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Abstract. The F distributions are becoming increasingly prominent
in several applied areas. In this paper, a new generalization of the F distri-
bution is introduced by compounding. It takes the form of the product of
two F pdf’s. Various structural properties of this distribution are derived,
including its cdf, moments, mean deviation about the mean, mean devi-
ation about the median, entropy, asymptotic distribution of the extreme
order statistics, maximum likelihood estimates and the Fisher information
matrix.

1. Introduction. The F distribution is one of the most familiar
statistical distributions in finance, economics and related areas [2]. The
increasing applications of this distribution to income data have forced the
need for more generalizations of the F distribution. The simplest form of
the F distribution is given by the probability density function (pdf)

f(x) ∝ xδ−1

(x + y)γ (1)

for x > 0, y > 0, γ > 0 and δ > 0. The parameter y is the cut-off point
and γ and δ describe the tail of the distribution. Usually, the exact value
of y will be unknown but the experimenter will have some idea about the
range of possible values of y. The only standard model for data in a finite
range is the beta distribution and so it is reasonable to assume that y is
distributed with the pdf

f(y) ∝ (y − d)a(c − y)b (2)

for d < y < c, a > −1 and b > −1. Combining (1) and (2), we obtain the
compound pdf of x as

f(x) ∝
∫ c

d

xδ−1(y − d)a(c − y)b

(x + y)γ dy

∝ xδ−1

(x + c)a+1(x + d)b+1
, (3)
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where we have assumed that γ = a + b + 2, i.e. the shape parameter of
(1) is equal to the sum of the shape parameters of (2). The compound pdf
in (3) takes the form of the product of two pdfs of the form (1). Another
motivation for considering (3) as a new distribution is that products of
densities often arise as the posterior in Bayesian regression analysis [8].
Thus, it is important that (3) is introduced as a new distribution and its
properties studied comprehensively. Formally, let us write the compound
pdf as

f(x) = Cxα+a−2(1 + cx)−(α+β)(1 + dx)−(a+b) (4)

for x > 0, a > 0, b > 0, c > 0, d > 0, α > 0 and β > 0, where C denotes
the normalizing constant to be determined later. We refer to (4) as the
compound F distribution. Like the F pdf, this pdf is unimodal with its
mode given by the positive root of the quadratic equation

−cd(b+β+2)x2+{(c + d)(α + a − 2) − c(α + β) − d(a + b)}x+α+a−2 = 0.

The F pdf arises as the particular case of (4) for c = d. Figure 1 below
illustrates possible shapes of (4) for selected values of a, b, α and β. Note
that the y-axes are plotted on log scale. The effect of the parameters is
evident. (See Figure 1.)

In the rest of this paper, we derive various structural properties of (4),
including its cdf, moments, mean deviation about the mean, mean deviation
about the median, entropy, asymptotic distribution of the extreme order
statistics, maximum likelihood estimates and the Fisher information matrix
(FIM). These quantities play a significant role in statistics and many other
areas of science. For instance, the FIM plays a key role in the analysis and
applications of statistical image reconstruction methods based on Poisson
data models. The elements of the FIM are a function of the reciprocal of the
mean values of sinogram elements [4]. The calculation of the FIM is also
of central importance in many practical systems which can be described
as the output of a multidimensional linear separable-denominator system
with Gaussian measurement noise, e.g. nuclear magnetic resonance (NMR)
spectroscopy [5].

The calculations of this paper involve several special functions, includ-
ing the Appell function of the first kind defined by

F1 (a, b, c; d; x, y) =

∞
∑

m=0

∞
∑

n=0

(a)m+n(b)m(c)nxmyn

(d)m+nm!n!
,

the Gauss hypergeometric function defined by

2F1 (a, b; c; x) =

∞
∑

k=0

(a)k (b)k

(c)k

xk

k!
,
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the Legendre function of the first kind defined by

P µ
ν (x) =

1

Γ(1 − µ)

(

1 + x

1 − x

)µ/2

2F1

(

−ν, ν + 1; 1 − µ;
1 − x

2

)

and, the Legendre function of the second kind defined by

Qµ
ν (x) =

√
π exp (iµπ) Γ (µ + ν + 1)

2ν+1Γ (ν + 3/2)
x−µ−ν−1

(

x2 − 1
)µ/2

× 2F1

(

µ + ν + 1

2
,
µ + ν

2
+ 1; ν +

3

2
;

1

x2

)

,

where (f)k = f(f + 1) · · · (f + k − 1) denotes the ascending factorial. We
also need the following important lemmas.

