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Abstract. We examine series of the form
∞
∑

n=0

(2n

n

)−1 (4x2)n

2n+ 2m + 1
and

∞
∑

n=0

(2n

n

)−1 (−4x2)n

2n+ 2m + 1
.

In each case, there is an evaluation of the form (pm(x)f(x)−qm(x))/x2m

where f(x) is a transcendental function and pm(x) and qm(x) are
polynomials with rational coefficients. We prove that for |x| < 1,

lim
m→∞

qm(x)

pm(x)
= f(x).

From this result, we derive recurrences for π and for various loga-
rithms.

1. Introduction

Consider the sequence of infinite sums

Am =

∞
∑

n=0

(

−1

3

)n
1

2m+ 2n+ 1
. (1.1)

We have

A1 = 3− π
√
3

2
, A2 =

3π
√
3

2
− 8, A3 =

123

5
− 9π

√
3

2
,

and so on. In general, it can be shown that

Am = (−3)m

(

π
√
3

2
− rm

)

for some rational number rm. Moreover, since limm→∞ Am = 0, it follows

that limm→∞ rm = π
√
3

2 . This is not terribly mysterious; if one introduces
a parameter x and writes

fm(x) =

∞
∑

n=0

(−1)n
x2n

2n+ 2m+ 1
,
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then for |x| ≤ 1,

fm(x) =
(−1)m

x2m+1

(

arctanx−
m−1
∑

n=0

(−1)n
x2n+1

2n+ 1

)

.

That is, up to the scaling factor (−1)m

x2m+1 , fm(x) differs from arctanx by a

Taylor approximation of arctanx and Am = fm

(

1√
3

)

.

The sums in (1.1) are an example of a family

Am =
∞
∑

n=0

am,n,

where for some transcendental constant α, there is an evaluation of the
form

Am = rmα+ sm,

with rm and sm rational, and rm
sm

has some limiting behavior as m → ∞.

For a subtler example, consider
∑∞

n=0
n!n!
(2n)!n

m2n. In [6, p. 456] it is proven

that
∞
∑

n=0

n!n!

(2n)!
nm2n = am + bmπ, (1.2)

with am and bm rational. It is stated in that paper that with am and bm
so defined,

lim
m→∞

am
bm

= π, (1.3)

though no proof is given. On the other hand, consider the series
∑∞

n=0
n!n!
(2n)!n

m(−2)n. For m ≥ 2,

∞
∑

n=0

n!n!

(2n)!
nm(−2)n = cm

√
3 + dm ln

(

1 +
√
3√

2

)

, (1.4)

where cm and dm are rational. In this case, the author is unaware of any
limiting behavior for cm

dm

, the sequence of quotients being − 1
2 ,

5
2 , − 7

8 ,
7
10 ,

− 89
58 ,

13
196 , − 1681

722 , − 97
278 , . . .. The series in (1.2) was brought to the author’s

attention through an undergraduate research project [9], where the limiting
behavior (1.3) appeared as a conjecture. From the various summation tables
in that project, many other conjectures seem plausible. For example, if

∞
∑

n=0

n!n!

(2n)!

1

2n+ 2m+ 1
= amπ

√
3− bm, (1.5)

then it appears that

lim
m→∞

bm
am

= π
√
3.
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If
∞
∑

n=0

n!n!

(2n)!

(−1)n

2n+ 2m+ 1
= cm

√
5 lnφ− dm, (1.6)

where φ is the golden ratio then

lim
m→∞

dm
cm

=
√
5 lnφ.

In [3], sums involving n!n!
(2n)! , the reciprocal of the central binomial coeffi-

cient
(

2n
n

)

, were referred to as “central binomial sums.” A proof of the
Sherman/Lehmer conjecture (the limiting behavior in (1.3)) is fairly diffi-
cult (at least to this author). We provide a proof in a subsequent paper. In
this paper, we prove a theorem containing (1.5) and (1.6) as special cases.
Our main theorem is as follows.

Theorem 1.1.

a. If |x| < 1, then there is an evaluation of the form

∞
∑

n=0

n!n!

(2n)!

