AN ANNOTATED BIBLIOGRAPHY ON THE THICKNESS, OUTERTHICKNESS, AND ARBORICITY OF A GRAPH

ERKKI MÄKINEN AND TIMO PORANEN

Abstract

This bibliography introduces literature on graph thickness, outerthickness, and arboricity. In addition to the pointers to the literature we also give some conjectures concerning known open problems on the field.

1. Introduction

Topological graph theory studies the embeddings of graphs on various surfaces and the properties of these embeddings. This bibliography introduces literature on three classical topological invariants of graphs, namely graph thickness, outerthickness, and arboricity. Although the study of these concepts is mainly motivated by purely theoretical issues, they have also found several applications on the areas of graph drawing, information visualization, VLSI design, and resource location optimization. Obviously, it is often advantageous to consider a complicated graph in simpler slices, for example planar ones, as in the case of thickness.

In a bibliography on such a widely studied area, it is difficult to decide which results and articles are included and which are left out. We have tried to fulfill the conflicting goals of compactness and extensiveness. In addition to the pointers to the literature we also give some conjectures concerning known open problems on the field.

The bibliography given is most likely incomplete. The authors welcome supplementing information by e-mail (timo.t.poranen@uta.fi).

2. Thickness

The following conjecture was given by Harary [30]:
Prove or disprove the following conjecture: For any graph G with 9 points, G or its complementary graph \bar{G} is nonplanar.
The problem is the same as determining whether K_{9} is biplanar or not, that is, a union of two planar graphs. The problem was solved independently by Battle et al. [7] and Tutte [55] by constructing all subgraphs
for K_{9}. They showed that K_{9} is not biplanar. Tutte [95] generalized the problem by defining the concept of the thickness of a graph.

Definition 2.1. The graph-theoretical thickness (thickness, for short) of a graph, denoted by $\Theta(G)$, is the minimum number of planar subgraphs into which the graph can be decomposed.

The thickness of a planar graph is 1 and the thickness of a nonplanar graph is at least 2. Thickness has applications, for example, in VLSI (Very Large Scale Integration) design [1] and network design [51].

It was long an open question whether $\Theta\left(K_{16}\right)=3$ or 4 . Harary offered 10 pounds to anyone who could compute $\Theta\left(K_{16}\right)$. Finally a professor of French literature, Jean Mayer [45], won the prize by showing that $\Theta\left(K_{16}\right)=3$.

The NP-status of thickness was solved by Mansfield [43].
Theorem 2.2 ([43]). Determining the thickness of a graph is NP-complete.
The only non-trivial graph classes with known thicknesses are the complete graphs, complete bipartite graphs, and hypercubes. The optimal solution for the thickness of complete graphs K_{n} was given for almost all values of n by Beineke and Harary [13]. A decade later Alekseev and Gonchakov [4], and independently Vasak [57], solved the remaining cases.

Theorem 2.3 ([4, 13, 57]). For complete graphs, $\Theta\left(K_{n}\right)=\left\lfloor\frac{n+7}{6}\right\rfloor$, except that $\Theta\left(K_{9}\right)=\Theta\left(K_{10}\right)=3$.

See Figure 1 for a decomposition of K_{9} into three planar subgraphs.

Figure 1. A minimum planar decomposition of K_{9}.
For complete bipartite graphs $K_{m, n}$, thickness is solved for almost all values of m and n.

Theorem 2.4 ([14]). For complete bipartite graphs, $\Theta\left(K_{m, n}\right)=\left\lceil\frac{m n}{2(m+n-2)}\right\rceil$, except possibly when m and n are odd, and there exists an integer k satisfying $n=\left\lfloor\frac{2 k(n-2)}{n-2 k}\right\rfloor$.

