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Abstract. It is shown that ft(x) = x5 + (t2 − 3125)x − 4(t2 − 3125)

(t ∈ Q) is reducible in Q[x] if and only if t = 0. When t 6= 0 it is shown

that Gal(ft) ' D5 or A5, and necessary and sufficient conditions are given

for each possibility.

1. Introduction. Smith [3] has shown that the Galois group of

ft(x) = x5 + (t2 − 3125)(x − 4) (1.1)

over Q(t) is A5. Let t ∈ Q. By Hilbert’s irreducibility theorem for infinitely

many values of t ∈ Q the polynomial ft(x) has Galois group A5 over Q.

The exceptions, which occur when either the polynomial is reducible over

Q or is irreducible over Q but its Galois group is not A5, form a “thin” set.

In this paper we determine this set for the family (1.1). We set

g(u) =
(u3 − 18u2 + 8u − 16)(u3 + 2u2 + 18u + 4)

2u2(u2 + 4)
, u ∈ Q \ {0}, (1.2)

and prove the following result.

Theorem.

(a) Let t ∈ Q. Then ft(x) is reducible in Q[x] if and only if t = 0. If

t = 0 we have

f0(x) = x5 − 3125x + 12500 = (x − 5)2(x3 + 10x2 + 75x + 500).

(b) If t ∈ Q \ {0} then

Gal(ft(x)) ' D5 if t = g(u) for some u ∈ Q \ {0}

and

Gal(ft(x)) ' A5 if t 6= g(u) for any u ∈ Q \ {0}.
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Example 1. If t = − 125

2
then t = g(1) and by the theorem we have

Gal(f
−125/2(x)) = Gal

(

x5 +
3125

4
x − 3125

)

' D5.

Example 2. If t = 1 then as

(x3 − 18x2 + 8x − 16)(x3 + 2x2 + 18x + 4) − 2x2(x2 + 4)

is irreducible in Q[x] there does not exist u ∈ Q such that t = g(u) and by

the theorem

Gal(f1(x)) = Gal(x5 − 3124x + 12496) ' A5.

Example 3. As

lim
u→0+

g(u) = −∞, lim
u→+∞

g(u) = +∞,

and g(u) is strictly increasing for u > 0, it is clear that g(u) assumes in-

finitely many distinct (rational) values for u ∈ Q+. Hence, by the theorem,

there are infinitely many t ∈ Q for which Gal(ft(x)) ' D5.

Example 4. Let t = 3n, n ∈ N. Suppose there exists u ∈ Q \ {0} with

3n = g(u). Then the sextic polynomial

(x3 − 18x2 + 8x − 16)(x3 + 2x2 + 18x + 4) − 6nx2(x2 + 4)

has a rational root. However,

(x3 − 18x2 + 8x − 16)(x3 + 2x2 + 18x + 4) − 6nx2(x2 + 4)

≡ (x3 + 2x + 2)(x3 + 2x2 + 1) (mod 3)

has no roots (mod 3). Hence, no such u exists and by the theorem there

exist infinitely many t ∈ Q such that Gal(ft(x)) ' A5.

We conclude this introduction by recalling a few facts about quintic

trinomials, which will be used in the proof of the Theorem in Section 2.

Proposition 1. [2] Let A and B be rational numbers. The discriminant

of x5 + Ax + B is 44A5 + 55B4.
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Proposition 2. [5] Let A and B be rational numbers such that 44A5 +

55B4 > 0. Then x5 + Ax + B has exactly one real root.

Proposition 3. [4] Let A and B be rational numbers such that the

quintic trinomial x5 + Ax + B is irreducible in Q[x]. Then x5 + Ax + B

is solvable by radicals if and only if there exist rational numbers ε(= ±1),

C(≥ 0) and E(6= 0) such that

A =
5E4(3 − 4εC)

C2 + 1
, B =

−4E5(11ε + 2C)

C2 + 1
.

Proposition 4. [4] Let ε(= ±1), C(≥ 0) and E(6= 0) be rational num-

bers such that the quintic trinomial

x5 +
5E4(3 − 4εC)

C2 + 1
x − 4E5(11ε + 2C)

C2 + 1

is irreducible in Q[x]. Then the Galois group of x5 +Ax+B is the dihedral

group D5 of order 10 if and only if 5(C2 + 1) is a perfect square in Q.

