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Abstract. A method is presented for determining barycentric coordi-

nates of points of intersection of a line and a circle. The method is applied

specifically to the Euler line, the line of the circumcenter and incenter, the

Brocard axis, and several circles, including the circumcircle, incircle, nine-

point circle, and Brocard circle. The method also applies to intersections of

certain pairs of lines, harmonic conjugate pairs, and to centers of similitude

of pairs of circles.

1. Introduction. Let ABC be a triangle with vertices A, B, C, ver-

tex angles A, B, C, sidelengths a, b, c, circumradius R, inradius r, area

∆, semiperimeter s, Brocard angle ω, and line L∞ at infinity. Let

SA = (b2 + c2 − a2)/2, so that SA = bc cosA, and define SB and SC

defined cyclically. The circumcenter, incenter, orthocenter, nine-point cen-

ter, centroid, and symmedian point are denoted by O, I, H, N, G, and K,

respectively, and the notation X(n) refers to points indexed in the Ency-

clopedia of Triangle Centers - ETC [4].

A key idea in this paper is that of linear combinations of triangle cen-

ters. It is helpful to use the notation λP +µQ for such a combination, but,

we shall soon see, this notation must be understood in terms of normalized

barycentric coordinates. Consider, for example,

P = G = 1 : 1 : 1 = abc : abc : abc and Q = I = a : b : c.

The notation “2P +3Q” could be taken to mean either 2+3a : 2+3b : 2+3c

or 2abc+3a : 2abc+3b : 2abc+3c, two distinct points. In order to establish

a single-point meaning for λP + µQ, recall that the notation u : v : w

represents an equivalence class of ordered triples (hu, hv, hw), where h is

any nonzero function of the variable (a, b, c). For any point P = u : v : w not

on L∞, there is a member (uh, vh, wh) of u : v : w such that uh, vh, wh are

the oriented areas of the triangles PBC, PCA, PAB, respectively. Indeed,

h = ∆/(u + v + w). Now suppose P = u : v : w and Q = x : y : z are

points, neither on L∞, which is to say that u + v + w 6= 0 6= x + y + z.

Define λP +µQ as the point R for which the oriented areas of the triangles

RBC, RCA, RAB are

λuh + µxk, λvh + µyk, λwh + µzk,

1



respectively, where h = ∆/(u+ v +w) and k = ∆/(x+y + z). Barycentrics

are given by

λP + µQ = λuΣQ + µxΣP : λvΣQ + µyΣP : λwΣQ + µzΣP , (1)

where ΣP and ΣQ are coordinate sums, given by ΣP := u + v + w and

ΣQ := x + y + z. In this manner, given any barycentrics for points not on

L∞, the linear combination λP + µQ is now unambiguously given by (1).

Another geometric significance of λP +µQ is as the point R satisfying

|PR| : |RQ| = µ : λ, or equivalently,
−−→
WR =

−−→
WP +

µ

λ + µ

−→
PQ

for any point W not on L∞. Taking W = P identifies R as the point

“µ/(λ + µ) of the way from P to Q”, or, writing µ/(λ + µ) as f , R is the

image of Q under the homothety centered at P with ratio f , denoted by

H(P, f)(Q). If f is a fraction m/n, then the point R, alias H(P, m/n)(Q)

is the point (n − m)P + mQ. Special cases follow:

H(P, 1/2)(Q) = midpoint of P and Q

H(P, 2)(Q) = reflection of P in Q

H(P,−1)(Q) = reflection of Q in P

H(P, 3)(Q) = complement of P

H(P, 3/2)(Q) = anticomplement of P.

A further note on notation will be helpful. If X is a triangle center given

by a center function f(a, b, c), then the notation X = f(a, b, c) :: abbre-

viates the homogeneous barycentric (or trilinear) representation f(a, b, c) :

f(b, c, a) : f(c, a, b). When a specific ordered triple of coordinates is re-

quired, we replace the colons by commas and enclose the triple by paren-

theses, like this: (f(a, b, c), f(b, c, a), f(c, a, b)), abbreviated as (f(a, b, c), , ).

For example,

λ(f(a, b, c), , ) + µ(g(a, b, c), , ) = (λf(a, b, c) + µg(a, b, c), , )

= λf(a, b, c) + µg(a, b, c) :: .

