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Abstract. In the study of various objects indexed by permutations,
a natural notion of minimal excluded structure, now known as a per-
mutation pattern, has emerged and found diverse applications. One
of the earliest results from the study of permutation pattern avoid-
ance in enumerative combinatorics is that the Catalan numbers cn

count the permutations of size n that avoid any fixed pattern of size
three. We refine this result by enumerating the permutations that
avoid a given pattern of size three and have a given letter in the first
position of their one-line notation. Since there are two parameters,
we obtain triangles of numbers rather than sequences. Our main
result is that there are two essentially different triangles for any of
the patterns of size three, and each of these triangles generalizes the
Catalan sequence in a natural way. All of our proofs are bijective,
and relate the permutations being counted to recursive formulas for
the triangles.

1. Introduction

A permutation is a bijection from a finite set to itself. The symmetric
group on n letters, denoted Sn, is the group of all permutations of an n-
element set {1, 2, . . . , n}, where composition is the group operation. In this
paper, we will denote a particular permutation w by its one-line notation,

w = [w1 w2 · · · wn],

where wk is the image of 1 ≤ k ≤ n under the bijection w.
Given w ∈ Sn and p ∈ S` with ` ≤ n, we say w contains the pattern

p if there exists k1 < k2 < · · · < k` such that wka
< wkb

if and only if
pa < pb for all 1 ≤ a, b ≤ n. If w does not contain p, then we say w avoids
the pattern p; equivalently, there always exists a and b with wka

< wkb

and pa > pb. For example, it is straightforward to check that [25143] avoids
[123] as there is no triple of values that are all increasing from left to right.

Let Sn(p) = Avn(p) denote the set of all permutations in Sn that avoid
a given pattern p. Then we have an integer sequence sn(p) := |Sn(p)| that
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counts the number of p-avoiding permutations of size n. When sn(p) =
sn(q) for all n, then we say that the permutations p and q are Wilf equiv-
alent. For example, we have that sn([12]) = 1 for all n ∈ N as there is
a unique permutation of each size with no pair of entries increasing from
left to right. Moreover, it is not hard to see that [12] and [21] are Wilf
equivalent.

If we represent our permutations as matrices by placing a 1 in position
(k, wk) and 0 elsewhere, then pattern containment corresponds to contain-
ment of a sub permutation matrix. The dihedral group action on these
square matrices gives rise to three symmetry operations that preserve
Wilf equivalence: reverse, complement, and inverse. Given a permutation
w, we define the reverse of w to be wr = [wnwn−1 · · ·w1], the comple-
ment of w to be wc = [(n + 1 − w1) (n + 1 − w2) · · · (n + 1 − wn)], and
we let w−1 denote the group-theoretic inverse of w. Then, we have

sn(p) = sn(p
c) = sn(p

r) = sn(p
−1)

since w avoids p if and only if wc avoids pc, and so on. For example,
[1324]c = [4231], so the integer sequences sn([1324]) and sn([4231]) are
equal.

These definitions are elementary, but have been used to study topics
such as stack-sorting algorithms from computer science [6, 10], geometry
of algebraic groups [1, 15], intersection cohomology [5], Mahonian statis-
tics [4], statistical mechanics [11, 14], and various generating functions in
enumerative combinatorics [2].

Simion and Schmidt [8] were among the first to consider the relation-
ships among various permutation patterns, and they gave a bijective proof
that S3 is a single Wilf equivalence class by establishing an explicit bi-
jection between Sn([132]) and Sn([123]). The result immediately follows
because every other size three permutation is related to one of these two by
a symmetry operation. The corresponding sn(p) is the Catalan sequence
cn = 1

n+1

�2n
n

�
. This sequence can also be defined recursively as

cn+1 =
nX

k=0

cn−kck for n ≥ 0 where c0 = 1. (1)

Because this recursion conveys a very natural phenomenon that objects of
size n are built from pairs of objects with complementary sizes, the Catalan
numbers arise frequently in combinatorics; Stanley [9] gives over 100 objects
that are counted by the Catalan numbers.