E. MÄKINEN AND T. PORANEN

If $m=n$, Theorem 2.4 has the following shorter form.
Corollary 2.5. $\Theta\left(K_{n, n}\right)=\left\lfloor\frac{n+5}{4}\right\rfloor$.
The thickness of hypercubes (an n-cube is denoted by Q_{n}) was determined by Kleinert [66].
Theorem 2.6 ([66]). $\Theta\left(Q_{n}\right)=\left\lceil\frac{n+1}{4}\right\rceil$.
Next we give two lower bounds for thickness, see Beineke et al. [14] for references concerning their origin. The first lower bound is a direct application of Euler's polyhedron formula.
Theorem 2.7. Let $G=(V, E)$ be a graph with $|V|=n$ and $|E|=m$. Then $\Theta(G) \geq\left\lceil\frac{m}{3 n-6}\right\rceil$.

If a graph does not contain any triangles, as it is for bipartite graphs, a tighter lower bound can be derived.
Theorem 2.8. Let $G=(V, E)$ be a graph with $|V|=n,|E|=m$ and with no triangles. Then $\Theta(G) \geq\left\lceil\frac{m}{2 n-4}\right\rceil$.

The lower bounds of Theorems 2.7 and 2.8 are also the exact values for the thickness of almost all complete and complete bipartite graphs.

Wessel [59] gave lower and upper bounds for the thickness of a graph as a function of the minimum and maximum degree. The upper bound was independently given also by Halton [29].
Theorem 2.9 ([29, 59]). Let G be a graph with minimum degree δ and maximum degree Δ. Then it holds that $\left\lceil\frac{\delta+1}{6}\right\rceil \leq \Theta(G) \leq\left\lceil\frac{\Delta}{2}\right\rceil$.

Halton [29] proved the upper bound by first augmenting the given graph to be regular, and then splitting it into disjoint cycles by using Petersen's classical result [31, p. 90]. The lower bound follows from Euler's polyhedron formula.

Halton conjectured a stronger upper bound $\Theta(G) \leq\left\lceil\frac{\Delta+2}{4}\right\rceil$. Sýkora et al. [54] gave a counterexample by constructing a class of regular graphs of degree d with thickness $\lceil d / 2\rceil$. The construction shows that the upper bound of Theorem 2.9 is tight.

Dean et al. [24] gave an upper bound as a function of the number of edges.
Theorem 2.10 ([24]). Let G be a graph with m edges, then it holds that $\Theta(G) \leq\lfloor\sqrt{m / 3}+3 / 2\rfloor$.

Czabarka et al. [21] presented a bound for the thickness of a graph by using the crossing number of the graph in question.

The thickness of degree-constrained graphs is studied by Bose and Prabhu [15], and results for the thickness of random graphs are given by Cooper
[20]. Mutzel et al. [35] have shown that the thickness of the class of graphs without K_{5}-minors is at most two.

The genus of a graph is the minimum genus of the orientable surface on which the graph is embeddable. Asano [5, 6] has studied the thickness of graphs with genus at most 2. Thickness results for other surfaces are reported by White and Beineke [60] and Ringel [52].

Very recently, Bourke et al. [16] have studied thickness two graphs in connection with the directed reachability problem, and Albertson et al. [3] have studied the thickness of r-inflated graphs.

3. Outerthickness

Instead of decomposing the graph into planar subgraphs, outerthickness seeks a decomposition into outerplanar subgraphs.

Definition 3.1. The outerthickness of a graph, denoted by $\Theta_{o}(G)$, is the minimum number of outerplanar subgraphs into which the graph can be decomposed.

Outerthickness seems to be studied first in Geller's unpublished manuscript (see [31, pp. 108 and 245]), where it was shown that $\Theta_{o}\left(K_{7}\right)$ is 3 by similar exhaustive search as in the case of the thickness of K_{9}. See Figure 2 for a decomposition of K_{7} into three outerplanar subgraphs.

Figure 2. A minimum outerplanar decomposition of K_{7}.
The outerthickness of complete graphs was solved by Guy and Nowakowski.
Theorem 3.2 ([63]). For complete graphs, $\Theta_{o}\left(K_{n}\right)=\left\lceil\frac{n+1}{4}\right\rceil$, except that $\Theta_{o}\left(K_{7}\right)=3$.

