# CATEGORIES WITH STRONG MONOMORPHIC STRONG COIMAGES

#### M. A. AL SHUMRANI

ABSTRACT. Let  $SE(\mathcal{C})$  (respectively,  $SM(\mathcal{C})$ ) be the subcategory of a category  $\mathcal{C}$  with the same objects and whose morphisms are strong epimorphisms (respectively, strong monomorphisms) of  $\mathcal{C}$ . In this paper, we give conditions in some categories  $\mathcal{C}$  for an object X of pro- $\mathcal{C}$  to be isomorphic to an object of pro- $SE(\mathcal{C})$  (respectively, pro- $SM(\mathcal{C})$ ). As an application, we give conditions under which objects of pro-categories are stable.

## 1. INTRODUCTION

Let  $\mathcal{C}$  be an arbitrary category. In [2], J. Dydak and F. R. Ruiz del Portal gave conditions in some categories for an object X of pro- $\mathcal{C}$  to be isomorphic to an object of pro- $E(\mathcal{C})$  or pro- $M(\mathcal{C})$ , where  $E(\mathcal{C})$  (respectively,  $M(\mathcal{C})$ ) is the subcategory of  $\mathcal{C}$  whose morphisms are epimorphisms (respectively, monomorphisms) of  $\mathcal{C}$ . In particular, the following results were obtained.

**Proposition 1.1.** Let C be a balanced category with epimorphic images and let  $f: X \to Y$  be an epimorphism (respectively, monomorphism) of pro-C. If pro-C is balanced and X is isomorphic to an object of pro-E(C) (respectively, Y is isomorphic to an object of pro-M(C)), then Y is isomorphic to an object of pro-E(C) (respectively, X is isomorphic to an object of pro-M(C)).

**Proposition 1.2.** Let C be a balanced category with epimorphic images and let X be an object of pro-C. If pro-C is balanced, then X is isomorphic to an object of pro-M(C) if and only if there is a monomorphism  $f: X \to P \in Ob(C)$ .

Let  $SE(\mathcal{C})$  (respectively,  $SM(\mathcal{C})$ ) be the subcategory of  $\mathcal{C}$  with the same objects and whose morphisms are strong epimorphisms (respectively, strong monomorphisms) of  $\mathcal{C}$ . Given an object X of pro- $\mathcal{C}$ , it is of interest to detect if X is isomorphic to an object of pro- $SE(\mathcal{C})$  or pro- $SM(\mathcal{C})$ . Therefore, we will investigate the question: under what conditions is X isomorphic to an object of pro- $SE(\mathcal{C})$  or pro- $SM(\mathcal{C})$ ? Moreover, stability is an important

FALL 2011

property of objects of pro-C and hence we will present conditions which give stability of objects of pro-C (Corollary 3.11).

## 2. Preliminaries

First we recall some basic facts about pro-categories. The main reference is [1] and for more details see [3,5].

Loosely speaking, the pro-category pro- $\mathcal{C}$  of  $\mathcal{C}$  is the universal category with directed inverse limits containing  $\mathcal{C}$  as a full subcategory. An object of pro- $\mathcal{C}$  is an inverse system in  $\mathcal{C}$ , denoted by  $X = (X_{\alpha}, p_{\alpha}^{\beta}, A)$ , consisting of a directed set A, called the *index set* (from now onward it will be denoted by I(X)), of  $\mathcal{C}$  objects  $X_{\alpha}$  for each  $\alpha \in I(X)$ , called the *terms* of X and of  $\mathcal{C}$  morphisms  $p_{\alpha}^{\beta} \colon X_{\beta} \to X_{\alpha}$  for each related pair  $\alpha < \beta$ , called the *bonding morphisms* of X. One requires that if  $\alpha < \beta < \gamma$ , then  $p_{\alpha}^{\gamma} = p_{\alpha}^{\beta} \circ p_{\beta}^{\gamma}$ . From now onward the bonding morphism  $p_{\alpha}^{\beta}$  for each related pair  $\alpha < \beta$  will be denoted by  $p(X)_{\alpha}^{\beta}$ .

If P is an object of C and X is an object of pro-C, then a morphism  $f: X \to P$  in pro-C is the direct limit of  $Mor(X_{\alpha}, P), \alpha \in I(X)$  and so f can be represented by  $g: X_{\alpha} \to P$ . Note that the morphism from X to  $X_{\alpha}$  represented by the identity  $X_{\alpha} \longrightarrow X_{\alpha}$  is called the *projection morphism* and denoted by  $p(X)_{\alpha}$ .