In this work, we refine the Simion-Schmidt classification by considering
permutations that avoid a given pattern of size three and have a given

letter in the first position of their one-line notation. That is, we let S
(k)
n =

{w ∈ Sn : w1 = k} and define S
(k)
n (p) = Sn(p)

T
S
(k)
n . For example,
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S
(2)
4 ([123]) = {[2143], [2413], [2431]}. Since there are two parameters n

and k, we now have a “triangle” of numbers sn,k(p) := |S
(k)
n (p)| for each

pattern p. Our main result, Theorem 2.2, is that for p of size three, there
are only two essentially different triangles and each of these generalizes the
Catalan sequence in a natural way. All of our proofs are bijective and relate
the permutations being counted to recursive formulas for the triangles.

This first-letter refinement of Sn is a natural construction that facilitates

recursive arguments: each S
(k)
n

∼= Sn−1 by dropping the first entry and then

applying the bijection from {1, 2, . . . , bk, . . . , n} to {1, 2, . . . , n−1}, where the

hat indicates omission. This results in the decomposition Sn =
`n

k=1 S
(k)
n .

This decomposition has been used extensively for permutation pattern enu-
meration, in the form of generating trees introduced by West [13], and as
part of the enumeration scheme approach of Vatter and Zeilberger [12].
Our work began from an attempt to understand how structures such as
Bruhat order behave under this decomposition when restricted to a pattern-
avoiding subset. We expect that the tools developed in enumerating these
first-letter pattern classes will be helpful in such investigations.

In Section 2, we introduce some preliminary results and reduce our first-
letter Wilf classification problem to determining sn,k([213]), sn,k([123]) and
sn,k([132]). These are proved in Sections 3, 4, and 5, respectively. We
suggest some directions for future research in Section 6.

2. Catalan triangles and complements

We begin with a classical result; see [8] or [2] for a bijective proof.

Theorem 2.1. (Knuth, Simion–Schmidt) Let cn denote the Catalan

sequence, and sn(p) denote the number of p-avoiding permutations in Sn.

For any p ∈ S3, we have sn(p) = cn for all n.

There are two different triangular arrays of general interest that relate
to the Catalan numbers. We will distinguish the two by their shapes. We
call the first the right Catalan triangle. This is A009766 in the On-Line
Encyclopedia of Integer Sequences [7].

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
...

...
...

...
...

...
. . .
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We denote each entry in the triangle as cn,k, where n is the row and k is
the column of the entry, each index starting from 1. Notice that the nth
row of the triangle has n entries. To generate the triangle, we start with
c1,1 = 1. Each successive entry is obtained by summing the entries directly
above and to the left. If either of these two positions are vacant, we add
zero for the corresponding position(s). Extending this recursion generates

cn,k =
kX̀
=1

cn−1,`

which is equivalent to the recursion cn,k = cn−1,k + cn,k−1. Note that cn,n
is the (n − 1)st Catalan number and that the entries in row n sum to the
nth Catalan number.

We call the other triangle of interest the isosceles Catalan triangle. This
is A078391 in the On-Line Encyclopedia of Integer Sequences [7].

1

1 1

2 1 2

5 2 2 5

14 5 4 5 14

. .
. ...

...
...

...
. . .

We denote the elements of this triangle as tn,k. Here, n denotes the row
while k indicates the position in the row, each index starting from 1. For
example, t5,2 = 5. As with the right Catalan triangle, the nth row has n

entries. Starting with c0 = c1 = 1, we construct the triangle by setting
tn,k = cn−kck−1. Note that each tn,k is one of the summands from the
formula (1) for the nth Catalan number. Therefore, the nth row will sum
to the nth Catalan number.

We are now in a position to state our main result.

Theorem 2.2. Let sn,k(p) denote the number of permutations w in Sn that

avoid p as a permutation pattern and have w1 = k. Then,

sn,k([213]) = sn,k([231]) = tn,k

and

sn,k([123]) = sn,k([132]) = sn,n−k+1([312]) = sn,n−k+1([321]) = cn,k

where tn,k are the entries of the isosceles Catalan triangle, and cn,k are the

entries of the right Catalan triangle.
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The proof of this result will occupy the remainder of the paper. In the
classification of Wilf equivalence classes for Sn(p), the dihedral symmetries
were a useful tool. However, only the complement symmetry is well-defined

on S
(k)
n (p).

Lemma 2.3. Let p ∈ S3. Then, the complement function is a bijection

between S
(k)
n (p) and S

(n−k+1)
n (pc).

