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Abstract. By representing a set of N data points as a vector x

in R
N , we show that certain data analysis concepts, in particular

regression and quantile regression, can be interpreted as vectors that
minimize the distance to the vector x, with respect to an appropriate
metric or quasimetric.

1. The Metric is the Message

Many of the concepts in data analysis involve ideas of closeness or dis-
tance. For example, statistics textbooks introduce standard deviation as a
measure of how far the data are from the mean, or the median as the mid-
dle of the data, and for two-variable data the regression line is described
as the line closest to all the data points [5]. The words how far, mid-
dle, and closest suggest that some method of measuring distance, or some
type of metric is being used. Attempts to axiomatize our intuitive ideas
about distance include the notions of metrics, psudometrics, semimetrics,
quasimetrics, proximity, uniformity, and others. Each of these definitions
is intended to mathematically prescribe some intuitive notion of distance.
In [4] it is shown that for one-variable data the mean, median, mode, and
midrange are realized as values that minimize a distance in an appropriate
metric. In this article we examine how metrics and quasimetrics can be
used to put different regression methods in a metric context.

Recall that ametric on a setX is a function d : X×X → [0,∞) satisfying
the following conditions. For every x, y, z ∈ X ,

(i) d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x).
(iii) d(x, z) ≤ d(x, y) + d(y, z).

In this article we consider metrics on R
N . So let x = (x1, x2, . . . , xN )

and y = (y1, y2, . . . , yN) be vectors in R
N . The standard (or Euclidean, or

ℓ2) metric d on R
N is defined by

d(x,y) =

(
N∑

i=1

(xi − yi)
2

)1/2

. (1)
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We also consider the ℓ1 metric (sometimes called the taxicab metric) defined
by

d(x,y) =

N∑

i=1

|xi − yi| . (2)

A quasimetric is defined just like a metric except that property (ii) of
a metric is not required [6]. So the definition of a quasimetric leaves open
the possibility that d(x, y) is not equal to d(y, x). A well-known example
of a quasimetric space is a hilly country with several villages, where the
distance between villages is taken to be time of travel. So the distance
between a village at the top of a hill and one in the adjacent valley is not
symmetric—it takes longer to travel uphill than downhill. In this article
we use a particular quasimetric (called the tilted absolute value function)
which weights distances between data points and a proposed regression line
differently, depending on whether the points are above or below the line.
We’ll see that finding the line of best fit with respect to such a quasimetric
gives the researcher the choice of lifting (or lowering) the line of best fit
to be closer to those data points (points in a particular quantile) that a
researcher may consider more significant for a particular study.

For each p, 0 < p < 1, define the p-tilted absolute value function λp as
follows [2]:

λp(t) =

{
(p− 1)t, if t < 0;

pt, if t ≥ 0.
(3)

The graph in Figure 1 explains the term p-tilted.

0 t

y

y = pt

y = (p - 1)t

Figure 1. The tilted absolute value.

Lemma 1.1. For each p, 0 < p < 1, the function q : R×R → R defined by

q(x, y) = λp(x− y) is a quasimetric on R.
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Proof. Property (i) of a metric is clearly satisfied. To show that property
(iii) is satisfied let x, z ∈ R with x < z. If y is any other real number there
are three cases to consider: y < x < z, x < y < z, and x < z < y. In the
first case y < x < z, so

q(x, y) + q(y, z) = p(x− y) + (p− 1)(y − z) = p(x− z)− (y − z)

≥ p(x− z)− (x− z) = (p− 1)(x− z) = q(x, z).

In the second case x < y < z, so

q(x, y) + q(y, z) = (p− 1)(x− y) + (p− 1)(y − z)

= (p− 1)(x− z) = q(x, z).

In the third case x < z < y, so

q(x, y) + q(y, z) = (p− 1)(x− y) + p(y − z) = p(x− z)− (x− y)

≥ p(x− z)− (x − z) = (p− 1)(x− z) = q(x, z).

So inequality (iii) holds in all cases. �

For the vectors x,y ∈ R
N define

d(x,y) =

N∑

i=1

λp(xi − yi). (4)

This definition is analogous to (2) except that the absolute value has been
replaced by the p-tilted absolute value. In (4) each term has been weighted,
the weight depending on whether the data point xi is greater than or less
than yi. Although (2) and (4) are analogous, the situations are quite dif-
ferent in that (2) defines a metric but (4) does not. Indeed, (4) defines a
quasimetric on R

N since it is a sum of quasimetrics.