If X and Y are two objects in pro-C with identical index sets, then a morphism  $f: X \to Y$  is called a *level morphism* if for each  $\alpha < \beta$ , with  $f_{\alpha}$  and  $f_{\beta}$  as representations, the following diagram

$$\begin{array}{c|c} X_{\beta} & \xrightarrow{f_{\beta}} & Y_{\beta} \\ \hline p(X)^{\beta}_{\alpha} & & \downarrow \\ X_{\alpha} & \xrightarrow{f_{\alpha}} & Y_{\alpha} \end{array}$$

commutes.

The next result is well-known [3].

**Theorem 2.1.** For any morphism  $f: X \to Y$  of pro-C there exists a level morphism  $f': X' \to Y'$  and isomorphisms  $i: X \to X'$ ,  $j: Y' \to Y$  such that  $f = j \circ f' \circ i$  and I(X') is a cofinite directed set. Moreover, the bonding morphisms of X' (respectively, Y') are chosen from the set of bonding morphisms of X (respectively, Y).

Recall that a morphism  $f: X \to Y$  of C is called a *monomorphism* if  $f \circ g = f \circ h$  implies g = h for any two morphisms  $g, h: Z \to X$ . A morphism  $f: X \to Y$  of C is called an *epimorphism* if  $g \circ f = h \circ f$  implies g = h for any two morphisms  $g, h: Y \to Z$ .

## CATEGORIES WITH STRONG MONOMORPHIC COIMAGES

Also, recall that an object X in pro-C is called *stable* if there is an isomorphism  $f: X \to P$  where P is an object of C.

If f is a morphism of C, then its domain will be denoted by D(f) and its range will be denoted by R(f). Hence,  $f: D(f) \to R(f)$ .

Next, we recall definitions of strong monomorphism and strong epimorphism [1].

**Definition 2.2.** A morphism  $f: X \to Y$  in pro-*C* is called a *strong monomorphism* (*strong epimorphism*, respectively) if for every commutative diagram

$$\begin{array}{c|c} X & \xrightarrow{f} & Y \\ a & \downarrow & \downarrow b \\ P & \xrightarrow{g} & Q \end{array}$$

with P, Q objects in C, there is a morphism  $h: Y \to P$  such that  $h \circ f = a$   $(g \circ h = b$ , respectively).

Note that if X and Y are objects of C, then  $f: X \to Y$  is a strong monomorphism (strong epimorphism, respectively) if and only if f has a left inverse (a right inverse, respectively).

The next lemma is proved in [1].

**Lemma 2.3.** If  $g \circ f$  is a strong monomorphism (strong epimorphism, respectively), then f is a strong monomorphism (g is a strong epimorphism, respectively).

The following theorem is a characterization of isomorphisms in pro- $\mathcal{C}$  [1].

**Theorem 2.4.** Let  $f: X \to Y$  be a morphism in pro-C. The following statements are equivalent.

- (i) f is an isomorphism.
- (ii) f is a strong monomorphism and an epimorphism.

Proposition 2.5. Suppose that



is a commutative diagram in a category C. If f is an epimorphism and g is a strong monomorphism, then there is a unique morphism  $h: Y \to Z$  such that  $h \circ f = a$  and  $g \circ h = b$ .

FALL 2011

*Proof.* Note that it suffices to prove the existence of h since f is an epimorphism. Also, it suffices to prove that  $a = h \circ f$ . Indeed,  $(g \circ h) \circ f = g \circ (h \circ f) = g \circ a = b \circ f$ , so that  $g \circ h = b$  as f is an epimorphism.

Since g is a strong monomorphism, there is a morphism  $u: T \to Z$  such that  $u \circ g = \operatorname{id}_Z$ . Now let  $h = u \circ b$ . Therefore,  $h \circ f = (u \circ b) \circ f = u \circ (b \circ f) = u \circ (g \circ a) = (u \circ g) \circ a = \operatorname{id}_Z \circ a = a$ .

Corollary 2.6. Suppose that



is a commutative diagram in pro-C. If f is an epimorphism and g is a strong monomorphism, then there is a unique morphism  $h: Y \to Z$  such that  $h \circ f = a$  and  $g \circ h = b$ .

3. Categories with Strong Monomorphic Strong Coimages

For the following definition, see [4].

**Definition 3.1.** C is a *category with coimages* if every morphism f of C factors as  $f = u \circ g$  so that g is an epimorphism and this factorization is universal among such factorizations, that is, given another factorization  $f = v \circ h$  with h being an epimorphism there is  $t: D(v) \to D(u)$  such that  $t \circ h = g$  and  $u \circ t = v$ .