It is easy to show by simply counting edges that $\Theta_{o}\left(K_{n}\right) \geq\left\lceil\frac{n+1}{4}\right\rceil$, but the proof for the equality is much more complicated. It starts by considering the case $n=4 r$ in which $r+1$ outerplanar graphs are shown to make $K_{4 r}$. The proof is then modified to the cases $n=4 r+1,4 r+2$, and $4 r+3$.

E. MÄKINEN AND T. PORANEN

The same authors also gave optimal solutions for the outerthickness of complete bipartite graphs and hypercubes.

Theorem 3.3 ([64]). For complete bipartite graphs with $m \leq n, \Theta_{o}\left(K_{m, n}\right)=$ $\left\lceil\frac{m n}{2 m+n-2}\right\rceil$.

Theorem $3.4([63]) . \Theta_{o}\left(Q_{n}\right)=\left\lceil\frac{n+1}{3}\right\rceil$.
Again, it is easy to show that outerthickness reaches the given bound, while proving the equality requires a complicated case analysis.

It is possible to apply Euler's polyhedron formula to derive lower bounds for outerthickness similarly as for the graph thickness.

Theorem 3.5 ([62]). Let $G=(V, E)$ be a graph with $|V|=n$ and $|E|=m$. Then $\Theta_{o}(G) \geq\left\lceil\frac{m}{2 n-3}\right\rceil$.

Theorem 3.6 ([62]). Let $G=(V, E)$ be a graph with $|V|=n,|E|=m$ and with no triangles. Then $\Theta_{o}(G) \geq\left\lceil\frac{m}{3 n / 2-2}\right\rceil$.

The lower bounds of Theorems 3.5 and 3.6 are also the exact values for the outerthickness of complete graphs, complete bipartite graphs, and hypercubes.

The following theorem gives lower and upper bounds in the terms of minimum and maximum degree of a graph.

Theorem 3.7 ([29, 59, 50]). For a graph with minimum degree δ and maximum degree Δ, it holds that $\lceil\delta / 4\rceil \leq \Theta_{o}(G) \leq\left\lceil\frac{\Delta}{2}\right\rceil$.

The lower bound follows from the number of edges in maximal outerplanar graphs, while the upper bound holds as in Theorem 2.9.

Since $\Theta_{o}(G) \geq \Theta(G)$ and the upper bound is tight for thickness [54], it follows that the upper bound is tight also for outerthickness.

Heath [65] has shown that a planar graph can be divided into two outerplanar graphs. Therefore, $\Theta_{o}(G) \leq 2 \Theta(G)$.

4. Arboricity

As thickness is defined using planar graphs and outerthickness by using outerplanar graphs, it is natural to continue to tighten the definition by replacing outerplanar graphs by trees. This gives us the concept of arboricity. Hence, the arboricity of a graph, denoted by $\Upsilon(G)$, is the minimum number of line-disjoint spanning forests whose union is G. Nash-Williams [89] gave the exact solution for arboricity

$$
\Upsilon(G)=\max \left\lceil\frac{m_{H}}{n_{H}-1}\right\rceil
$$

where the maximum is taken over all nontrivial subgraphs H of G. The number of vertices and edges in H are denoted by n_{H} and m_{H}, respectively. Applying Nash-Williams' result, Dean et al. [24] showed that $\Upsilon(G) \leq$ $\lceil\sqrt{m / 2}\rceil$. This gives also a lower bound for outerthickness.

Trees can be further replaced by stars, caterpillars [$80,86,83$] or linear forests [78, 94]. (The bibliography concerning star, caterpillar, and linear arboricity is by no means complete.)

