D = {x ∈ X : f(x) = g(x)} is e-I-closed in X . Also, we have
f = g on e-I-dense set A ⊂ X . Now, since A ⊂ D and A is e-I-dense in
X , we have X = Cl∗e(A) ⊂ Cl∗e(D) = D. Hence, f = g on X . �

Definition 4.12. A filter base F on a topological space (X, τ, I) is said
to e-I-converge to a point x ∈ X if for each V ∈ EIO(X, x), there exists
F ∈ F such that F ⊂ V .

Theorem 4.13. Every function ψ : (X, τ, I) −→ (Y, σ), where Y is com-
pact with e-I-closed graph is e-I-continuous.

Proof. Let ψ be not e-I-continuous at x ∈ X . Then there exists an open
set S in Y containing ψ(x) such that ψ(T ) 6⊂ S for every T ∈ EIO(X, x).
It is obvious to verify that ϑ = {T ⊂ X : T ∈ EIO(X, x)} is a filter base on
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X that e-I-converges to x. Now we shall show that Yϑ = {ψ(T )∩ (Y −S) :
T ∈ EIO(X, x)} is a filter base on Y . Here for every T ∈ EIO(X, x),
ψ(T ) 6⊂ S, i.e. ψ(T )∩ (Y − S) 6= ∅. So ∅ /∈ Yϑ. Let G, H ∈ Yϑ. Then there
are T1, T2 ∈ ϑ such that G = ψ(T1) ∩ (Y − S) and H = ψ(T2) ∩ (Y − S).
Since ϑ is a filter base, there exists a T3 ∈ ϑ such that T3 ⊂ T1 ∩ T2 and so
W = ψ(T3) ∩ (Y − S) ∈ Yϑ with W ⊂ G ∩H . It is clear that G ∈ Yϑ and
G ⊂ H imply H ∈ Yϑ. Hence, Yϑ is a filter base on Y . Since Y −S is closed
in compact space Y , S is itself compact. At some point, Yϑ must adhere
to y ∈ Y − S. Here y 6= ψ(x) ensures that (x, y) /∈ G(ψ). Thus Lemma 4.2
gives us an U ∈ EIO(X, x) and a open set V in Y containing y such that
ψ(U) ∩ V = ∅, i.e. (ψ(U) ∩ (Y − S)) ∩ V = ∅. This is a contradiction. �

Theorem 4.14. If a surjection ψ : (X, τ, I) −→ (Y, σ) possesses an e-I-
closed graph, then Y is T1.

Proof. Let p1, p2 ∈ Y with p1 6= p2. Since ψ is a surjection, there exists
an x1 ∈ X such that ψ(x1) = p1 and ψ(x1) 6= p2. Therefore, (x1, p2) /∈
G(ψ) and so by Lemma 4.2, there exist U1 ∈ EIO(X, x1) and open set
V1 in Y containing p2 such that ψ(U1) ∩ V1 = ∅. Then p1 ∈ ψ(U1) but
p1 /∈ V1. Similarly, there exists an x2 ∈ X such that ψ(x2) = p2 and
ψ(x2) 6= p1. Therefore, (x2, p1) /∈ G(ψ) and so by Lemma 4.2, there exists
U2 ∈ EIO(X, x2) and open set V2 in Y containing p1 such that ψ(U2)∩V2 =
∅. Then p2 ∈ ψ(U2) but p2 /∈ V2. Hence, V1 and V2 are two open sets
containing p1 and p2, respectively but p1 /∈ V1 and p2 /∈ V2. So Y is T1. �

Theorem 4.15. If an open surjection ψ : (X, τ, I) −→ (Y, σ) possesses an
e-I-closed graph, then Y is T2.

Proof. Let p1, p2 ∈ Y with p1 6= p2. Since ψ is a surjection, there exists
x1 ∈ X such that ψ(x1) = p1 and ψ(x1) 6= p2. Therefore, (x1, p2) /∈ G(ψ)
and so by Lemma 4.2, there exist U1 ∈ EIO(X, x1) and open set V in Y
containing p2 such that ψ(U) ∩ V = ∅. Since ψ is e-I-open, ψ(U) and V
are disjoint e-I-open sets containing p1 and p2. So Y is e-I-T2. �
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