Proof. Since (wc)c = w, the complement is invertible. Let w be an arbitrary

permutation in S
(k)
n (p). Then, w avoids p if and only if wc avoids pc. Note

that w1 = k by definition of S
(k)
n (p). Since wc

1 = n− w1 + 1 = n − k + 1,

we have wc ∈ S
(n−k+1)
n (pc). �

Our strategy for the proof of Theorem 2.2 will be to enumerate sn,k([213]),
sn,k([123]) and sn,k([132]). The remaining patterns p ∈ {[231], [321], [312]}
are then enumerated by Lemma 2.3.

Throughout our proofs, we will use the following auxiliary sets.

Definition 2.4. Let w = [w1 w2 · · · wn] be an arbitrary permutation in

S
(k)
n (p). Then

w<k = {wj | wj < k}, w>k = {wj | wj > k},

w≤k = {wj | wj ≤ k}, w≥k = {wj | wj ≥ k}.

3. The pattern [213]

This pattern has the relation of the isosceles Catalan triangle.

Theorem 3.1. For all n and 1 ≤ k ≤ n, we have sn,k([213]) = tn,k.

Proof. Let w = [w1 w2 · · · wn] ∈ S
(k)
n ([213]). Since w1 = k, every element

of w<k must appear after every element of w>k, for otherwise w does not
avoid [213]. Therefore we can relabel w as

[k wb1 wb2 · · · wbn−k
wa1

wa2
· · · wak−1

] (2)

where waj
∈ w<k and wbj ∈ w>k and the sequences (waj

) and (wbj ) each
avoid [213].

In fact every permutation of the form (2) whose subsequences each avoid

[213] lies in S
(k)
n ([213]). To see this, note that since each wai

< wbj , there
cannot exist a [213] instance between the subsequences (w1) = [k], (wa) =
[wa1

wa2
· · · wak−1

], and (wb) = [wb1 wb2 · · · wbn−k
]. Subsequences of

the form [wbi , wbj , wa`
] have wa`

< wb while subsequences of the form
[wbi , waj

, wa`
] have wbi > wa so neither are [213] instances. The others are

nearly identical.
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There are (k−1) elements in the (wa) subsequence, and (n−k) elements
in the (wb) subsequence. By Theorem 2.1, there are ck−1 [213]-avoiding sub-
sequences that can be assigned to (wa) and cn−k [213]-avoiding sequences

that can be assigned to (wb), so
���S(k)

n ([213])
��� = ck−1cn−k. �

4. The pattern [123]

We now proceed to classify S
(k)
n ([123]). The enumeration of these sets

is more complicated than of the case p = [213]. To aid us in this endeavor,
we will define a class of functions which ‘extend’ a permutation in Sn−1

beginning with i to a permutation in Sn beginning with k.

Definition 4.1. Fix n and k. Define f :
Sk

i=1 S
(i)
n−1 → S

(k)
n by

f(w) =§
g(w) := [ w1 n w2 · · · wn−1 ], if i = k,

h(w) := [ k w1 + δ1 w2 + δ2 · · · wn−1 + δn−1 ], otherwise,

where δj = 1 if wj ≥ k, and 0, otherwise.

Example 4.2. Let w = [2431] ∈ S
(2)
4 . We can embed w into S

(2)
5 as

f(w) = g(w) = [w1 n w2 w3 · · · wn−1] = [25431].

We can embed w into S
(4)
5 as

f(w) = h(w) = [k w1 + δ1 w2 + δ2 · · · wn−1 + δn−1]

= [4 (2 + 0) (4 + 1) (3 + 0) (1 + 0)] = [42531].

Lemma 4.3. Let w ∈ S
(i)
n−1. For all 1 ≤ s, t ≤ n− 1, we have ws < wt if

and only if ws + δs < wt + δt.

Proof. Let ws and wt be entries in w. Without loss of generality, assume
ws < wt. Then since ws and wt are distinct we have

ws ≤ ws + δs ≤ wt ≤ wt + δt.

If ws + δs = wt + δt then we must have δs = 1 and δt = 0, but this implies
that k ≤ ws < wt < k, a contradiction. �

We now consider pattern avoidance under f(w).

Lemma 4.4. If w avoids [123], then f(w) avoids [123].

Proof. Let w = [w1 w2 · · · wn−1] ∈ S
(i)
n−1([123]). We have that w avoids

[123] if and only if for every 3-letter subsequence 1 ≤ a < b < c < n, we
have wa > wb, wa > wc or wb > wc. To prove that f(w) avoids [123], we
must show g(w) and h(w) both avoid [123].
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Claim 1. g(w) avoids [123].
Let 1 ≤ a < b < c ≤ n be indices for a 3-letter subsequence in g(w).