5. Conjectures

Computational experiments [50] have shown that Theorem 2.4 holds for all $m<30$. For example, it was unknown if $\Theta\left(K_{17,21}\right)$ is equal to 5 or 6 (the thickness of $K_{13,17}$ is at least 5 due to Euler's polyhedron formula and it cannot be more than $\Theta\left(K_{18,21}\right)=6$ or $\left.\Theta\left(K_{17,22}\right)=6\right)$. In general, the unknown values of $\Theta\left(K_{m, n}\right)$ are quite rare, for an arbitrary m, there are fewer than $m / 4$ unsolved cases [11].
Conjecture 5.1. The claim of Theorem 2.4 holds for all complete bipartite graphs.

Dean et al. [24] have conjectured a tighter upper bound for the thickness as a function of the number of edges in the graph.
Conjecture $5.2([24]) . \Theta(G) \leq \sqrt{m / 16}+O(1)$ for an arbitrary graph G with m edges.

The complexity status of outerthickness is open, but since thickness and maximum planar subgraph problem are $N P$-complete, we conjecture that determining the outerthickness of a graph is also $N P$-complete.
Conjecture 5.3. Determining the outerthickness of a graph is NP-complete.
Dean et al. [24] gave an upper bound for thickness as a function of the number of edges (Theorem 2.10). If their proof technique is applied straightforward to outerplanar graphs, the bound $\lceil\sqrt{m / 2}+1 / 2\rceil$ is obtained. The upper bound is of the right order, since the outerthickness of the complete graph with n vertices is $O(n)$. On the other hand, since $\Theta_{o}\left(K_{n}\right)$ is approximately $\sqrt{m / 8}$ and $\Theta_{o}\left(K_{n, n}\right)$ is approximately $\sqrt{m / 9}$, it seems that the constant is not the best possible. We conjecture the following upper bound for outerthickness.
Conjecture 5.4. $\Theta_{o}(G) \leq \sqrt{m / 8}+O(1)$ for an arbitrary graph G with m edges.

Dean et al. [22] proposed an open problem related on bar k-visibility graphs.
Conjecture 5.5 ([22]). Bar k-visibility graphs have thickness no greater than $k+1$.

E. MÄKINEN AND T. PORANEN

6. ReLated Problems

We can also consider other types of subgraphs whose union is the given graph. For an interested reader, we recommend an article by Dujmovic and Wood [25] for further references related to these subgraph classes.

The star arboricity of a graph G is the minimum number of stars whose union is G. Similarly, the linear arboricity is the minimum number of linear forests. Since its definition in 1981 [67], the so called Linear Arboricity Conjecture has been the concern of numerous theoretical works. The conjecture states that the linear arboricity of an r-regular graph is $\left\lceil\frac{r+1}{2}\right\rceil$.

In the book thickness of a graph, which is sometimes called the pagenumber, stacknumber, or real linear thickness, vertices are placed on a line (the spine) and edges are routed without intersections via half-planes (pages) having common boundary with the spine. Book thickness indicates the minimum number of needed pages.

Geometric thickness is the smallest number of layers such that the graph can be drawn in the plane with straight line edges and each edge assigned to a layer such that no two edges cross. Geometric outerthickness, geometric arboricity and geometric star-arboricity are defined analogously.

Book thickness and geometric thickness are widely used both in various theoretical considerations and in applications, while star and linear arboricities have gained mainly theoretical interest.