Lemma 1. [6] For α > 0 and β > 0,

∫

∞

0

xα−1(a − x)β−1(x + z)−ρdx

= aα+β−1z−ρB (α, β) 2F1

(

α, ρ; α + β;−a

z

)

.

Lemma 2. [6] For 0 < α < ρ + λ,

∫

∞

0

xα−1(x + y)−ρ(x + z)−λdx

= z−λyα−ρB (α, ρ + λ − α) 2F1

(

α, λ; ρ + λ; 1 − y

z

)

.

Lemma 3. [6] For a > 0, α > 0 and β > 0,

∫ a

0

xα−1(a − x)β−1(1 − ux)−ρ(1 − vx)−λdx

= aα+β−1B(α, β)F1 (α, ρ, λ, α + β; ua, va) .
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Further properties of the above special functions can be found in [1] and
[6]. The use of special functions is an important development in statistics
because it allows one to simplify various expressions and their numerical
computation. For instance, the Appell function of the first kind can be
computed using the function AppellF1 in Mathematica. The hypergeom

function in Maple can be used to compute the Gauss hypergeometric func-
tion. Without these special functions, one would have to write computer
codes for calculating the infinite sums and this can be time-consuming and
error-prone.

2. Cumulative Distribution Function. The cdf corresponding to
(4) can be calculated as

F (x) = C

∫ x

0

yα+a−2(1 + cy)−(α+β)(1 + dy)−(a+b)dy

=
Cxα+a−1

α + a − 1
F1 (α + a − 1, α + β, a + b, α + a;−cx,−dx) , (5)

which follows by an easy application of Lemma 3.

3. Moments. Suppose X is a random variable with pdf (4). Its nth
moment can be expressed as

E (Xn) = C

∫

∞

0

xn+α+a−2(1 + cx)−(α+β)(1 + dx)−(a+b)dx.

Applying Lemma 2 to calculate the integral in (6), one obtains

E (Xn) = Cc1−n−α−aB(n + α + a − 1, β + b − n + 1)

× 2F1

(

n + α + a − 1, a + b; α + β + a + b; 1 − d

c

)

(7)

for n < 1 + β + b. Using special properties of the Gauss hypergeometric
function, the following simpler forms for (7) can be obtained. First, the
normalizing constant C in (4) is given by

1

C
= c1−α−aB(α + a − 1, β + b + 1)

× 2F1

(

α + a − 1, a + b; α + β + a + b; 1 − d

c

)

.
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Second, if α = a and β = b then (7) can be reduced to one of the following
equivalent forms

E (Xn) =
C22a+2b−1Γ (a + b + 1/2)Γ (n + 2a− 1) Γ (2b − n + 1)

cn+2a−5/4d1/4Γ (2a + 2b)

×
(

1 − d

c

)1/2−a−b

× P
1/2−a−b
n+a−b−3/2

(

1 + d/c

2
√

d/c

)

,

E (Xn) =
C4a+bΓ (a + b + 1/2)Γ (n + 2a − 1)√
πc(3a+b+n−1)/2d(n+a−b−1)/2Γ (2a + 2b)

(

1 − d

c

)

−(a+b)

× exp {−iπ(b − a − n + 1)}Qb−a−n+1
a+b−1

(

1 + d/c

1 − d/c

)

,

E (Xn) =
C4a+bΓ (a + b + 1/2)Γ (2b − n + 1)√
πc(3a+b+n−1)/2d(n+a−b−1)/2Γ (2a + 2b)

(

d

c
− 1

)

−(a+b)

× exp {iπ(b − a − n + 1)}Qa+n−b−1
a+b−1

(

−1 + d/c

1− d/c

)

for n < 1 + 2b. Finally, if c = d then (7) can be reduced to the familiar
form

E (Xn) = Cc1−n−α−aB(n + α + a − 1, β + b − n + 1)

for n < 1 + β + b. The amount of scatter in a population is evidently
measured to some extent by the totality of deviations from the mean and
the median. These are known as the mean deviation about the mean and
the mean deviation about the median – defined by

δ1(X) =

∫

∞

0

|x − µ| f(x)dx

and

δ2(X) =

∫

∞

0

|x − M | f(x)dx,
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respectively, where µ = E(X) and M = Median(X). These measures can
be calculated using the relationships

δ1(X) =

∫ µ

0

(µ − x)f(x)dx +

∫

∞

µ

(x − µ)f(x)dx

= 2

∫

∞

µ

(x − µ)f(x)dx

= 2

∫

∞

µ

xf(x)dx − 2µ {1 − F (µ)}

= 2E(X) − 2

∫ µ

0

xf(x)dx − 2µ {1 − F (µ)} (8)

and

δ2(X) =

∫ M

0

(M − x)f(x)dx +

∫

∞

M

(x − M)f(x)dx

= MF (M) − M {1 − F (M)} −
∫ M

0

xf(x)dx +

∫

∞

M

xf(x)dx

= 2

∫ M

0

xf(x)dx − E(X). (9)

The expressions for E(X), F (µ) and F (M) are given by (5) and (7). Thus,
calculating δ1(X) and δ2(X) amounts to calculating

∫ µ

0

xf(x)dx and

∫ M

0

xf(x)dx.