(4x2)n

2n+ 2m+ 1
=

arcsinx

x2m+1
√
1− x2

Am(x)− 1

x2m
Bm(x),

where Am(x) and Bm(x) are even polynomials with rational coeffi-

cients, and

lim
m→∞

Bm(x)

Am(x)
=

arcsinx

x
√
1− x2

.

b. Writing arcsinhx for ln
(

x+
√
x2 + 1

)

if |x| ≤ 1, then,

∞
∑

n=0

n!n!

(2n)!

(−4x2)n

2n+ 2m+ 1
=

arcsinhx

x2m+1
√
1 + x2

Cm(x) − 1

x2m
Dm(x),

where Cm(x) and Dm(x) are even polynomials with rational coeffi-

cients, and

lim
m→∞

Dm(x)

Cm(x)
=

arcsinhx

x
√
1 + x2

.

The proof of Theorem 1.1 depends on certain integral representations for
the series involved. We present these integral representations in Section 2
along with the definitions of Am, Bm, Cm, and Dm, and the demonstration
that the series in Theorem 1.1 have evaluations of the desired form. The
limiting behavior of the evaluations in Theorem 1.1 is proven in Section 3.
In Section 4, we use these ideas to obtain recurrences for calculating π and
various other transcendental constants.
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2. Preliminary Results

In addition to deriving integral representations for the sums in Theorem
1.1, we also need some facts related to elementary integrals. We present
these first.

Lemma 2.1. Let a1 = 1, an = (2m−2)(2m−4)···2
(2m−1)(2m−3)···3 if m > 1.

a. am =
∫ π/2

0 sin2m−1 x dx,

b.
∫ x

0 sin2m−1 u du = am − cosxPm(sin2 x),

c.
∫ x

0
sinh2m−1 u du = (−1)mam−(−1)m coshxPm(− sinh2 x) for some

polynomial Pm(x) of degree m−1 with positive rational coefficients.

Proof. These are easy consequences of the reduction formulas
∫

sinn x dx− 1

n
sinn−1 x cos x+

n− 1

n

∫

sinn−2 x dx

∫

sinhn x dx =
1

n
sinhn−1 x coshx− n− 1

n

∫

sinhn−2 x dx.

The formula 2.1(a) is sometimes called Wallis’ integral. �

We will need to know the asymptotics of the am in Lemma 2.1. This is
well-known, but we state it here for completeness.

Lemma 2.2. Let a1 = 1, am = (2m−2)(2m−4)···2
(2m−1)(2m−3)···3 if m > 1. Then

lim
m→∞

2mam√
m

=
√
π.

Proof. This fact is stated in [1, p. 4]. It follows easily from formula (2) in
[6, p. 28] using

2mam = 22m
m!m!

(2m)!
.

�

As in Theorem 1.1, we use the trigonometric form arcsinh (x) rather than

ln
(

x+
√
x2 + 1

)

in what follows. Using Lemma 2.1, we now give integral
representations for our series.

Lemma 2.3. If |x| < 1 then

a.
∞
∑

n=0

n!n!

(2n)!

(4x2)n

2n+ 2m+ 1
=

arcsinx

x2m+1
√
1− x2

− 2m

x2m+1

∫ arcsinx

0

u sin2m−1 u du,
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b.
∞
∑

n=0

n!n!

(2n)!

(−4x2)n

2n+ 2m+ 1
=

arcsinhx

x2m+1
√
1 + x2

− 2m

x2m+1

∫ arcsinhx

0

u sinh2m−1 u du.

Proof. For (a), we begin with the evaluation [2, p. 59, but also see 3, 4, 6,
9],

(arcsinx)2 =

∞
∑

n=0

n!n!

(2n+ 1)!

22nx2n+2

n+ 1
,

which is valid for |x| ≤ 1. Differentiating twice with respect to x, we have
∞
∑

n=0

n!n!

(2n)!
(4x2)n =

1

1− x2
+

x

(1− x2)3/2
arcsinx. (2.1)

Multiplying by x2m and integrating,

x2m+1
∞
∑

n=0

n!n!

(2n)!

