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Abstract. In this note, we introduce objects called prime whales
and use them to represent a Boolean algebra as an algebra of sets in
a way that is analogous to Stone’s Representation Theorem. We also
characterize the existence of prime whales in terms of the existence
of prime ideals.

1. Introduction

It has been a little more than seventy years since Marshall Stone’s work
on Boolean algebras was published in [6]. His results have been used in far
reaching applications in various areas of mathematics including measure
theory, topology, and logic.

One version of Stone’s Representation Theorem affirms that any Boolean
algebra B can be identified with an algebra of sets. Standard proofs of
Stone’s Theorem utilize the powerset of the prime ideals of B as in Theorem
10.22 in [4] or the powerset of the ultrafilters of B as in Theorem 2.1 in [5].
The topological version of Stone’s Theorem characterizes the representative
algebra of sets as a certain zero dimensional topological space known as a
Stone space (see chapter 9 section 9 in [1]). Whether the representation
involves prime ideals or ultrafilters, the Boolean Prime Ideal Theorem must
be invoked. This assures that one has enough prime ideals (or ultrafilters)
for a faithful representation of the Boolean algebra.

The authors in [2] and [3] utilize objects called whales inside specific
Boolean algebras to construct the universal completion and the orthocom-
pletion for certain vector lattices and lattice-ordered groups.

In this paper, we give an alternative to Stone’s representation utilizing
what we call prime whales. Just as the Boolean Prime Ideal Theorem is
needed in a representation using prime ideals, we will need assurance that
prime whales indeed exist.

2. Background

For unexplained terminology and notation, we refer the reader to the
excellent introductory text [4]. Let B denote a Boolean algebra and let
x ∈ B. The symbol ↑x will denote all elements in the principal order filter
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(or up-set) generated by x except the largest element which we denote by
1. Whales are defined to be order ideals that have supremum equal to 1. A
subset A of a Boolean algebra B is a prime whale if A is a whale such that
for every x ∈ B, exactly one of the sets ↑x or ↑x′ is contained in A. Since
↑1 = ∅, we have that ↑1 is a member of every prime whale and ↑1′ = ↑0
is never a member of a prime whale.

In the rest of this paper, we assume that any Boolean algebra has at
least 8 elements. If a Boolean algebra has fewer than 8 elements, then
whales exist but prime whales do not. For example, in a Boolean algebra
with 4 elements, any order ideal with supremum equal to 1 must contain
both ↑x and ↑x′ when x is an atom. Theorem 2.5 in this paper provides a
characterization for the existence of prime whales in all Boolean algebras
with 8 elements or greater.

We will also assume that given a Boolean algebra B and b ∈ B+, there
exists a prime whale that contains ↑b. This is analogous to finding a prime
ideal that contains a given proper ideal. We acknowledge that prime whales
are more complicated than prime ideals and thus would not be the perfect
candidate for representing a Boolean algebra. Theorem 2.5 shows however
that prime whales and prime ideals must mutually exist and is therefore
another characterization of prime ideals.

The following lemma provides insight into the structure of a prime whale
and will be utilized later.

Lemma 2.1. Let A be a prime whale in the Boolean algebra B. Let I
denote the ideal generated by the set B \ (A∪ 1). Then I is a proper ideal.

Proof. Let x, y ∈ B \ (A ∪ 1). Then x ∨ y < 1, otherwise A avoids both
↑x and ↑x′. Reasoning inductively, we see that ∨A < 1 for any finite set
A ⊆ A. It follows that I is a proper ideal. �

Before proceeding, we give a concrete example of a prime whale.

Example 2.2. Let B be an atomic Boolean algebra and let x be the com-
plement of an atom. Note that (↑ x) = {x,1}. To see that B \ (↑ x) is a
prime whale, consider any other element y ∈ B. By Lemma 2.4b in [5],
either x′ ≤ y or x′ ≤ y′ but not both. Without loss of generality, assume
that x′ ≤ y. Then ↑y ⊆ ↑x′ ⊆ B \ (↑ x). We also have that x ≥ y′ and thus

B \ (↑ x) cannot contain ↑y′.
Conversely, one can prove that a prime whale in an atomic Boolean

algebra must be of the form B \ (↑ x) where x′ is an atom.

Given a Boolean algebra B and an element b ∈ B, we denote the set
of all prime whales that contain ↑b by Xb. We desire a correspondence
between the Boolean algebra B and the powerset all prime whales denoted
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P(X). The obvious candidate for such a mapping is b → Xb. The first step
toward the desired correspondence is the following lemma.

Lemma 2.3. Let B be a Boolean algebra. If a, b ∈ B, then Xa∧b = Xa∩Xb.