Applying Lemma 3, it is easily seen that

∫ y

0

xf(x)dx = C

∫ y

0

xα+a−1(1 + cx)−(α+β)(1 + dx)−(a+b)dx

=
Cyα+a

α + a
F1 (α + a, α + β, a + b, α + a + 1;−cy,−dy) . (10)
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Expressions for the mean deviations follow by substituting (10) into (8) and
(9).

4. Rényi Entropy. An entropy of a random variable X is a measure
of variation of the uncertainty. Rényi entropy is defined by

JR(γ) =
1

1 − γ
log

{
∫

fγ(x)dx

}

,

where γ > 0 and γ 6= 1 [7]. It follows easily by application of Lemma 2 that

∫

∞

0

fγ(x)dx = Cγ

∫

∞

0

xγ(α+a−2)(1 + cx)−γ(α+β)(1 + dx)−γ(a+b)dx

= Cγcγ−α−aγB(α + aγ − γ, β + bγ + γ)

× 2F1

(

α + aγ − γ, aγ + bγ; α + β + aγ + bγ; 1− βγ + γ − 1

αγ − γ + 1

)

.

Thus, Rényi entropy for (4) is given by

JR(γ) =
1

1− γ

{

γ log C + (γ − α − aγ) log c

+ log B(α + aγ − γ, β + bγ + γ)

+ log 2F1

(

α + aγ − γ, aγ + bγ; α + β + aγ + bγ; 1− βγ + γ − 1

αγ − γ + 1

)

}

.

5. Asymptotics. If X1, . . . , Xn is a random sample from (4) and
if X̄ = (X1 + · · · + Xn)/n denotes the sample mean then by the usual
central limit theorem

√
n(X̄ − E(X))/

√

Var(X) approaches the standard
normal distribution as n → ∞. Sometimes one would be interested in
the asymptotics of the extreme values Mn = max(X1, . . . , Xn) and mn =
min(X1, . . . , Xn). Note from (4) that f(t) ∼ C/{cα+βda+b}t−(β+b+2) as
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t → ∞ and f(t) → Ctα+a−2 as t → 0. Thus, it follows by using L’Hospital’s
rule that

1 − F (tx)

1 − F (t)
→ x−(β+b+1)

as t → ∞ and

F (tx)

F (t)
→ xα+a−1

as t → 0. Hence, it follows from Theorem 1.6.2 in [3] that there must be
norming constants an > 0, bn, cn > 0 and dn such that

Pr{an (Mn − bn) ≤ x} → exp
{

−x−(β+b+1)
}

and
Pr {cn (mn − dn) ≤ x} → 1 − exp

{

−xα+a−1
}

as n → ∞. The form of the norming constants can also be determined.
For instance, using Corollary 1.6.3 in [3], one can see that bn = 0 and an

satisfies 1 − F (an) ∼ 1/n as n → ∞. Using the fact that 1 − F (t) ∼
(C/(β + b + 1))c−(α+β)d−(a+b)t−(β+b+1) as t → ∞, one can show that

an =

{

nC

(β + b + 1)cα+βda+b

}1/(β+b+1)

satisfies 1 − F (an) ∼ 1/n. The constants cn and dn can be determined by
using the same corollary.

6. Estimation. Here, we consider maximum likelihood estimation
of the parameters when X1, . . . , Xn is a random sample from (4) and also
provide expressions for the associated FIM. The log-likelihood is

log L (a, b, c, d, α, β) = n logC + (α + a − 2)
n
∑

j=1

log Xj

− (α + β)

n
∑

j=1

log (1 + cXj) − (a + b)

n
∑

j=1

log (1 + dXj) .
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The first derivatives with respect to the six parameters are:

∂ log L

∂a
=

n

C

∂C

∂a
+

n
∑

j=1

log Xj −
n
∑

j=1

log (1 + dXj) ,

∂ log L

∂b
=

n

C

∂C

∂b
+

n
∑

j=1

log (1 + dXj) ,

∂ log L

∂c
=

n

C

∂C

∂c
− (α + β)

n
∑

j=1

Xj

1 + cXj
,

∂ log L

∂d
=

n

C

∂C

∂d
− (a + b)

n
∑

j=1

Xj

1 + dXj
,

∂ log L

∂α
=

n

C

∂C

∂α
+

n
∑

j=1

log Xj −
n
∑

j=1

log (1 + cXj)

and

∂ log L

∂β
=

n

C

∂C

∂β
−

n
∑

j=1

log (1 + cXj) .