7. Thickness, Outerthickness, and Arboricity Publications

References

[1] A. Aggarwal, M. Klawe, and P. Shor, Multilayer grid embeddings for VLSI, Algorithmica, 6.1 (1991), 129-151.
[2] I. Aho, E. Mäkinen, and T. Systä, Remarks on the thickness of a graph, Information Sciences, 108 (1998), 1-4.
[3] M. O. Albertson, D. Boutin, and E. Gethner, The thickness and chromatic number of r-inflated graphs, Discrete Mathematics, 310.20 (2010), 2725-2734.
[4] V. B. Alekseev amd V. S. Gonchakov, Thickness for arbitrary complete graphs, Matematicheskij Sbornik, 143 (1976), 212-230.
[5] K. Asano, On the genus and thickness of graphs, Journal of Combinatorial Theory Series B, 43 (1987), 287-292.
[6] K. Asano, On the thickness of graphs with genus 2, Ars Combinatorica, 38 (1994), 87-95.
[7] J. Battle, F. Harary, and Y. Kodoma, Every planar graph with nine points has a non-planar complement, Bulletin of the American Mathematical Society, 68 (1962), 569-571.
[8] L. W. Beineke, Minimal decompositions of complete graphs into subgraphs with embeddability properties, Canadian Journal of Mathematics, 21 (1969), 992-1000.
[9] L. W. Beineke, Complete bipartite graphs: decomposition into planar subgraphs, in F. Haray and L. W. Beineke, editors, A Seminar on Graph Theory, Holt, Rinehar and Winston, 1970, pp. 42-53.
[10] L. W. Beineke, Fruited planes, Congressus Numerantium, 63 (1988), 127-138.
[11] L. W. Beineke, Biplanar graphs: a survey, Computers \& Mathematics with Applications, 34.11 (1997), 1-8.
[12] L. W. Beineke and F. Harary, Inequalities involving the genus of a graph and its thicknesses, Proceedings of the Glasgow Mathematical Association, 7 (1965), 19-21.
[13] L. W. Beineke and F. Harary, The thickness of the complete graph, Canadian Journal of Mathematics, $\mathbf{1 7}$ (1965), 850-859.
[14] L. W. Beineke, F. Harary, and J. W. Moon, On the thickness of the complete bipartite graphs, Proceedings of the Cambridge Philosophical Society, 60 (1964), $1-5$.
[15] P. Bose and K. A. Prabhu, Thickness of graphs with degree constrained vertices, IEEE Transactions on Circuits and Systems, 24.4 (1977), 184-190.
[16] C. Bourke, R. Tewari, and N. V. Vinodchandran, Directed planar reachability is in unambiguous log-space, ACM Transactions on Computation Theory, 1.1 (2009), Article No. 4.
[17] D. L. Boutin, E. Gethner, and T. Sulanke, Thickness-two graphs part one: new nine-critical graphs, permuted layer graphs, and Catlin's graphs, Journal of Graph Theory, 57.3 (2008), 198-214.
[18] G. Chartrand, D. Geller, and S. Hedetniemi, Graphs with forbidden subgraphs, Journal of Combinatorial Theory, 10B (1971), 12-41.
[19] R. Cimikowski, On heuristics for determining the thickness of a graph, Information Sciences, 85 (1995), 87-98.
[20] C. Cooper, On the thickness of sparse random graphs, Combinatorics Probability and Computing, 1 (1992), 303-309.
[21] É. Czabarka, O. Sýkora, L. A. Székely, and I. Vrt'o, Biplanar crossing numbers II, Comparing crossing numbers and biplanar crossing numbers using the probabilistic method, Random Structures and Algorithms, 33 (2008), 480-496.
[22] A. M. Dean, W. Evans, E. Gethner, J. D. Laison, M. A. Safari, and W. Trotter, Bar k-visibility graphs: Bounds on the number of edges, chromatic number, and thickness, Journal of Graph Algorithms and Applications, 11.1 (2007), 45-59.
[23] A. M. Dean and J. P. Hutchinson, On some variations of the thickness of a graph connected with colouring, in Proceedings of International Conference on the Theory and Applications of Graphs, Vol. 6, (1991), pp. 287-296.
[24] A. M. Dean, J. P. Hutchinson, and E. R. Scheinerman, On the thickness and arboricity of a graph, Journal of Combinatorial Theory Series B, 52 (1991), 147-151.
[25] V. Dujmović and D. R. Wood, Graph treewidth and geometric thickness parameters, Discrete and Computational Geometry, 37 (2007), 641-670.
[26] D. Eppstein, Separating thickness from geometric thickness, in Proceedings of the 10th International Symposium on Graph Drawing, Volume 2528 of Lecture Notes in Computer Science, (2002), pp. 150-162.
[27] D. Eppstein, Testing bipartiteness of geometric intersection graphs, ACM Transactions on Algorithms, 5.2 (2009), Article No. 15.
[28] E. Gethner and T. Sulanke, Thickness-two graphs part two: more new nine-critical graphs, independence ratio, cloned planar graphs, and singly and doubly outerplanar graphs, Graphs and Combinatorics, 25 (2009), 197-217.
[29] J. H. Halton, On the thickness of graphs of given degree, Information Sciences, 54 (1991), 219-238.
[30] F. Harary, A research problem, Bulletin of the American Mathematical Society, 67 (1961), 542.
[31] F. Harary, Graph Theory, Addison-Wesley, 1971.