Case 1.1. g(w)` = n for some ` = a, b or c.
For this to happen, we must have either a or b equal to 2. In the first
case, our 3-letter subsequence is [n wb−1 wc−1] and in the second case, it is
[k n wc−1]. Neither are [123] instances since w ∈ Sn−1 so n > wj−1 for all
2 ≤ j ≤ n.

Case 1.2. g(w)` 6= n for ` = a, b and c.
In this case, none of a, b or c is 2, and since g(w)j = wj−1 for j 6= 2 our
three letter subsequence is [wx wy wz ] for some 1 ≤ x < y < z ≤ n − 1.
Since w avoids [123] by assumption, this is not a [123]-instance.

Claim 2. h(w) avoids [123].
Let 1 ≤ a < b < c ≤ n be indices for a 3-letter subsequence in h(w).

By Lemma 4.3, any subsequence in [w1 + δ1 · · ·wn−1 + δn−1] will have
the same relative ordering as in w. Since w avoids [123], there cannot be
any [123] instances in [w1 + δ1 · · · wn−1 + δn−1]. Thus, we need only
concern ourselves with three-letter subsequences that begin with k. So, let
h(w)a = k.

Case 2.1. h(w)b ∈ w<k or h(w)c ∈ w<k.
Since h(w)1 = h(w)a = k, if either h(w)b ∈ w<k or h(w)c ∈ w<k, then
k = h(w)a > h(w)b or k = h(w)a > h(w)c. Hence, we do not have a
[123]-instance.

Case 2.2. h(w)b ∈ w≥k and h(w)c ∈ w≥k.
Recall that by the definition of f(w) we have w1 = i < k so h(w)2 =
w1 + δ1 = w1. Hence, b ≥ 3. By assumption, our 3-letter subsequence is
[k wb+1 wc+1]. Since w avoids [123] and w1 = i < k ≤ w` for ` = b or ` = c,
it must be that wb > wc and therefore h(w)b = wb + 1 > wc + 1 = h(w)c.
Hence, the 3-letter subsequence is not a [123] instance.

�

We now observe that the function f is a bijection.

Lemma 4.5. For all n and for all k ≤ n, we have that f is a bijection ofSk

i=1 S
(i)
n−1([123]) onto S

(k)
n ([123]).

Proof. Let u ∈ S
(k)
n ([123]), and define f−1(u) by

f−1(u) =§
g−1(u) := [ u1 u3 u4 · · · un ], if u2 = n,

h−1(u) := [ u2 − ε2 u3 − ε3 u4 − ε4 · · · un − εn ], if u2 < n,
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where εj = 1 if uj > k, and 0 otherwise.
Observe that f(w) = g(w) = u only if u2 = n; otherwise, f(w) = h(w).

Also note that f−1(u) ∈ S
(i)
n−1([123]) with i ≤ k = u1 and u2 − ε2 < k, for

otherwise u2 − ε2 ≥ k and so [i u2 n] forms a [123] instance in u, which is
a contradiction.

Hence, it suffices to show that for all w ∈
Sk

i=1 S
(i)
n−1([123]) and all

u ∈ S
(k)
n ([123]), we have g−1(g(w)) = w, g(g−1(u)) = u, h−1(h(w)) = w,

and h(h−1(u)) = u. These properties follow directly from the definitions as
δj = εj+1 for 1 ≤ j ≤ n− 1. �

Now, we can calculate the number of elements in each S
(k)
n ([123]) by way

of recursion. In fact, the recursion developed in Lemmas 4.4 and 4.5 is the
same recursion as the right Catalan Triangle recursion.

Theorem 4.6. sn,k([123]) = cn,k, the entry in the right Catalan triangle

in row n, column k for n ≥ k ≥ 1.

Proof. Notice that S
(1)
1 = {[1]}. Since the permutation [1] consists of only

one letter, it clearly avoids [123]. Thus,
���S(1)

1 ([123])
��� = 1. Notice that

c1,1 = 1 as well. By Lemmas 4.4 and 4.5,���S(k)
n ([123])

��� = ����� k[
i=1

S
(i)
n−1([123])

����� = kX
i=1

���S(i)
n−1([123])

��� = kX
i=1

cn−1,i = cn,k

�

5. The pattern [132]

Next, we consider S
(k)
n ([132]). To enumerate these sets, we will require

the following function similar to Definition 4.1.