(4x2)n

2n+ 2m+ 1
=

∫ x

0

(

1

1− t2
+

t

(1 − t2)3/2
arcsin t

)

t2mdt

=

∫ arcsinx

0

(sec2 u+ u tanu sec2 u) sin2m u cosu du

=

∫ arcsinx

0

sin2m u(secu+ u tanu secu) du.

Integrating this last expression by parts, using (secu + u tanu secu) du =
d(u secu), we have

x2m+1
∞
∑

n=0

n!n!

(2n)!

(4x2)n

2n+ 2m+ 1
=

∫ arcsin x

0

sin2m u(secu+ u tanu secu) du

=
x2m

√
1− x2

arcsinx− 2m

∫ arcsin x

0

u sin2m−1 u du,

as desired.
The proof of (b) is similar, starting with [5, p. 52],

arcsinhx√
1 + x2

=

∞
∑

n=0

n!n!

(2n)!

22nx2n+1

2n+ 1
(−1)n,

which is valid for |x| ≤ 1. Differentiating with respect to x,
∞
∑

n=0

n!n!

(2n)!
(−4x2)n =

1

1 + x2
+

x

(1 + x2)3/2
arcsinhx. (2.2)

As before, we multiply by x2m, and integrate. Finally, we integrate by parts
using

6 MISSOURI J. OF MATH. SCI., VOL. 25, NO. 1



ON LIMITING STRUCTURE OF BINOMIAL EVALUATIONS

(sechu− u tanhu sechu) du = d(u sechu).

�

The integral representations of Lemma 2.3 allow for the evaluation of
the sums in Theorem 1.1.

Lemma 2.4. If |x| < 1, then

a.
∞
∑

n=0

n!n!

(2n)!

(4x2)n

2n+ 2m+ 1
=

arcsinx

x2m+1
√
1− x2

Am(x)− 1

x2m
Bm(x),

where Am(x) and Bm(x) are even polynomials with rational coeffi-

cients of degrees 2m and 2m− 2, respectively, defined by

Am(x) = 2m
√

1− x2am − 2m
√

1− x2

∫ arcsinx

0

sin2m−1 u du+ x2m

and

xBm(x) = 2mam arcsinx− 2m

∫ arcsin x

0

∫ u

0

sin2m−1 t dt du.

b.
∞
∑

n=0

n!n!

(2n)!

(−4x2)n

2n+ 2m+ 1
=

arcsinhx

x2m+1
√
1 + x2

Cm(x) − 1

x2m
Dm(x),

where Cm(x) and Dm(x) are even polynomials with rational coeffi-

cients of degrees 2m and 2m− 2, respectively, defined by

Cm(x) = (−1)m2m
√

1 + x2am−2m
√

1 + x2

∫ arcsinhx

0

sinh2m−1 u du+x2m

and

xDm(x) = (−1)m2mamarcsinhx− 2m

∫ arcsinhx

0

∫ u

0

sinh2m−1 t dt du.

Proof. Integrating
∫ arcsin x

0
u sin2m−1 u du by parts, we have

∫ arcsin x

0

u sin2m−1 u du

= arcsinx

∫ arcsin x

0

sin2m−1 u du−
∫ arcsin x

0

∫ u

0

sin2m−1 t dt du. (2.3)
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Thus, by Lemma 2.3 (a),

∞
∑

n=0

n!n!

(2n)!

(4x2)n

2n+ 2m+ 1
=

arcsinx

x
√
1− x2

− 2m arcsinx

x2m+1

∫ arcsin x

0

sin2m−1 u du

+
2m

x2m+1

∫ arcsin x

0

∫ u

0

sin2m−1 t dt du

=
arcsinx

x2m+1
√
1− x2

×
(

x2m − 2m
√

1− x2

∫ arcsinx

0

sin2m−1 u du+ 2m
√

1− x2am

)

+
1

x2m+1

(

2m

∫ arcsin x

0

∫ u

0

sin2m−1 t dt du− 2man arcsinx

)

=
arcsinx

x2m+1
√
1− x2

Am(x) − 1

x2m
Bm(x).