E. MÄKINEN AND T. PORANEN

[32] A. M. Hobbs, A survey of thickness, in Recent Progress in Combinatorics (Proceedings of the 3rd Waterloo Conference on Combinatorics, 1968, 1969, pp. 255-264.
[33] P. Horák and J. Širán̆, On a modified concept of a thickness of a graph, Mathematische Nachrichten, 108 (1982), 305-306.
[34] J. P. Hutchinson, T. Shermer, and A. Vince, On representations of some thicknesstwo graphs, Computational Geometry, 131 (1999), 161-171.
[35] M. Jünger, P. Mutzel, T. Odenthal, and M. Scharbrodt, The thickness of minorexcluded class of graphs, Discrete Mathematics, 182 (1998), 169-176.
[36] P. C. Kainen, Thickness and coarseness of graphs, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 39 (1973), 88-95.
[37] A. Kaveh and H. Rahami, An efficient algorithm for embedding nonplanar graphs in planes, Journal of Mathematical Modelling and Algorithms, 1 (2002), 257-268.
[38] S. Kawano and K. Yamazaki, Worst case analysis of a greedy algorithm for the graph thickness, Information Processing Letters, 85 (2003), 333-337.
[39] M. Kleinert, Die Dicke des n-dimensionale Würfel-Graphen, Journal of Combinatorial Theory, 3 (1967), 10-15.
[40] A. Kotzig, On certain decompositions of graphs, Matematicko-Fyzikálny C̆asopis, 5 (1955), 144-151.
[41] A. Liebers, Planarizing graphs - a survey and annotated bibliography, Journal of Graph Algorithms and Applications, 5 (2001), 1-74.
[42] E. Mäkinen, T. Poranen, and P. Vuorenmaa, A genetic algorithm for determining the thickness of a graph, Information Sciences, 138 (2001), 155-164.
[43] A. Mansfield, Determining the thickness of graphs is NP-hard, Mathematical Proceedings of the Cambridge Philosophical Society, 93 (1983), 9-23.
[44] M. Massow and S. Felsner, Thickness of bar 1-visibility graphs, in Proceedings of the 15th International Symposium on Graph Drawing, Volume 2528 of Lecture Notes in Computer Science, 2007, pp. 330-342.
[45] J. Mayer, Décomposition de K_{16} en Trois Graphes Planaires, Journal of Combinatorial Theory Series B, 13 (1972), 71.
[46] P. Mutzel, T. Odenthal, and M. Scharbrodt, The thickness of graphs: a survey, Graphs and Combinatorics, 14 (1998), 59-73.
[47] T. Poranen, Approximation Algorithms for Some Topological Invariants of Graphs, Ph.D. thesis, University of Tampere, 2004.
[48] T. Poranen, A simulated annealing algorithm for determining the thickness of a graph, Information Sciences, 172 (2005), 155-172.
[49] T. Poranen, Two new approximation algorithms for the maximum planar subgraph problem, Acta Cybernetica, 18.3 (2008), 503-527.
[50] T. Poranen and E. Mäkinen, Remarks on the thickness and outerthickness of a graph, Computers \& Mathematics with Applications, 50 (2005), 249-254.
[51] S. Ramanathan and E. L. Lloyd, Scheduling algorithms for multihop radio networks, IEEE/ACM Transactions on Networking, 1 (1993), 166-177.
[52] G. Ringel, Die torodiale Dicke des vollständigen Graphen, Mathematische Zeitschrift, 87 (1965), 19-26.
[53] J. Sirán̆ and P. J. Horák, A construction of thickness-minimal graphs, Discrete Mathematics, 64 (1987), 262-268.
[54] O. Sýkora, L. A. Székely, and I. Vrt'o, A note on Halton's conjecture, Information Sciences, 164.1-4 (2004), 61-64.
[55] W. T. Tutte, The non-biplanar character of the complete 9-graph, Canadian Mathematical Bulletin, 6 (1963), 319-330.

