
SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions,
or new insights on old problems are always welcomed by the problem editor.

161. [2006, 147] Proposed by José Luis Dı́az-Barrero, Universidad
Politècnica de Cataluña, Barcelona, Spain.

Show that

∫ 1

0

3

√

1 + ln(1 + x) dx

∫ 1

0

3

√

(1 + ln(1 + x))2 dx < 2 ln 2.

Solution by Joe Howard, Portales, New Mexico. We use an inequality
due to Chebyshev found on page 135 (Problem 75) of G. Klambauer, Prob-
lems and Propositions in Analysis, (1979), Marcel Dekker. With p(x) = 1
and f and g monotonically increasing on [0, 1], we have

∫ 1

0

f(x)dx ·

∫ 1

0

g(x)dx ≤

∫ 1

0

f(x) · g(x)dx.

Assuming

f(x) =
(

1 + ln(1 + x)
)

1

3 (f ′(x) > 0 on [0, 1])

and
g(x) =

(

1 + ln(1 + x)
)

2

3 (g′(x) > 0 on [0, 1])

the conditions of the inequality are met. Now

∫ 1

0

(

1 + ln(1 + x)
)

dx = 1 +

∫ 2

1

ln tdt = 1 +
[

t ln t − t
]2

1
= 2 ln 2.

Also, from the proof of Problem 75 (above), f or g must be constant to
have equality. Hence, the inequality is strict.

Also solved by Russell Euler and Jawad Sadek, Northwest Missouri
State University, Maryville, Missouri (jointly); Kenneth B. Davenport,
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Dallas, Pennsylvania; Paolo Perfetti, Universitá degli studi “Tor Ver-
gata” Roma, Italy; Huizeng Qin, Shadong University of Technology, Zibo,
Shadong, People’s Republic of China and Youmin Lu, Bloomsburg Univer-
sity, Bloomsburg, Pennsylvania (jointly) ; and the proposer.

162. [2006; 147] Proposed by Stanley Rabinowitz, MathPro Press,
Chelmsford, Massachusetts.

Find all positive integers a and n (with n > 1 and a < n) such that

sin
π

n
+ sin

aπ

n
= sin

(a + 2)π

n
.

Solution by Huizeng Qin, Shadong University of Technology, Zibo,
Shadong, People’s Republic of China and Youmin Lu, Bloomsburg Uni-
versity, Bloomsburg, Pennsylvania (jointly). Moving the second term from
the left side to the right side, one obtains

sin
π

n
= sin

(a + 2)π

n
− sin

aπ

n
= 2 cos

(a + 1)π

n
sin

π

n
.

Thus,

cos
(a + 1)π

n
=

1

2
.

Since 0 ≤ a+1

n
≤ 1, we have

(a + 1)π

n
=

π

3
.

Solving the equation, we get

a =
n

3
− 1.

Therefore,

a =
n

3
− 1, if n = 3k and k = 1, 2, 3, . . . .
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Also solved by Joe Howard, Portales, New Mexico; Joe Flowers, St.
Mary’s University, San Antonio, Texas; and the proposer. A partial solu-
tion by Kenneth B. Davenport, Dallas, Pennsylvania was also received.

163. [2006; 147] Proposed by José Luis Dı́az-Barrero, Universidad
Politècnica de Cataluña, Barcelona, Spain.

Let u, v, z, w be complex numbers. Prove that

2Re
(

uz + vw
)

≤ 3
(

|u|2 + |v|2
)

+
1

3

(

|z|2 + |w|2
)

.

Solution by Joe Flowers, St. Mary’s University, San Antonio, Texas.
From the inequality

(

3|u| − |z|
)2

+
(

3|v| − |w|
)2

≥ 0,

we obtain

9|u|2 − 6|u| · |z| + |z|2 + 9|v|2 − 6|v| · |w| + |w|2 ≥ 0,

or equivalently,

6
(

|u| · |z| + |v| · |w|
)

≤ 9
(

|u|2 + |v|2
)

+ |z|2 + |w|2.