With Pm(x) as in Lemma 2.1,

∫ arcsinx

0

sin2m−1 u du = am −
√

1− x2Pm(x2).

Consequently,

Am(x) = x2m + 2m
√

1− x2am − 2m
√

1− x2
(

am −
√

1− x2Pm(x)
)

= x2m − 2m(1− x2)Pm(x2)

is an even polynomial with rational coefficients. Since the coefficient of x2m

in Pm(x) is 1
2m−1 , it follows that Am(x) has degree 2m.

Similarly,

Bm(x) =
1

x

(

−2m

∫ arcsinx

0

∫ u

0

sin2m−1 t dt du+ 2mam arcsinx

)

=
1

x

(

−2m

∫ arcsinx

0

(am − cosuPm(sin2 u)) du+ 2mam arcsinx

)

=
2m

x

∫ x

0

Pm(u2) du,

is an even polynomial with rational coefficients, and degree 2m− 2.
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Again, (b) is very similar. After an integration by parts,

∞
∑

n=0

n!n!

(2n)!

(−4x2)n

2n+ 2m+ 1
=

arcsinhx

x
√
1 + x2

− 2marcsinhx

x2m+1

∫ arcsinh x

0

sinh2m−1 u du

+
2m

x2m+1

∫ arcsinh x

0

∫ u

0

sinh2m−1 t dt du

=
arcsinhx

x2m+1
√
1 + x2

×
(

x2m − 2m
√

1 + x2

∫ arcsinhx

0

sinh2m−1 u du+ (−1)m2m
√

1 + x2am

)

+
1

x2m+1

(

2m

∫ arcsinh x

0

∫ u

0

sinh2m−1 t dt du− (−1)m2mamarcsinhx

)

=
arcsinhx

x2m+1
√
1 + x2

Cm(x) − 1

x2m
Dm(x).

The proof that Cm(x) and Dm(x) are polynomials with the proper degree
is entirely analogous. This completes the proof of the lemma. �

3. A Proof of Theorem 1.1

To complete the proof of Theorem 1.1, we must show that with Am(x),
Bm(x), Cm(x), and Dm(x) as in Lemma 2.4,

lim
m→∞

Bm(x)

Am(x)
=

arcsinx

x
√
1− x2

,

or

lim
m→∞

xBm(x)

Am(x)
=

arcsinx√
1− x2

,

and that

lim
m→∞

xDm(x)

Cm(x)
=

arcsinhx√
1 + x2

.

These will both follow from the following lemma.

Lemma 3.1. If |x| < 1, then the five quantities

x2m

am
,

∫ arcsinx

0
sin2m−1 u du

am
,

∫ arcsin x

0

∫ u

0
sin2m−1 t dt du

am
,

∫ arcsinhx

0 sinh2m−1 u du

am
,

∫ arcsinh x

0

∫ u

0 sinh2m−1 t dt du

am

each have a limit of 0 as m → ∞.
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Proof. First, note that for |x| < 1, if 0 ≤ u ≤ arcsinx, then 0 ≤ sinu ≤ x.
Thus,
∫ arcsin x

0

sin2m−1 u du ≤
∫ arcsin x

0

x2m−1 du = x2m−1 arcsinx,

∫ arcsin x

0

∫ u

0

sin2m−1 t dt du ≤
∫ arcsin x

0

∫ u

0

x2m−1 dt du =
1

2
(arcsinx)2x2m−1.

Similarly, for |x| < 1, if 0 ≤ u ≤ arcsinhx, then 0 ≤ sinhu ≤ x, so

∫ arcsinhx

0

sinh2m−1 u du ≤ x2m−1arcsinhx,

∫ arcsinhx

0

∫ u

0

sinh2m−1 t dt du ≤ 1

2
(arcsinhx)2x2m−1.

Consequently, we need only establish the limit

lim
m→∞

x2m

am
= 0.

Now

2mam =
2m

2m− 1

2m− 2

2m− 3
· · · 2

1
> 1,

so am > 1
2m . Thus, for |x| < 1,

0 ≤ x2m

am
≤ 2mx2m,

and

lim
m→∞

2mx2m = 0.