AN ANN. BIBLIOGRAPHY ON THE THICKNESS OF A GRAPH

[56] W. T. Tutte, The thickness of a graph, Indagationes Mathematicae, 25 (1963), 567-577.
[57] J. M. Vasak, The thickness of the complete graph, Notices of the American Mathematical Society, 23 (1976), A-479, Abstract.
[58] W. Wessel, On some variations of the thickness of a graph connected with colouring, in Graphs and Other Combinatorial Topics. Proceeding of the Third Czechoslovak Symposium on Graph Theory, Volume 59 of Teubner, Texte zur Mathematik, 1983, p. 344-348
[59] W. Wessel, Über die Abhängigkeit der Dicke eines Graphen von seinen Knotenpunktvalenzen, Geometrie und Kombinatorik, 2.2 (1984), 235-238.
[60] A. T. White and L. W. Beineke, Topological graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, 1978, pp. 15-49.
[61] D. Gonçalves, Edge partition of planar graphs into two outerplanar graphs, in Proceedings of the Annual ACM Symposium on Theory of Computing, 2005, pp. 504512.
[62] R. Guy, Outerthickness and outercoarseness of graphs, in Proc. British Combinatorial Conference, Volume 13 of London Mathematics Society Lecture Note Series, 1974, pp. 57-60.
[63] R. K. Guy and R. J. Nowakowski, The outerthickness and outercoarseness of graphs I. The complete graph \& the n-cube, in R. Bodendiek and R. Henns, editors, Topics of Combinatorics and Graph Theory: Essays in Honour of Gerhard Ringel, PhysicaVerlag, 1990, pp. 297-310.
[64] R. K. Guy and R. J. Nowakowski, The outerthickness and outercoarseness of graphs II. The complete bipartite graph, in R. Bodendiek, editor, Contemporary Methods in Graph Theory, B. I. Wissenchaftsverlag, 1990, pp. 313-322.
[65] L. S. Heath, Edge coloring planar graphs with two outerplanar subgraphs, in Proceedings of the 2nd ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 195202.
[66] K. S. Kedlaya, Outerplanar partitions of planar graphs, Journal of Combinatorial Theory, Series B, 67.2 (1996), 238-248.
[67] J. Akiyama, G. Exoo, and F. Harary, Covering and packing in graphs IV: Linear arboricity, Networks, 11 (1981), 69-72.
[68] J. Akiyama and T. Hamada, The decompositions of line graphs, middle graphs and total graphs of complete graphs into forests, Discrete Mathematics, 26 (1979), 203-208.
[69] N. Alon, C. McDiarmid, and B. Reed, Star arboricity, Combinatorica, 12 (1992), 375-380.
[70] T. Bartnicki, J. Grytczuk, and H. Kierstead, The game of arboricity, Discrete Mathematics, 308 (2008), 1388-1393.
[71] L. W. Beineke, Decompositions of complete graphs into forests, Magyar Tud. Akad. Mat. Kutató Int. Közl., 9 (1965), 589-594.
[72] T. Biedl and F. Brandenburg, Partitions of graphs into trees, in Proc. of the 10th International Symposium on Graph Drawing, Lecture Notes in Computer Science, 2006, pp. 430-439.
[73] P. Bose, F. Hurtado, E. Rivera-Campo, and D. R. Wood, Partitions of complete geometric graphs into plane trees, Computational Geometry: Theory and Applications, 34 (2006), 116-125.
[74] G. J. Chang, C. Chen, and Y. Chen, Vertex and tree arboricities of graphs, Journal of Combinatorial Optimization, 8 (2004), 295-306.