2. Proof of Theorem. (a) If t = 0 we have

f0(x) = x5 − 3125x + 12500 = (x − 5)2(x3 + 10x2 + 75x + 500).

Now suppose t ∈ Q\{0}. We show that ft(x) is irreducible in Q[x]. Suppose

not. Then ft(x) has either a rational root or an irreducible quadratic factor.

Suppose first that ft(r) = 0 with r ∈ Q so

r5 + (t2 − 3125)(r − 4) = 0. (2.1)

Clearly r 6= 4, 5. Set

x =
−17r − 188

r − 4
∈ Q (2.2)

and

y =
8(r2 + 7r + 16t − 60)

(r − 4)(r − 5)
∈ Q. (2.3)
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Then

y2 + xy + y − x3 − 549x + 2202 =
214(r5 + (t2 − 3125)(r − 4))

(r − 4)3(r − 5)2
= 0. (2.4)

This elliptic curve is A4(H) of [1]. Its conductor is 50, its rank is 0 and

the order of the torsion subgroup is 1. Thus, there are no pairs (x, y) ∈ Q2

satisfying (2.4), contradicting (2.2)–(2.4).

Now suppose ft(x) has the irreducible quadratic factor x2 + ax + b

(a, b ∈ Q, a2 − 4b /∈ Q2). As

x5 + (t2 − 3125)x− 4(t2 − 3125)

= (x2 + ax + b)(x3 − ax2 + (a2 − b)x + (2ab − a3))

+ (a4 − 3a2b + b2 + t2 − 3125)x + (a3b − 2ab2 − 4t2 + 12500)

we must have

a4 − 3a2b + b2 + t2 − 3125 = a3b − 2ab2 − 4t2 + 12500 = 0. (2.5)

Eliminating t2 from (2.5), we obtain

(4 − 2a)b2 + (a3 − 12a2)b + 4a4 = 0. (2.6)

If a = −10 then b = 25 or 200/3 so t2 = 0 or 78125/9, a contradiction. If

a = 0 then b = 0 and t2 = 3125, a contradiction. If a = 2 then b = 8/5

and t2 = 78141/25, a contradiction. Hence, a 6= −10, 0, 2. Solving the

quadratic equation (2.6) for b we obtain

b =
12a2 − a3 ± a2

√
a2 + 8a + 80

8 − 4a
. (2.7)

As b ∈ Q there exists z ∈ Q such that

a2 + 8a + 80 = z2. (2.8)

Hence,

(z + a + 4)(z − a − 4) = 64.
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Thus, there exists k ∈ Q \ {0} such that

z + a + 4 = k, z − a − 4 =
64

k
. (2.9)

Solving (2.9) for a and z, we obtain

a =
k2 − 8k − 64

2k
, z =

k2 + 64

2k
. (2.10)

As a 6= 2 we have k 6= −4, 16. As a 6= −10 we have k 6= 4,−16. Hence,

k 6= 0,±4,±16. Using (2.10) in (2.7) we deduce b = b1 or b2, where

b1 =
k4 − 16k3 − 64k2 + 1024k + 4096

8k2 + 32k
, (2.11)

b2 =
−2k4 + 32k3 + 128k2 − 2048k − 8192

k3 − 16k2
. (2.12)

First, using the values of a and b1 in (2.5), we find

t2 =
(k − 4)(k3 − 52k2 + 768k + 4096)(k3 + 8k2 + 88k + 256)2

64k4(k + 4)2
. (2.13)

Set

x =
2(k + 46)

k − 4
∈ Q, (2.14)

y =
−100k2(k + 4)t

(k − 4)2(k3 + 8k2 + 88k + 256)
− (3k + 88)

2(k − 4)
∈ Q. (2.15)

Then

22

54
(y2 + yx + y − x3 + 76x − 298) =

64k4(k + 4)2t2 − (k − 4)(k3 − 52k2 + 768k + 4096)(k3 + 8k2 + 88k + 256)2

(k − 4)4(k3 + 8k2 + 88k + 256)2
.