This double-comma notation, (x, , ), will be used in the sequel.
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Regarding SA, SB , SC in the first paragraph, define S = 2∆. Then

SBSC + SCSA + SASB = S2,

and if P − Q has normalized barycentrics (u, v, w), then

|PQ|2 = u2SA + v2SB + w2SC .

These and related identities are given by Yiu in [7]. See also [8].

2. Incenter, Nagel Point, and Incircle. Let P be the incenter,

X(1), and Q the Nagel point, X(8). Then P = a :: and Q = b + c − a ::,

and PΣ = QΣ = a + b + c. The linear combination 2P + Q is the centroid,

X(2), and P + Q, the Spieker center, X(10).

In order to find barycentrics for the points where the line PQ meets

the incircle, note that the points are at directed distances ±r from P , so

that we seek λ and µ satisfying |PQ|µ/(λ+µ) = ±r. We choose µ = r and

obtain λ = ±|PQ| − r. Putting this together with |PQ| = 3|IG| leads to

barycentrics for the points of intersection:

±3|IG|a + r(b + c − 2a) ::,

where

|IG|2 =
−9abc + 2

∑

a2(b + c) − ∑

a3

9(a + b + c)

=
1

9
(5r2 − 16Rr + s2).

The method just exemplified can be applied in many other settings,

and it is the main purpose of this paper to do so. First, however, we describe

a method already found in the literature. Suppose we wish to formulate the

intersection points of a line PQ and a circle Λ. Let L be the line through

the center of Λ and perpendicular to PQ. Let U = PQ ∩ L. Then PQ

meets L∞ in the point P −Q, and the required points of intersection are a

pair of harmonic conjugates with respect to U and P −Q, so that the pair

are U ± t(P − Q) for some t.

3. Euler Line and Some of Its Points. The Euler line, perhaps the

most famous line in triangle geometry, passes through O and H . Writing
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O as P = (a2SA, , ) and H as Q = (SBSC , , ), we have ΣP = 2S2 and

ΣQ = S2. These are combined using (1) to form

λa2SA + µSBSC :: = H(O, µ/(2λ + µ))(H), (2)

where

|OH |2 = 9R2 − a2 − b2 − c2.

A trigonometric form can be obtained starting with O = (a cosA, , ) and

H = (a cosB cosC, , ), for which the coordinate sums are S/R and S/2R,

respectively. Using (1) and canceling a, we obtain the trilinear representa-

tion

λ(cosA, , ) + µ(cosB cosC, , ) = H(O, µ/(2λ + µ))(H).

For example, centers X(631) and X(632) are easily formulated in this man-

ner, using appropriate m and n in the identity

(3n − m)(a2SA, , ) + 2n(SBSC , , ) = H(O, m/n)(G),

where 3|OG| = 2|ON | = |OH |. Indeed, using distances from O to selected

points on the Euler line, we can easily determine barycentrics.

It is helpful to adopt the symbols J and e as defined here:

J = |OH |/R

=
1

abc

(

∑

a6 −
∑

a2b4 + 3a2b2c2

)1/2

=
1

abc
(a2SBSC + b2SCSA + c2SASB − 6SASBSC)1/2

e = (1 − 4 sin2 ω)1/2 =

(∑

a4 − ∑

a2b2

∑

a2b2

)1/2

,

as given by Gallatly [3].

4. Euler Line and Circumcircle. The Euler line passes through

the center of the circumcircle, so that there are two real points of inter-

section: X(1113) and X(1114). To find barycentrics, consider the distance

associated with the right-hand side of equation (2):

|OH |µ/(2λ + µ) = ±R.
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Choosing µ = 2R, we find λ = ±|OH |−R, so that the points of intersection

are given by

(±|OH | − R)(a2SA, , ) + 2R(SBSC , , ). (3)

The point given by λ = |OH |−R is the one nearer to H . The points in (3)

are also clearly given by

X(1113) = (1 − J)a2SA − 2SBSC :: , (4)

X(1114) = (1 + J)a2SA − 2SBSC :: . (5)

Equations (4) and (5) show that the two points of intersection may be

regarded as linear combinations of the points X(3) = a2SA :: and X(30) =

2SBSC −a2SA ::, this latter point being on L∞. The representations in (4)

and (5) also bring to mind the following well-known connection [1] between

inverse pairs and harmonic conjugate pairs.

Theorem. Suppose L is a line passing through the center W of a circle

Λ. Let P and Q be the points where L meets Λ. If V = inverse-in-Λ of U ,

then V = {P, Q}-harmonic conjugate of U .