Definition 5.1. Let w ∈ S
(i)
n−1([132]). Define H :

Sk

i=1 S
(i)
n−1([132]) →

S
(k)
n ([132]) with 1 ≤ i ≤ k by

H(w) = [k w1 + δ1 w2 + δ2 · · · wn−1 + δn−1]

where δj = 1 if wj ≥ k, and 0 otherwise. Note that this is the same
function h from Definition 4.1; however, we have extended its domain to
include permutations where i = k.

Lemma 5.2. If w avoids [132], then H(w) avoids [132].

Proof. We have that w avoids [132] if and only if for every subsequence
a < b < c, we have wa > wb, wa > wc, or wc > wb. Let 1 ≤ a <

b < c ≤ n be indices for a 3-letter subsequence in H(w). By Lemma 4.3,
any subsequence in [w1 + δ1 · · · wn−1 + δn−1] will have the same relative
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ordering as in w. Since w avoids [132], there cannot be any [132] instances
in [w1 + δ1 · · · wn−1 + δn−1]. Thus, we need only concern ourselves with
three-letter subsequences that begin with k. So let H(w)a = H(w)1 = k.

Case 2.1. H(w)b ∈ w<k or H(w)c ∈ w<k.
Since H(w)a = k, if either H(w)b or H(w)c is less than k, then our subse-
quence will avoid [132].

Case 2.2. H(w)b ∈ w>k and H(w)c ∈ w>k.
By definition, we have H(w)2 = w1 + δ1 with w1 ≤ k. If w1 < k, then
H(w)2 < k. On the other hand if w1 = k, then H(w)2 = k + 1. In either
case, we have H(w)2 < H(w)b and H(w)2 < H(w)c since H(w)b, H(w)c ∈
w>k and all of the H(w)j are distinct. Consequently if w avoids [132], then
H(w)b < H(w)c. Therefore, our subsequence is not a [132]-instance.

�

Lemma 5.3. For all n and for all k ≤ n, we have that H is a bijection ofSk

i=1 S
(i)
n−1([132]) onto S

(k)
n ([132]).

Proof. The inverse of H is given by

H−1(u) = [u2 − ε2 u3 − ε3 u4 − ε4 · · · un − εn],

where εj = 1 if wj > k and 0 otherwise, just as in the proof of Lemma 4.5.

We also note that H−1(u) ∈ S
(i)
n−1([132]) with i ≤ k = u1, for otherwise

u2 − ε2 > k, so u2 > k + 1, and k < u2 < k + 1 forms a [132] instance in u,
which is a contradiction. �

Theorem 5.4. sn,k([132]) = cn,k, the entry in the right Catalan triangle

in row n, column k such that n ≥ k ≥ 1.

Proof. Again, notice that S
(1)
1 = {[1]}. Since the permutation [1] consists

of only one letter, it clearly avoids [132]. Thus,
���S(1)

1 ([132])
��� = 1. Recall

that c1,1 = 1 as well. By Lemmas 5.2 and 5.3,���S(k)
n ([132])

��� = ����� k[
i=1

S
(i)
n−1([132])

����� = kX
i=1

���S(i)
n−1([132])

��� = kX
i=1

cn−1,i = cn,k.

�

6. Future work

Our results suggest some directions for future research. It would be in-
teresting to determine the number of first-letter Wilf equivalence classes in
Sn for n ≥ 4, and to see if there is a way to determine these from knowledge
of the classical Wilf equivalence classes in a particular Sn. Moreover, there
are notions of pattern avoidance in other Coxeter types [3], and it should
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be possible to generalize our results to this setting using parabolic sub-
groups. Finally, Vatter’s enumeration schemes [12] use more general sets
of pattern classes with a given prefix in order to algorithmically enumerate
the full pattern class; it may be interesting to enumerate some of these sets
individually.

7. Acknowledgments

This work was supported by NSF Grant 1004516 and was carried out as
part of a summer REU program at James Madison University mentored by
the second and fourth authors. We thank JMU and Len VanWyk for their
support, as well as Lara Pudwell and Bill Rau for helpful conversations.

References

[1] S. Billey and V. Lakshmibai, Singular loci of Schubert varieties, Volume 182 of
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