5



Thus, by (2.13), we have

y2 + yx + y − x3 + 76x − 298 = 0. (2.16)

The elliptic curve (2.16) is curve A3(G) [1]. The conductor is 50, the rank

is 0 and the order of the torison subgroup is 3. There are exactly two finite

rational points on this curve, namely, (2, 11) and (2,−14). It is clear from

(2.14) that these do not correspond to a rational value of k.

Next, by using the values of a and b2 in (2.5), we obtain

t2 =
−(k + 16)(k3 − 12k2 − 52k − 64)(k3 − 22k2 + 128k − 1024)2

16k4(k − 16)2
. (2.17)

As k 6= 0 we can set k1 = −64/k ∈ Q \ {0}. As k 6= ±4,±16 we have

k1 6= ±4,±16. Replacing k by −64/k1 in (2.17), we obtain (2.13) with k

replaced by k1, which we have shown has no rational solutions (t, k1) with

k1 6= 0,±4,±16.

This completes the proof of part (a) of the theorem.

(b) We now turn to the proof of part (b). Let t ∈ Q \ {0}. By Proposition

1 the discriminant of ft(x) is 28t2(t2 − 3125)4. As the discriminant ∈ Q2,

Gal(ft(x)) is isomorphic to one of Z5, D5 or A5. It is easy to see by Rolle’s

Theorem that ft(x) has at most three real roots (indeed by Proposition 2

it has exactly one real root) so Gal(ft(x)) 6' Z5. Thus, Gal(ft(x)) ' D5 or

A5.

Suppose first that there exists u ∈ Q \ {0} such that t = g(u), where g

is defined in (1.2). Set

c =

∣

∣

∣

∣

11u2 + 8u − 44

2u2 − 44u− 8

∣

∣

∣

∣

∈ Q, (2.18)

e =

(

sgn

(

11u2 + 8u− 44

2u2 − 44u− 8

))

(u2 − 2u− 4)

2u
∈ Q, (2.19)

ε = −sgn

(

11u2 + 8u − 44

2u2 − 44u− 8

)

= ±1. (2.20)

We note that c ≥ 0 and e 6= 0. Then

t2 − 3125 =
5e4(3 − 4εc)

c2 + 1
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and

−4(t2 − 3125) =
−4e5(11ε + 2c)

c2 + 1

so

ft(x) = x5 +
5e4(3 − 4εc)

c2 + 1
x − 4e5(11ε + 2c)

c2 + 1
.

Further

5(c2 + 1) =

(

25(u2 + 4)

2(u2 − 22u− 4)

)2

∈ Q2

so by Proposition 4, Gal(ft) ' D5.

Conversely, suppose that Gal(ft(x)) ' D5. Hence, ft(x) = 0 is solvable

by radicals. Then, by Propostion 3, there exist rationals c(≥ 0), ε(= ±1)

and e(6= 0) such that

t2 − 3125 =
5e4(3 − 4εc)

c2 + 1
, −4(t2 − 3125) =

−4e5(11ε + 2c)

c2 + 1
. (2.21)

Eliminating t2 − 3125, we obtain

c =
15− 11εe

2(e + 10ε)
. (2.22)

Then, from (2.22) and the first equation in (2.21), we deduce

t2 =
(2e3 + 10εe2 − 25e + 125ε)2

(e2 − 2εe + 5)
. (2.23)

From (2.23) we see that there exists z ∈ Q \ {0} such that

e2 − 2εe + 5 = z2.

Hence,

(z − e + ε)(z + e − ε) = 4.
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Thus, there exists u ∈ Q \ {0} such that

z + e − ε = −εu,

z − e + ε = −4ε

u
.

Solving these two equations for e we find

e = −ε

(

u2 − 2u − 4

2u

)

. (2.24)

From (2.23) and (2.24) we obtain

t2 =
(u3 − 18u2 + 8u− 16)2(u3 + 2u2 + 18u + 4)2

4u4(u2 + 4)2

so that

t = ±g(u).

If the plus sign holds then t = g(u) as required. If the minus sign holds

then t = −g(u) = g(−4/u) as required.

This completes the proof of the theorem.
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