When Λ = circumcircle and L = Euler line, the theorem yields

X(j) = {X(1113), X(1114)}-harmonic conjugate of X(i) for these pairs

(i, j): (2, 23), (4, 186), (22, 858), (24, 403), (25, 468), (237, 1316), and in a

limiting sense, (3, 30).

5. Euler Line and Nine-Point Circle. The nine-point circle has

center N = X(5), situated on the Euler line halfway between O and H .

The radius is R/2, and again there are two points of intersection, situated

at directed distances |OH |/2±R/2 from O. We obtain |OH |µ/(2λ + µ) =

(|OH | ±R)/2 by choosing µ = 2(|OH | ±R) and λ = |OH | ∓R, so that the

points of intersection are given by

(|OH | ∓ R)(a2SA, , ) + 2(|OH | ± R)(SBSC , , ).

Alternatively, we can choose µ = −1 and obtain, for the same two points,

(1 − J)a2SA − 2(1 + J)SBSC :: and (1 + J)a2SA − 2(1− J)SBSC ::,

which are X(1312) and X(1313).

The radical axis of the circumcircle and the nine-point circle cuts the

Euler line in the point X = X(468) satisfying |OX |2−R2 = |NX |2−(R/2)2,

which yields |OX | = (|OH |2 + 3R2)/(4|OH |) and

X(468) = 3(|OH |2 − R2)a2SA + 2(|OH |2 + 3R2)SBSC ::

= 3(J2 − 1)a2SA + 2(3 + J2)SBSC ::

= (a2 − 2SA)SBSC :: .
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As the points X(1113) and X(1114) are on the Euler line and are an

antipodal pair on the circumcircle, their Simson lines are the asymptotes of

the Jerabek rectangular circumhyperbola. These asymptotes meet in the

center, X(125), of the hyperbola; this center lies on the nine-point circle.

The asymptotes then meet the nine-point circle again in the points X(1312)

and X(1313). Therefore, the three points, X(125), X(1312), and X(1313),

are the vertices of a right triangle.

The theorem in Section 4 yields X(j) = {X(1312), X(1313)}-harmonic

conjugate of X(i) for these pairs (i, j): (2, 858), (4, 403), (427, 468), and in

a limiting sense, (5, 30).

6. Euler Line and Incircle. Regarding (as usual) a, b, c as variables,

the various centers and lines they determine are functions of the triple

(a, b, c). Functionally speaking, the incenter does not lie on the Euler line,

so that for some choices of (a, b, c), it is not surprising that the Euler has

no real intersection with the incircle. The method of the previous sections

nevertheless applies. Representing the points of intersection, X(1314) and

X(1315), as X , we have

cos( 6 INO) =
|ON |2 + |IN |2 − |OI |2

2|ON ||IN | =
|NX |2 + |IN |2 − r2

2|NX ||IN | .

Solving for |NX | and then |OX |, we find, after simplifications, barycentrics

for the two points:

X(1314) = (|OH |2 + 2r2 − R2)a2SA

+ (|OH |2 + 4rR − R2 +
√

T )(SBSC) :: ,

X(1315) = (|OH |2 + 2r2 − R2)a2SA

+ (|OH |2 + 4rR − R2 −
√

T )(SBSC) :: ,

where

T = 4|OH |2(4rR − R2) + (|OH |2 − 3R2 + 4r2 + 4rR)2.

The point X(1315) is the one nearer to O. The Euler line meets the incircle

in 2, 1, or 0 real points according as T is positive, zero, or negative.
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7. Euler Line and Brocard Circle. The Brocard circle has

diameter OK, radius p, and center U = X(182). As in Gallatly [3],

|OG| : |UG| = R : p. Point L is chosen on the Euler line OH so that

the line UL is perpendicular to OH , and

|OL| = |OG| + (p2 − |UG|2 − |OG|2)/(2|OG|).

Now |OK|/|OU | = 2, so that |OX(1316)| = 2|OL|. This leads to

|OX(1316)| = (1 + p2/|OG|2 − p2/R2)|OG|.

We rewrite (2) as

λ(a2SA, , ) + µ(SBSC , , ) = H(O, 3µ/(2λ + µ))(G)

and choose µ = 2(|OG|2R2 − |OG|2p2 + p2R2) to find that the point of

intersection other than the circumcenter is given by

X(1316) = (S2

B + S2

C)(S2

A + SBSC) − 2a2SASBSC :: .