E. MÄKINEN AND T. PORANEN

[75] B. Chen, M. Matsumoto, J. Wang, Z. Zhang, and J. Zhang, A short proof of NashWilliams' theorem for the arboricity of a graph, Graphs and Combinatorics, 10 (1994), 27-28.
[76] M. Cygan, L. Kowalik, and B. Lŭzar, A planar linear arboricity conjecture, 2009, Preprint at http://arxiv.org/pdf/0912. 5528.
[77] E. S. El-Mallah and C. J. Colbourn, Partitioning the edges of a planar graph into two partial k-trees, Congressus Numerantium, 66 (1988), 69-80.
[78] H. L. Fu, K.-C. Huang, and C-H. Yen, The linear 3-arboricity of $K_{n, n}$ and K_{n}, Discrete Mathematics, 308 (2007), 3816-3823.
[79] A. Garcíla, C. Hernando, M. Hurtado, F. Noy, and J. Tejel, Packing trees into planar graphs, Journal of Graph Theory, 40 (2002), 172-181.
[80] D. Gonçalves, Caterpillar arboricity of planar graphs, Discrete Mathematics, 307 (2007), 2112-2121.
[81] D. Gonçalves, Covering planar graphs with forests, one having bounded maximum degree, Journal of Combinatorial Theory, Series B, 99 (2008), 314-322.
[82] D. Gonçalves and P. Ochem, On some arboricities in planar graphs, Electronic Notes in Discrete Mathematics, 22 (2005), 427-432.
[83] D. Gonçalves and P. Ochem, On star and catepillar arboricities, Discrete Mathematics, 309 (2009), 3694-4702.
[84] D. Gonçalves, A. Pinlou, and S. Thomassé, Spanning galaxies in digraphs, Electronic Notes in Discrete Mathematics, 34 (2009), 139-143.
[85] R. Haas, Characterizations of arboricity of graphs, Ars Combinatoria, 63 (2002), 129-138.
[86] Q. Liu and D. B. West, Tree-thickness and caterpillar-thickness under girth constraints, The Electronic Journal of Combinatorics, 15 (2008), 1-11.
[87] M. Montassier, P. O. de Mendez, A. Raspaud, and X. Zhu, Decomposing a graph into forests, Journal of Combinatorial Theory, Series B, 102 (2012), 38-52.
[88] C. St. J. Nash-Williams, Edge-disjoint spanning trees of finite graphs, Journal of London Mathematical Society, 36 (1961), 445-450.
[89] C. St. J. Nash-Williams, Decomposition of finite graphs into forests, Journal of London Mathematical Society, 39 (1964), 12.
[90] V. Petrovic, Decomposition of some planar graphs into trees, in Proceedings of International Conference on Combinatorics, 1993, p. 48
[91] G. Ringle, Two trees in maximal planar bipartite graphs, Journal of Graph Theory, 17 (1993), 755-758.
[92] M. J. Stein, Arboricity and tree-packing in locally finite graphs, Journal of Combinatorial Theory, Series B, 96 (2006), 302-312.
[93] I. Streinu and L. Theran, Sparsity-certifying graph decompositions, Graphs and Combinatorics, 25 (2009), 219-238.
[94] J.-L. Wu and Y.-W. Wu, The linear arboricity of planar graphs of maximum degree seven is four, Journal of Graph Theory, 58 (2008), 201-210.
[95] D. Yang and H. A. Kierstead, Asymmetric marking games on line graphs, Discrete Mathematics, 308 (2008), 1751-1755.

MSC2010: 05C10

Key words and phrases: Thickness, outerthickness, arboricity.
School of Information Sciences, FIN-33014 University of Tampere, Finland
E-mail address: erkki.makinen@uta.fi
School of Information Sciences, FIN-33014 University of Tampere, Finland
E-mail address: timo.t.poranen@uta.fi