2. Central Tendency and Quantiles

Consider a set of one-variable data {x1, x2, . . . , xN} and suppose that
we are interested in finding a measure of central tendency. Let us represent
the data by a vector x in R

N and let m be a constant vector:

x = (x1, x2, . . . , xN ) and m = (m,m, . . . ,m).

Intuitively, we would like the central tendency vector m to be the vector
“closest” to x; that is, we would like to find the value of m that minimizes
the function

f(m) = d(x,m). (5)

It is shown in [4] that if d is the ℓ1 metric then the value ofm that minimizes
(5) is a median of the data. This value is not unique; when N is even, any
value of m between the middle two data points minimizes (5).
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The median is a special case of a quantile. Other commonly used quan-
tiles are the quartile, quintile, decile, or percentile. In general, a pth quantile
is a value such that the proportion of the data below that value is at most
p and the proportion of the data above that value is at most 1− p [1]. We
show that a pth quantile, just like a median, is determined as a solution to
a shortest distance problem.

Theorem 2.1. Let x be a data vector and let m be a constant vector in

R
N . The value of m that minimizes the quasimetric distance

d(x,m) =

N∑

i=1

λp(xi −m)

is a pth quantile.

Proof. Let

f(m) =

N∑

i=1

λp(xi −m) =
∑

xi<m

(p− 1)(xi −m) +
∑

xi>m

p(xi −m).

Taking the derivative with respect to m and setting it equal to zero we get

f ′(m) =
∑

xi<m

(1− p) +
∑

xi>m

(−p) = 0. (6)

Let r be the number of data points for which xi < m and s the number of
data points for which xi > m. So r + s ≤ N . Then (6) becomes

f ′(m) = r(1 − p) + s(−p) = 0.

Solving we get p = r/(r + s). Now the proportion of the data that is less
than m is r/N ≤ r/(r + s) = p, and the proportion of the data that is
greater than m is s/N ≤ s/(r + s) = 1 − r/(r + s) = 1 − p . Thus the
function f is minimized when m is a pth quantile. �

3. Linear Regression

A set of two-variable data is a set of the form {(x1, y1), (x2, y2), . . .,
(xN , yN )}. The goal in linear regression is to find a linear function y = ax+b
whose graph is as close as possible to all the data points. Write ŷi = axi+b
and consider the vectors y and L in R

N given by

y = (y1, y2, . . . , yN ) and L = (ŷ1, ŷ2, . . . , ŷN ). (7)

It is well-known that the values of a and b for the regression line y = ax+ b
are those that minimize the distance d(y,L) where d is the ℓ2 metric on
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R
N described in (1). This distance is the function F of the variables a and

b given by

F (a, b) =

N∑

i=1

|yi − (axi + b)|
2
=

N∑

i=1

|yi − ŷi|
2
.

So the regression line is the line that minimizes the sum of the squares of
the residuals yi − ŷi. The graph in Figure 2 contains some data points
and the corresponding regression line, with the magnitudes of the residuals
represented by dashed line segments. Formulas for the values of a and b
that minimize the function F are easily derived by using calculus or linear
algebra.

x

y

0 xi

yi |  yi|

y = ax+b

yi
^

yi
^

Figure 2. Regression Line and Residuals.

We now consider the ℓ1 metric as a different method of measuring dis-
tance for the purpose of finding a line of best fit for two-variable data. The
ℓ1 regression line, or median regression line [1], is obtained by finding the
linear function f(x) = ax+ b that minimizes the distance d(y,L) between
the vectors y and L defined in (7) in the ℓ1metric on R

N . This distance is
the function F of the two variables a and b given by

F (a, b) =

N∑

i=1

|yi − (axi + b)| =

N∑

i=1

|yi − ŷi| .

So the median regression line is the line that minimizes the sum of the
absolute values of the residuals yi − ŷi (see Figure 2). In this case, finding
formulas for the values of a and b that minimize the function F presents
formidable difficulties. The presence of the absolute value makes the calcu-
lus approach intractable. Since the ℓ1 metric is not derived from an inner
product, the linear algebra approach is also not workable.