Next, we seek barycentrics for the point X = X(187) of intersection of

the Lemoine axis and the Brocard axis. The Lemoine axis is the radical axis

of the circumcircle and the Brocard circle. Thus, |UX |2−p2 = |OX |2−R2.

As |OX | = |UX | + p, we have |OX | = R2/(2p) = R2/|OK|, giving

X(187) = a2R + a(2|OK|2 − R2) cotω cosA ::

= a(sin A − 3 cosA tan ω) :: .

Next, we find barycentrics for X(237) as the intersection of the Lemoine

axis and the Euler line. Substituting for cos( 6 UOG) and simplifying yield

X(237) = a4(S2

A − SBSC) ::.

As noted in [4], the point X(1316) is the inverse-in-circumcircle of

X(237), and X(1316) is also the inverse-in-orthocentroidal-circle of X(868).

Let V denote the center, X(381), of the orthocentroidal circle and f(|OG|)
the distance |OX(1316)|. The point V has distance 2|OG| from O, so

that the distance from V to X(1316) is 2|OG| − f(|OG|). The radius

of the orthocentroidal circle is |OG|. Consequently, X(868) has distance

|OG|2/[2|OG| − f(|OG|)] from V and distance 2|OG| − |OG|2/(2|OG| −
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f(|OG|) from O. These distances lead to X(868) = (S2

A − SBSC)(SB −
SC)2 ::, as well as these points:

(Inverse-in-nine-point-circle of X(1316)) = (S2

A − SBSC)(S2

B + S2

C) ::

(Inverse-in-2nd-Lemoine-circle of X(1316)) = (S2

A + SBSC)(S2

B − S2

C) ::

(Reflection of X(1316) in X(6))

= 2SBSC(S2

A + SBSC) + a2SA(S2

B + S2

C − 4SBSC) ::

(Reflection of X(6) in X(1316))

= a6SA − (S2

A + SBSC)(3S2

B + 3S2

C − 2SBSC) ::

8. Lines OI and OK. Writing the circumcenter as P = (a2SA, , )

and the incenter as Q = (a, , ), we have coordinate sums ΣP = 2S2 and

ΣQ = 2s. Then by (2),

λ(a2SA, , ) + µ(a, , ) = H(O, µs/(S2λ + µs))(I). (6)

As the line OI is a diameter of the circumcircle, there are two real in-

tersections. To find their barycentrics, we determine µ and λ so that the

distances associated with the right-hand side of (6) are ±R; e.g., µ = RS2

and λ = (±|OI | − R)s, leading to

(|OI | − R)sa2SA + RS2a :: , (7)

(−|OI | − R)sa2SA + RS2a :: . (8)

The point in (8) is the one nearer to O.

Next, we intersect the line OI with the incircle. To have the distance

associated with the right-hand side of (2) equal to |OI |±r, we choose λ = 1

and µ = −2S(r ± |OI |). The two points of intersection are then given by

a2SA − 4∆(r ± |OI |)a ::. The radical axis of the circumcircle and incircle

cuts the line OI in a point X satisfying |OX |2−R2 = |IX |2−r2, and using

|IX | = |OX |− |OI |, we find the intersection of the radical axis and line OI

given by

(2R − r)a2SA + 2S(r2 − |OI |2 − R2)a :: .

Or, using Euler’s formula, |OI |2 = R2 − 2rR, these barycentrics can be

written as

(2R − r)a2SA + 2∆(r2 + 2rR − 2R2)a ::

and simplified to

a(a − b + c)(a + b − c)[(b + c)(a2 + (b − c)2) − 2a(b2 + c2 − bc)].
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The line OI meets the nine-point circle in two points, one of which,

X , lies between I and O. We have

cos( 6 OIN) =
|IN |2 + |OI |2 − |ON |2

2|IN ||OI | =
|IN |2 + |IX |2 − |RN |2

2|IN ||IX | .

Solving for |IX | and simplifying lead to these barycentrics for the two points

of intersection:

(|OI |2 − |IN |2 − |ON |2 + 2|RN |2 ±
√

T )sa2SA

+ 8∆2(|ON |2 − |RN |2)a : : , (9)

where

T = (|IN |2 + |OI |2 − |ON |2)2 + 4|OI |2(|RN |2 − |IN |2). (10)

Here, |RN |, the radius of the nine-point circle, equals R/2; moreover,

|ON | = 3|OG|/2, |IN | = R/2 − r, and |OI |2 = R2 − 2rR. In (9), the

expression containing “+
√

T” gives the point nearer to O. In (10), note

that |RN | ≥ |IN |, so that T ≥ 0 for all (a, b, c), which is to say that there

is always a real point of intersection. Indeed, it is easy to see that there are

two distinct points of intersection unless triangle ABC is degenerate with

collinear vertices.