This completes the proof of the lemma. �

We now complete the proof of the theorem. As expected, cases (a) and
(b) are very similar, so we only give a proof of (b). Assume first that
|x| < 1. By Lemma 2.4 (b), we are interested in the quantity

xDm(x)

Cm(x)

=
(−1)m2mamarcsinhx− 2m

∫ arcsinhx

0

∫ u

0 sinh2m−1 t dt du

(−1)m2m
√
1 + x2am − 2m

√
1 + x2

∫ arcsinhx

0
sinh2m−1 u du+ x2m

=
arcsinhx−

(

(−1)m
∫ arcsinhx

0

∫ u

0 sinh2m−1 t dt du
)

/am
√
1 + x2 + (−1)mx2m

2mam

−
(

(−1)m
∫ arcsinh x

0
sinh2m−1 u du

)

/am
,
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and by the previous lemma, in the limit, this becomes arcsinhx√
1+x2

, as desired.

We note that since x2m

am

→ 0 essentially as x2m → 0, the convergence is

rapid for small x (but strictly first order).
Finally, in the case of part (b), we must show that the result is true for

x = ±1. By Abel’s Theorem [8, p. 174], we have

∞
∑

n=0

n!n!

(2n)!

(−4)n

2n+ 2m+ 1
= Cm(1)

arcsinh 1√
2

−Dm(1),

with

Cm(1) = (−1)m2m
√
2am + 1− 2m

√
2

∫ arcsinh 1

0

sinh2m−1 u du

and

Dm(1) = (−1)m2mamarcsinh 1− 2m

∫ arcsinh 1

0

∫ u

0

sinh2m−1 t dt du.

It follows from an easy induction that

2m

∫ arcsinh 1

0

sinh2m−1 u du < 2.

However, Cm(1) and Dm(1) both grow like
√
πm (by Lemma 2.2). Since

∞
∑

n=0

n!n!

(2n)!

(−4)n

2n+ 2m+ 1
→ 0

as m → ∞,

Cm(1)
arcsinh 1√

2
−Dm(1) → 0

as well. This obviously forces

lim
m→∞

Dm(1)

Cm(1)
=

arcsinh 1√
2

=
ln(1 +

√
2)√

2
,

as desired.

4. Recurrences and Other Results

Using the fact that for fixed |x| < 1,

lim
m→∞

∞
∑

n=0

n!n!

(2n)!

(4x2)n

2n+ 2m+ 1
= 0

and

lim
m→∞

∞
∑

n=0

n!n!

(2n)!

(−4x2)n

2n+ 2m+ 1
= 0,

MISSOURI J. OF MATH. SCI., SPRING 2013 11
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it follows from Lemma 2.2 that

lim
m→∞

2m

x2m+1

∫ arcsin x

0

u sin2m−1 u du =
arcsinx

x
√
1− x2

(4.1)

and

lim
m→∞

2m

x2m+1

∫ arcsinhx

0

u sinh2m−1 u du =
arcsinhx

x
√
1 + x2

. (4.2)

Given Lemma 2.3, we may rewrite our results in terms of limits of re-
currence relations. To do this, we make use of the reduction formulas:
∫

x sin2m−1 x dx = − 1

2m− 1
x sin2m−2 x cos x+

1

(2m− 1)2
sin2m−1 x

(4.3)

+
2m− 2

2m− 1

∫

x sin2m−3 x dx,

∫

x sinh2m−1 x dx =
1

2m− 1
x sinh2m−2 x coshx− 1

(2m− 1)2
sinh2m−1 x

(4.4)

− 2m− 2

2m− 1

∫

x sinh2m−3 x dx.

Letting fm(x) and gm(x) be defined by

fm(x) =

∞
∑

n=0

n!n!

(2n)!

(4x2)n

2n+ 2m+ 1
,

and

gm(x) =
∞
∑

n=0

n!n!

(2n)!