It is apparent however that F is a piecewise linear function of a and b.
So the minimum value occurs at a vertex of the graph. This suggests that
we take a numerical approach to finding the appropriate values of a and
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b. We illustrate the ℓ1 regression line with a simple example. Consider the
two-variable data {(1, 1), (2, 2), (3, 3), (4, 5)}. The regression line for these
data (in the standard metric) is y = 1.3x − 0.5. To find the ℓ1 regression
line we need to find the values of a and b that minimize the function

F (a, b) = |1− (a+ b)|+ |2− (2a+ b)|+ |3− (3a+ b)|+ |5− (4a+ b)| .

Using numerical methods we find that the minimum value of F is not
unique. It is achieved whenever (a, b) is in the triangular region in R

2 with
vertices (1.5,−1), (1.3,−0.3), and (1, 0).

4. Quantile Regression

For the regression line and the median regression line, deviations of the
data above or below the line are measured by a metric. But for many real-
world data we may want to treat data points above or below a particular
quantile differently. For example, in studies where the dependent variable is
poverty (as measured by income level) the lower quartile of the dependent
variable is more relevant. For studies on pollution, the upper decile of
pollution levels (the dependent variable) is more important because these
levels pose a much more significant health risk. In each case a researcher
may choose to lower or pull up the line of best fit towards an extreme
quantile of the distribution function of the dependent variable.

This suggests that we weight data points above the proposed regression
line differently than those below. The quasimetric λp provides the needed
tool. That is, we can seek a quantile regression line using the quasimetric
defined in (4). Indeed, this type of regression, called quantile regression, is
used extensively in data analysis [1]. In our setting, the quantile regression
line (for the p-quantile) is simply the linear function y = ax + b which
minimizes the distance d(y,L) between the data vector y and the linear
vector L defined in (7), in the quasimetric (4). This distance is the function
of the two variables a and b given by

F (a, b) =
N∑

i=1

λp(yi − (axi + b)) =
N∑

i=1

λp(yi − ŷi). (8)

So the quantile regression line (for the p-quantile) is the line that minimizes
the sum of the p-tilted absolute values λp of the residuals yi− ŷi. Form the
definition of λp in (3) we have

λp(yi − ŷi) =

{
(1− p) |yi − ŷi| , if yi − ŷi < 0;

p |yi − ŷi| , if yi − ŷi ≥ 0.

Thus the quantile regression line is the line that minimizes the sum of the
weighted absolute values of the residuals yi− ŷi, where the weights are 1−p
for negative residuals and p for positive residuals. For example, if p = 0.25
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then for yi = 3 and ŷi = 7 we have λp(yi − ŷi) = (0.75) |3− 7| = 3; but for
yi = 7 and ŷi = 3 we have λp(yi − ŷi) = (0.25) |7− 3| = 1. In Figure 2,
distances to points above the line are given a weight 0.25 and those below
the line are given a weight 0.75. Because of this imbalance, the line that
minimizes the sum of these distances would be pulled down towards the
lower data points (the first quartile). If p = 0.99 the quantile regression
line would be pulled up to the 99th percentile of the distribution of the
dependent variable, since positive residuals yi − ŷi are now weighted by
0.99.

Quantile regression gives the researcher the choice to distinguish, or
weight, either of the extreme quantiles of a population in constructing a
linear model (without ignoring the remaining data). So it is particularly
useful in situations where extremes of the data are of interest. For this
reason quantile regression has been used in studies involving educational
attainment and wage inequality, household income and food expenditures,
birth weight and prenatal care, happiness and income, and others [1]. For
example, welfare rules apply to families with income below the poverty line.
If 11 of the population is below the poverty line, then welfare researchers
may find the 0.11 income quantile (and lower quantiles) more pertinent to
their research. Finding a regression line that targets this quantile of in-
come levels corresponds to using the quasimetric λp with p = 0.11 to find
a quantile regression line.

Calculating the coefficients in quantile regression is no easy matter. In
fact, the idea of quantile regression was considered as early as the nineteenth
century, but its use only became feasible with the availability of high speed
computers and sophisticated numerical methods. The piecewise linear na-
ture of the regression formula (8) also accommodates linear programming
techniques, again with the aid of computing devices. Currently, several sta-
tistical software programs compute quantile regression; these include SAS,
R, and STATA.

5. Conclusion

Many concepts in data analysis can be put in a common setting by stat-
ing them in the context of metric spaces. The median, as well as different
quantiles of data, can be realized as minimization problems with respect to
a metric or quasimetric. Similarly, regression and quantile regression can
be viewed as identical metric space problems only with different metrics or
quasimetrics.
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