C is a category with monomorphic coimages if it is a category with coimages and u in the universal factorization  $f = u \circ g$  is a monomorphism.

**Definition 3.2.** C is a category with strong coimages if every morphism f of C factors as  $f = u \circ g$  so that g is a strong epimorphism and this factorization is universal among such factorization, that is, given another factorization  $f = v \circ h$  with h being a strong epimorphism there is  $t: D(v) \to D(u)$  such that  $t \circ h = g$  and  $u \circ t = v$ .

**Definition 3.3.** C is a category with strong monomorphic strong coimages if it is a category with strong coimages and u in the universal factorization  $f = u \circ g$  is a strong monomorphism.

**Lemma 3.4.** Let C be any category. Then the following conditions on C are equivalent:

- (i) C is a category with strong monomorphic strong coimages.
- (ii) Any morphism f factors as  $f = u \circ g$  so that g is a strong epimorphism and u is a strong monomorphism. Given another factorization  $f = v \circ h$  with h being a strong epimorphism and v a

VOLUME 23, NUMBER 2

#### CATEGORIES WITH STRONG MONOMORPHIC COIMAGES

strong monomorphism, there is an isomorphism  $t: D(v) \to D(u)$ such that  $t \circ h = g$  and  $u \circ t = v$ .

Proof. (i)  $\Rightarrow$  (ii) Any morphism f factors as  $f = u \circ g$  such that g is a strong epimorphism and u is a strong monomorphism. Assume that f has another factorization  $f = v \circ h$  with h being a strong epimorphism and v a strong monomorphism; there is  $t: D(v) \to D(u)$  such that  $t \circ h = g$  and  $u \circ t = v$ . Since g is a strong epimorphism, t is a strong epimorphism by Lemma 2.3. Now we show that t is an epimorphism. Suppose that  $a, b: D(u) \to Z$  are two morphisms such that  $a \circ t = b \circ t$ . Since t is a strong epimorphism, there is a morphism  $h: D(u) \to D(v)$  such that  $t \circ h = \mathrm{id}_{D(u)}$ . Therefore,  $a = a \circ \mathrm{id}_{D(u)} = a \circ t \circ h = b \circ t \circ h = b \circ \mathrm{id}_{D(u)} = b$ . Hence, t is an epimorphism. Since v is a strong monomorphism, t is a strong monomorphism by Lemma 2.3. Now applying Proposition 2.5 to the following diagram

$$\begin{array}{c|c} D(v) \xrightarrow{t} D(u) \\ \downarrow^{\mathrm{id}_{D(v)}} & & \downarrow^{\mathrm{id}_{D(u)}} \\ D(v) \xrightarrow{t} D(u) \end{array}$$

shows that t is an isomorphism.

(ii)  $\Rightarrow$  (i) Any morphism f factors as  $f = u \circ g$  such that g is a strong epimorphism and u is a strong monomorphism. Now we show that the factorization is universal. Assume that  $f = v \circ h$  is another factorization with h a strong epimorphism. Then v can be factored as  $v = b \circ a$  where a is a strong epimorphism and b is a strong monomorphism; there is an isomorphism c such that  $c \circ a \circ h = g$  and  $u \circ c = b$ . Let  $t = c \circ a$ . Hence, the result holds.

**Corollary 3.5.** Any morphism f of a category C with strong monomorphic strong coimages has a unique, up to isomorphism, factorization into a composition  $f = u \circ g$  where g is a strong epimorphism and u is a strong monomorphism.

We write this unique factorization as  $f = SM(f) \circ SE(f)$ .

The range of SE(f) (which is the domain of SM(f)) will be called the *coimage* of f and denoted by coim(f).

**Theorem 3.6.** Let C be a category with strong monomorphic strong coimages. Let  $f: X \to Y$  be a level morphism in pro-C. Then there exist level morphisms  $g: X \to Z$  and  $h: Z \to Y$  such that  $g_{\alpha} = SE(f_{\alpha})$ ,  $h_{\alpha} = SM(f_{\alpha})$  for each  $\alpha \in I(X)$  and  $f = h \circ g$ . Moreover, if f is an isomorphism, then both h and g are isomorphisms.