Proof. According to the definition, a prime whale cannot contain ↑0, but
must always contain ↑1. Thus, we have that X0 = ∅ and X1 = P(X).
Suppose that a ∧ b = 0. It follows that a′ ≥ b and thus, any prime whale
that contains ↑b would necessarily contain ↑a′, while at the same time
avoiding ↑a. Therefore, X0 = Xa∧b = Xa ∩Xb = ∅. If a ∧ b > 0, then let
A ∈ Xa ∩ Xb. Let y ∈ B \ (A ∪ 1). Note that A avoids ↑y and therefore
contains ↑y′. It follows that y ∨ a = y ∨ b = 1 for if not, y would be an
element of A. From the latter fact we obtain y ≥ a′ and y ≥ b′ which
implies y′ ≤ a and y′ ≤ b. Thus, y′ ≤ a ∧ b.
Since A must contain ↑y′, it follows that ↑(a∧b) ∈ A which implies Xa∧b ⊇
Xa ∩Xb. It is evident that Xa∧b ⊆ Xa ∩Xb. �

Theorem 2.4. The mapping b → Xb is a Boolean algebra embedding of B
into P(X).

Proof. By the definition of a prime whale, Xb′ is the complement of Xb in
the power set algebra P(X). By Lemma 2.3 above and Lemma 4.17 in [4],
the mapping b → Xb is a Boolean homomorphism.

Our last task is to show that the mapping b → Xb is injective. Suppose
that a, b ∈ B+ and a 6= b. If a∧ b = 0, then any prime whale containing ↑b
must avoid ↑a. Now if a ∧ b > 0, then either a′ ∧ b ∈ B+ or a ∧ b′ ∈ B+.
Without loss of generality assume that a′ ∧ b > 0. Then there exists a
prime whale that contains ↑(a′ ∧ b) and hence both ↑a′ and ↑b. It follows
that Xa 6= Xb. �

Theorem 2.4 is an alternative proof of Stone’s Representation Theorem
as long as the Boolean algebra in question has sufficiently many prime
whales. Next, in Theorem 2.5, we see that prime whales exist if and only
if prime ideals exist.

Theorem 2.5. Let B be a Boolean algebra. Then the following are equiv-
alent.

i. Given a proper ideal J ⊆ B, there exists a prime ideal I ∈ B such
that J ⊆ I.

ii. Given b ∈ B+, there exists a prime whale A such that ↑b ⊆ A.

Proof. To show that i implies ii, let b ∈ B+ \{1} and let I be a prime ideal
containing the principal ideal generated by b′. Now if b′ is dual to an atom,
then as in Example 2.2, A = B \ {b′,1} is a prime whale containing ↑b. If
b′ is not dual to an atom, then set

W = {x ∈ B : x ≤ b′} ∪ {x ∈ B : x ≤ z where z ∈ ↑b}.
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Note that W is a whale that does not contain all of ↑b′ and therefore does
not contain all of I.

Now set

A =
⋃

{W : W is a whale that does not contain all of I}.

By Lemma 1 in [2], A is a whale. Also note that ↑b ⊆ A. To see that A is
a prime whale, let g ∈ B+. Without loss of generality, assume g′ ∈ I. It
remains to show that ↑g ⊆ A. Once again, if g′ is dual to an atom, then
B \ {g′,1} is a prime whale containing ↑g. If g′ is not dual to an atom,
then as before

W = {x ∈ B : x ≤ g′} ∪ {x ∈ B : x ≤ z where z ∈ ↑g}

is a whale containing ↑g. It follows that ↑g ⊆ A.
To show that ii implies i, let A be a prime whale. Set I equal to the

ideal generated by the set B \ (A ∪ 1). We claim that I is a prime ideal.

If I contains neither x nor x′ for some x ∈ B, then both ↑x and ↑x′ are
contained in A which contradicts the fact that A is a prime whale. By
Lemma 2.1, the ideal I must be proper and therefore cannot contain both
x and x′. By Theorem 10.12 in [4], I is a prime ideal. �

Remark 2.6. It is important to observe that prime whales are indeed dif-
ferent than prime ideals. For example in a finite Boolean algebra of size 2n,
prime ideals have size 2n−1. This is easy to see since every prime ideal is
complementary to an ultrafilter of the same size. If n > 2, then the prime
whales of a Boolean algebra of size 2n have 2n − 2 elements. For example,
{∅, {1}, {2}, {3}, {1, 2}, {1, 3}} is a prime whale in the powerset algebra of
{1, 2, 3}.

The axiom of choice implies the Boolean prime ideal theorem but not
conversely (see Proposition 2.16 in [5]). The reader is invited to examine
chapter 10 of [4] for a discussion of axioms equivalent to and implied by the
axiom of choice and the Boolean Prime Ideal Theorem.
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