The method leading to the barycentrics (7) and (8) applies to the

points of intersection of the Brocard axis, OK, and the circumcircle.

9. Further Applications. The method using (2) extends, through

the formulation of distances along selected lines, to formulations of

barycentrics, hence trilinears, of many other triangle centers.

Next, recall that points (U, V, W, W ′) form a harmonic range, and W ′

is the {U, V }-harmonic conjugate of W , if

|UW |
|V W | =

|UW ′|
|V W ′| .

For example, letting B1 and B2 denote the points of intersection (in Table

2) of the Brocard axis and the circumcircle, we have

X(187) = {O, K}-harmonic conjugate of X(574)

X(187) = {B1, B2}-harmonic conjugate of K.
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The method associated with (2) can be used to obtain the following

harmonic conjugacies on the line GH :

O = {G, H}-harmonic conjugate of N

X(25) = {G, H}-harmonic conjugate of X(427)

X(378) = {G, H}-harmonic conjugate of X(403)

X(382) = {G, H}-harmonic conjugate of X(546)

X(1316) = {G, H}-harmonic conjugate of X(868).

Closely associated with harmonic conjugates are centers of similitude

of two nonconcentric circles. We begin with definitions. Suppose (U, s) and

(V, t) are circles with U 6= V , and point P lies on (U, s) but not on line

UV . The line LP through V parallel to line UP meets (V, t) in two points:

let Q be the one for which the vector
−→
V Q has the same direction as

−→
UP ,

and let Q′ be the other, so that
−−→
V Q′ has the same direction opposite that

of
−→
UP . Let W = UV ∩ PQ and W ′ = UV ∩ PQ′. The points W and W ′,

called the external center of similitude and the internal center of similitude,

respectively, remain fixed as P varies on (U, s). Moreover, if s < t, then

|UW |
|V W | =

|UW ′|
|V W ′| =

s

t
,

so that W ′ = {U, V }-harmonic conjugate of W .

As noted in [5], the centers of similitude of the 2nd Lemoine circle

and Parry circle are a pair of bicentric points, not triangle centers. More

generally, suppose Λ is a circle with arbitrary triangle center x : y : z as

center and radius ρ. Then the internal center of similitude has first trilinear

a(b2 − c2)(x + y + z)ρT + bcSx, (11)

where S = a4 + b4 + c4 − b2c2 − c2a2 − a2b2 and T = b2 + c2 − 2a2. The

representation (11) indicates that these centers of similitude comprise a

bicentric pair.

As a final note in this section, we mention that many properties associ-

ated with points on the lines NK, OI , and OK follow from three identities

involving arbitrary nonzero integers m and n:

m|NK|/n = (m − n) cos(B − C) cot ω − 2m sinA

m|OI |/n = n cosA + m cosB + m cosC − m

m|OK|/n = (n − m) cosA cotω + m sin A.
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10. Tucker Circles. Here, we extend results given in Gallatly [3].

The Tucker circle with parameter θ′ (as in [3]) has radius r sin ω csc(ω + θ′)

and center given by trilinears cos(A − θ′) : cos(B − θ′) : cos(C − θ′). The

method introduced in Section 2 applies to the points of intersection of a

Tucker circle and the Brocard axis. In trilinears, the results are especially

attractive:

e cos(A − θ′) − cos(A + ω) : e cos(B − θ′) − cos(B + ω)

: e cos(C − θ′) − cos(C + ω),

e cos(A − θ′) + cos(A + ω) : e cos(B − θ′) + cos(B + ω)

: e cos(C − θ′) + cos(C + ω).

The first of these is the one whose direction from the center of the Tucker

circle is the same as the direction from O to K. Remarkably like those

intersections are the internal and external centers of similitude of a Tucker

circle and the Brocard circle, given, respectively, by trilinears

e cos(A − θ′) + cos(A − ω) : e cos(B − θ′) + cos(B − ω)

: e cos(C − θ′) + cos(C − ω),

e cos(A − θ′) − cos(A − ω) : e cos(B − θ′) − cos(B − ω)

: e cos(C − θ′) − cos(C − ω).
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