FALL 2011

*Proof.* First note that we have  $f_{\alpha} \circ p(X)_{\alpha}^{\beta} = p(Y)_{\alpha}^{\beta} \circ f_{\beta}$  for  $\beta > \alpha$ . Since C is a category with strong monomorphic strong coimages, we have  $SM(f_{\alpha}) \circ SE(f_{\alpha}) \circ p(X)_{\alpha}^{\beta} = p(Y)_{\alpha}^{\beta} \circ SM(f_{\beta}) \circ SE(f_{\beta})$ . This implies that the following diagram

$$\begin{array}{c|c} X_{\beta} \xrightarrow{SE(f_{\beta})} \operatorname{coim}(f_{\beta}) \\ SE(f_{\alpha}) \circ p(X)_{\alpha}^{\beta} \bigvee & \downarrow p(Y)_{\alpha}^{\beta} \circ SM(f_{\beta}) \\ \operatorname{coim}(f_{\alpha}) \xrightarrow{SM(f_{\alpha})} Y_{\alpha} \end{array}$$

is commutative in pro-C with  $SE(f_{\beta})$  a strong epimorphism and  $SM(f_{\alpha})$  a strong monomorphism. Thus, there is a unique morphism  $v: \operatorname{coim}(f_{\beta}) \to \operatorname{coim}(f_{\alpha})$  by Corollary 2.6. Put  $Z_{\alpha} = \operatorname{coim}(f_{\alpha})$  and  $p(Z)_{\alpha}^{\beta} = v$ . Thus, Z is an object of pro-C. Also, put  $g_{\alpha} = SE(f_{\alpha})$  and  $h_{\alpha} = SM(f_{\alpha})$  for each  $\alpha \in I(X)$ . Hence,  $f = h \circ g$ . Note that if f is an isomorphism, then g is a strong monomorphism and thus it is an isomorphism. Also, if f is an isomorphism. Hence, the result holds.

We denote g by SE(f) and h by SM(f). Therefore, we write f as  $f = SM(f) \circ SE(f)$ .

**Theorem 3.7.** Let C be a category with strong monomorphic strong coimages. Then for any strong epimorphism (respectively, strong monomorphism)  $f: X \to Y$  of pro-C, there exists a level morphism  $f': X' \to Y'$  and isomorphisms  $i: X \to X'$ ,  $j: Y' \to Y$  such that  $f = j \circ f' \circ i$ , I(X') is a cofinite directed set, and  $f'_{\alpha}$  is a strong epimorphism (respectively, strong monomorphism) of C for each  $\alpha \in I(Y')$ . Moreover, the bonding morphisms of X (respectively, Y') are chosen from the set of bonding morphisms of X (respectively, Y).

Proof. By Theorem 2.1, we may consider f being a level morphism and I(X) being cofinite. By Theorem 3.6, we can write f as  $f = SM(f) \circ SE(f)$ . If f is a strong epimorphism, then SM(f) is a strong epimorphism and hence, it is isomorphism. If f is a strong monomorphism, then SE(f) is a strong monomorphism, we can put f' = SE(f), i = SM(f) and  $j = id_Y$ . Therefore, each  $f'_{\alpha}$  is a strong epimorphism. If f is a strong monomorphism, we can put f' = SE(f), i = SM(f) and  $j = id_Y$ . Therefore, each  $f'_{\alpha}$  is a strong epimorphism. If f is a strong monomorphism, we can put f' = SE(f). Therefore, each  $f'_{\alpha}$  is a strong monomorphism.  $\Box$ 

**Theorem 3.8.** Let C be a category with strong monomorphic strong coimages. Then pro-C is a category with strong monomorphic strong coimages.

VOLUME 23, NUMBER 2

*Proof.* Since every level morphism has the factorization  $f = SM(f) \circ SE(f)$ , we have that every morphism of pro-C factors as a composition of a strong epimorphism and a strong monomorphism. Now we show that this factorization is universal. This amounts to show that for any commutative diagram in pro-C



in which f and a are strong epimorphism and g is a strong monomorphism, there is  $t: Y \to Z$  such that the diagram commutes. And this is Corollary 2.6. Hence, the result holds.

**Corollary 3.9.** Let C be a category with strong monomorphic strong coimages. If  $f: X \to Y$  is a strong epimorphism of pro-C and X is isomorphic to an object of pro-SE(C), then Y is isomorphic to an object of pro-SE(C).

*Proof.* By Theorem 3.7, we have  $f_{\alpha}$  is a strong epimorphism. But  $p(Y)_{\alpha}^{\beta} \circ f_{\beta} = f_{\alpha} \circ p(X)_{\alpha}^{\beta}$  for all  $\beta > \alpha$ . Since  $f_{\alpha}$  and  $p(X)_{\alpha}^{\beta}$  are strong epimorphism, we have  $p(Y)_{\alpha}^{\beta}$  is a strong epimorphism, that is, Y is isomorphic to an object of pro- $SE(\mathcal{C})$ .