(−4x2)n

2n+ 2m+ 1

we have

fm(x) = − 1

2m− 1

arcsinx

x
√
1− x2

− 2m

2m− 1

1

x2
+

2m

2m− 1

1

x2
fm−1(x), (4.5)

and

gm(x) = − 1

2m− 1

arcsinhx

x
√
1 + x2

+
2m

(2m− 1)2
1

x2
− 2m

2m− 1

1

x2
gm−1(x). (4.6)

Comparing with Lemma 2.4, this gives the following theorem.

Theorem 4.1. With Am, Bm, Cm, Dm as in Lemma 2.4

(a)

A0 = 1, Am(x) =
2m

2m− 1
Am−1(x) −

x2m

2m− 1
for m ≥ 1,
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(b)

B0 = 0, Bm(x) =
2m

2m− 1
Bm−1(x) +

2m

(2m− 1)2
x2m−2 for m ≥ 1,

(c)

C0 = 1, Cm(x) = − 2m

2m− 1
Cm−1(x)−

x2m

2m− 1
for m ≥ 1,

(d)

D0 = 0, Dm(x) = − 2m

2m− 1
Dm−1(x)−

2m

(2m− 1)2
x2m−2 for m ≥ 1.

In particular, by Theorem 1.1, with polynomials Am, Bm, Cm, Dm de-
fined as in (a), (b), (c), (d), we have

lim
m→∞

Bm(x)

Am(x)
=

arcsinx

x
√
1− x2

, (4.7)

for |x| < 1 and

lim
m→∞

Dm(x)

Cm(x)
=

ln
(

x+
√
1 + x2

)

x
√
1 + x2

, (4.8)

for |x| ≤ 1.
Many variations of these formulas exist. In particular, we may scale

away the x2m term and multiply the limits (4.7) and (4.8) by any given
fixed r. If we also introduce a factor of (−1)m for C and D, then with

a0 = 1, am(x) =
2m

x2(2m− 1)
am−1(x) −

1

2m− 1
for m ≥ 1,

b0 = 0, bm,r(x) =
2m

x2(2m− 1)
bm−1,r(x) +

2mr

x2(2m− 1)2
for m ≥ 1,

c0 = 1, cm(x) =
2m

x2(2m− 1)
cm−1(x) − (−1)m

1

2m− 1
for m ≥ 1,

d0 = 0, dm,r(x) =
2m

x2(2m− 1)
dm−1,r(x)− (−1)m

2m

x2(2m− 1)2
for m ≥ 1,

we have

lim
m→∞

bm,r(x)

am(x)
=

r arcsinx

x
√
1− x2

, (4.9)

and

lim
m→∞

dm,r(x)

cm(x)
=

r ln
(

x+
√
1 + x2

)

x
√
1 + x2

. (4.10)

One may select r so as to simplify the look of special cases of (4.9) and

(4.10). For example, if x = 1
2 and r = 9

2 , then limm→∞
bm,r(x)
am(x) = π

√
3. If

x = 1
2 , r =

5
4 , then limm→∞

dm,r(x)
cm(x) =

√
5 lnφ, where φ is the golden ratio.
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With (4.10), if we let x = 3
4 and r = 15

16 then limm→∞
dm,r(x)
cm(x) = ln 2.

More generally, if p2−q2 < 2pq, then with x = p2−q2

2pq , r = p4−q4

4p2q2 , we obtain

limm→∞
dm,r(x)
cm(x) = ln

(

p
q

)

.

If in (4.9) we replace x by sin
(

π
n

)

then we have

lim
m→∞

bm,r(x)

am(x)
=

πr

n sin
(

π
n

)

cos
(

π
n

) =
2πr

n sin
(

2π
n

) . (4.11)

In particular, if we let r = 1
2n sin

(

2π
n

)

, then

lim
m→∞

bm,r(x)

am(x)
= π. (4.12)

The simplest case of (4.12) is with n = 4, so x = 1√
2
, and r = 2. In this

case, with

a0 = 1, am =
4m

2m− 1
am−1 −

1

2m− 1
for m ≥ 1,

b0 = 0, bm =
4m

2m− 1
bm−1 +

8m

(2m− 1)2
for m ≥ 1, (4.13)

lim
m→∞

bm
am

= π.
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