Thus, the maximum likelihood estimates of the six parameters are the so-
lutions of the equations:

n

C

∂C

∂a
= −

n
∑

j=1

log Xj +

n
∑

j=1

log (1 + dXj) ,

n

C

∂C

∂b
= −

n
∑

j=1

log (1 + dXj) ,

n

C

∂C

∂c
= (α + β)

n
∑

j=1

Xj

1 + cXj
,
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n

C

∂C

∂d
= (a + b)

n
∑

j=1

Xj

1 + dXj
,

n

C

∂C

∂α
= −

n
∑

j=1

log Xj +
n
∑

j=1

log (1 + cXj)

and

n

C

∂C

∂β
=

n
∑

j=1

log (1 + cXj) .

Calculation of the associated FIM requires second-order derivatives of log L.
All of the second-order derivatives take the form

∂2 log L

∂θi∂θj
= − n

C2

∂C

∂θi

∂C

∂θj
+

n

C

∂2C

∂θi∂θj

except for

∂2 log L

∂a∂d
= − n

C2

∂C

∂a

∂C

∂d
+

n

C

∂2C

∂a∂d
−

n
∑

j=1

Xj

1 + dXj
,

∂2 log L

∂b∂d
= − n

C2

∂C

∂b

∂C

∂d
+

n

C

∂2C

∂b∂d
+

n
∑

j=1

Xj

1 + dXj
,

∂2 log L

∂c2 = − n

C2

(

∂C

∂c

)2

+
n

C

∂2C

∂c2 + (α + β)
n
∑

j=1

X2
j

(1 + cXj)
2 ,

∂2 log L

∂c2 = − n

C2

(

∂C

∂d

)2

+
n

C

∂2C

∂d2 + (a + b)

n
∑

j=1

X2
j

(1 + dXj)
2 ,

∂2 log L

∂c∂α
= − n

C2

∂C

∂c

∂C

∂α
+

n

C

∂2C

∂c∂α
−

n
∑

j=1

Xj

1 + cXj
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and

∂2 log L

∂c∂β
= − n

C2

∂C

∂c

∂C

∂β
+

n

C

∂2C

∂c∂β
−

n
∑

j=1

Xj

1 + cXj
.

Thus, the elements of the FIM are straight-forward upon noting that

E

[

Xm

(1 + cX)m

Xn

(1 + dX)n

]

= A(m, n)Cc1−α−a−m−nB(m + n + α + a − 1, β + b + 1),

where

A(m, n)

= 2F1

(

m + n + α + a − 1, n + a + b; m + n + α + β + a + b; 1 − d

c

)

.

The FIM in directly useful in statistics to find lower–bounds for variances
and co-variances. If θ = (a, b, c, d, α, β)T and T (X1, X2, . . . , Xn) denotes
some statistic of θ then it is well-known that

Cov (T (X1, X2, . . . , Xn)) ≥ ∂φ

∂θT
I−1(θ)

∂φT

∂θ
,

where φ = E[T (X1, X2, . . . , Xn)] and I−1(θ) denotes the inverse of the
FIM, I(θ), determined above. This inequality is known as the Cramer-Rao
Inequality. The exact form of the lower-bound will of course depend on
what T is.

7. Conclusions. We have introduced a new generalization of the F
distribution motivated by compounding. We have derived various proper-
ties of this distribution, including its cdf, moments, mean deviation about
the mean, mean deviation about the median, entropy, asymptotic distribu-
tion of the extreme order statistics, maximum likelihood estimates and the
Fisher information matrix. We expect that this new distribution will prove
to be a good model for income data.
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Figure 1. Plots of the pdf of (4) for (a): (α, β) = (1, 1); (b): (α, β) = (1, 3);
(c): (α, β) = (2, 3); and, (d): (α, β) = (3, 3). The four curves in each plot
are: the solid curve (a = 1, b = 1), the curve of lines (a = 1, b = 3), the
curve of dots (a = 2, b = 3), and the curve of lines and dots (a = 3, b = 3).
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