Therefore,

6Re
(

uz + vw
)

≤ 6|uz + vw|

≤ 6
(

|u| · |z| + |v| · |w|
)

≤ 9
(

|u|2 + |v|2
)

+ |z|2 + |w|2,

and dividing through by 3 yields the desired inequality.

Also solved by Huizeng Qin, Shadong University of Technology, Zibo,
Shadong, People’s Republic of China and Youmin Lu, Bloomsburg Univer-
sity, Bloomsburg, Pennsylvania (jointly) and the proposer.
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164. [2006; 148] Proposed by Ovidiu Furdui (student), Western Michi-
gan University, Kalamazoo, Michigan.

Evaluate

∫ 1

0

{

1

x

}

ln x dx,

where {x} is the fractional part of x.

Solution by the proposer. The integral equals γ + γ1 − 1 where

γ = lim
n→∞

n
∑

k=1

1

k
− ln n ≈ 0.5772156

is the Euler-Mascheroni constant and

γ1 = lim
n→∞

[ n
∑

k=1

ln k

k
−

ln2 n

2

]

≈ −0.07278

is the Stieltjes constant.
If we make the substitution 1

x
= t, we obtain

I =

∫ 1

0

{

1

x

}

ln xdx = −

∫

∞

1

ln t
{t}

t2
dt = −

∞
∑

k=1

∫ k+1

k

ln t

t2
(t − k)dt,

and two integrations by parts yield

∫ k+1

k

ln t

t
dt =

ln2(k + 1)

2
−

ln2(k)

2

and

∫ k+1

k

ln t

t2
dt =

ln k

k
−

ln(k + 1)

k + 1
+

1

k(k + 1)
.
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Hence, we have

I = −
∞
∑

k=1

(

ln2(k + 1) − ln2(k)

2
+ ln(k + 1) − ln(k) −

ln(k + 1)

k + 1
−

1

k + 1

)

.

Let

Sn =
n

∑

k=1

(

ln2(k + 1) − ln2(k)

2
+ ln(k + 1) − ln(k) −

ln(k + 1)

k + 1
−

1

k + 1

)

be the nth partial sum of the preceding series. This series is a telescoping
series, so we obtain

Sn =

(

ln(n + 1) −
n

∑

k=2

1

k

)

+

(

ln2(n + 1)

2
−

n+1
∑

k=2

ln k

k

)

,

and, in the limit,

lim
n→∞

Sn = −(γ − 1) − γ1 = −γ1 − γ + 1.

Thus,
I = − lim

n→∞

Sn = γ1 + γ − 1 ≈ −0.4955.

Remark 1. To prove that γ1 i.e., the Stieltjes constant exists and is
finite, the following inequality will be used.

ln k

k
≥

ln2(k + 1)

2
−

ln2(k)

2
≥

ln(k + 1)

k + 1
, (0.1)

for all k ≥ 3. For the proof of (0.1) one can apply the Mean Value Theorem
to the function f(x) = ln2 x/2 on the interval (k, k + 1), and then use the
fact that the function x → ln x/x decreases on [3,∞).

Let

xn =

n
∑

k=1

ln k

k
−

ln2 n

2
.
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Then in view of (0.1) we obtain that

xn+1 − xn =
ln(n + 1)

n + 1
−

ln2(n + 1)

2
+

ln2 n

2
≤ 0.

Thus, the sequence decreases. The boundedness of the sequence (xn)n∈N

can be obtained by iterating (0.1). These show that the sequence (xn)
converges.

Remark 2. The constant γ1 is known in the literature as the Stieltjes
constant. For more information about this constant, see page 118 of [1].
The sequence xn is very slowly convergent. Symbolic calculations using
Maple show that x220,000 = −0.07278819 which gives only 4 significant
figures of the Stieltjes constant.
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Also solved by Huizeng Qin, Shandong University of Technology, Zibo,
Shadong, People’s Republic of China and Youmin Lu, Bloomsburg Uni-
versity, Bloomsburg, Pennsylvania (jointly) and Paolo Perfetti, Universitá
degli studi “Tor Vergata” Roma, Italy.
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