The following result is a characterization of objects of pro-C which are isomorphic to objects of pro-SM(C) for C a category with strong monomorphic strong coimages.

**Corollary 3.10.** Let C be a category with strong monomorphic strong coimages. Then the following conditions on an object X of pro-C are equivalent.

- (i) X is isomorphic to an object of  $pro-SM(\mathcal{C})$ .
- (ii) There is a strong monomorphism  $f: X \to P$  where P is an object of  $\mathcal{C}$ .

*Proof.* (i)  $\Rightarrow$  (ii) Assume that  $p(X)^{\beta}_{\alpha}$  is a strong monomorphism of C for each  $\beta > \alpha$ . Assume that the following diagram

$$\begin{array}{c|c} X \xrightarrow{p(X)_{\alpha}} X_{\alpha} \\ \downarrow \\ a \\ P \xrightarrow{g} Q \end{array}$$

FALL 2011

is commutative in pro- $\mathcal{C}$  with P, Q objects in  $\mathcal{C}$ . We may find  $\beta \in I(X)$ ,  $\beta > \alpha$  and representative  $a_{\beta} \colon X_{\beta} \to P$  of a such that the following diagram



is commutative. But  $p(X)^{\beta}_{\alpha}$  is a strong monomorphism of  $\mathcal{C}$ . Thus, there is  $h: X_{\alpha} \to P$  such that  $h \circ p(X)^{\beta}_{\alpha} = a_{\beta}$ . Therefore,  $h \circ p(X)^{\beta}_{\alpha} \circ p(X)_{\beta} = a_{\beta} \circ p(X)_{\beta}$ , that is,  $h \circ p(X)_{\alpha} = a$ . Hence,  $p(X)_{\alpha}$  is a strong monomorphism of pro- $\mathcal{C}$  for each  $\alpha \in I(X)$ . Let  $p(X)_{\alpha} = f$  and  $X_{\alpha} = P$ . Hence, the result holds.

(ii)  $\Rightarrow$  (i) Suppose that  $f: X \to P$  is a strong monomorphism. We may assume that f is a level morphism such that  $f_{\alpha} \ \alpha \in I(X)$ , is a strong monomorphism of C. But for all  $\beta > \alpha$ ,  $f_{\alpha} \circ p(X)_{\alpha}^{\beta} = f_{\beta}$ . Hence,  $p(X)_{\alpha}^{\beta}$ is a strong monomorphism. That is, X is isomorphic to an object of pro-SM(C).

As an application, in the following corollary, we present conditions under which objects of pro-categories are stable.

**Corollary 3.11.** Let C be a category with strong monomorphic strong coimages. Let P and Q be objects of C and X be an object of pro-C. If  $f: P \to X$  is a strong epimorphism of pro-C and  $g: X \to Q$  is a strong monomorphism of pro-C, then X is stable.

*Proof.* Let  $h = g \circ f$ . h can be factored as  $h = SM(h) \circ SE(h)$ . Also,  $h = g \circ f$  is another factorization of h. By Lemma 3.4, there is an isomorphism  $v: X \to \operatorname{coim}(h)$  such that  $v \circ f = SE(h)$  and  $SM(h) \circ v = g$ . Hence, X is stable.

# Acknowledgments

This article was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. 3-49/430. The author, therefore, acknowledges with thanks to DSR for the technical and financial support.

# References

- J. Dydak and F. R. Ruiz del Portal, *Isomorphisms in pro-categories*, J. Pure Appl. Algebra, **190** (2004), 85–120.
- [2] J. Dydak and F. R. Ruiz del Portal, Monomorphisms and epimorphisms in procategories, Topology Appl., 154 (2007), 2204–2222.
- [3] S. Mardešić and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.

VOLUME 23, NUMBER 2

# CATEGORIES WITH STRONG MONOMORPHIC COIMAGES

- [4] B. Pareigis, *Categories and Functors*, Academic Press, New York and London, 1970.
- [5] M. Artin and B. Mazur, *Etale Homotopy*, Lecture Notes in Mathematics, No. 100, Springer-Verlag, Berlin, 1969, iii+169.

# MSC2010: 16B50

Department of Mathematics, King Abdulaziz University, P. O. Box 80203 Jeddah 21589, K. S. A.

E-mail address: maalshmrani1@kau.edu.sa

FALL 2011