ON THE DENSITIES OF SOME SUBSETS OF INTEGERS

Florian Luca

In this note, we prove two conjectures concerning densities of subsets of positive integers suggested in [1] and [2], respectively. Throughout this paper, we use p and q for prime numbers and x for a large positive real number. If $\mathcal{A} \subset \mathbb{N}$ is a subset of the positive integers, we write $\mathcal{A}(x) = \mathcal{A} \cap [1, x]$. We use the Vinogradov symbols \ll and \gg , and the Landau symbols O and o with their usual meanings. Namely, we say that $f(x) \ll g(x)$, or that f(x) = O(g(x)), if the inequality |f(x)| < cg(x) holds with some positive constant c for all sufficiently large x. The notation $g(x) \gg f(x)$ is equivalent to $f(x) \ll g(x)$, while f(x) = o(g(x)) means that f(x)/g(x) tends to zero when x tends to infinity. We use $\log x$ for the natural logarithm of x.

1. Sigma-Primes. Following [1], a positive integer n is called a *sigma-prime* if n and $\sigma(n)$ are coprimes, where $\sigma(n)$ is the sum of the divisors of n. Let SP be the set of all sigma-primes. It was conjectured in [1] that SP is of asymptotic density zero. Here, we prove this conjecture.

<u>Theorem 1</u>. The inequality

$$\#\mathcal{SP}(x) \ll \frac{x}{\log\log\log x}$$

holds for all $x > e^e$.

<u>Proof</u>. Let x be a large positive real number. Lemma 4 in [5] asserts that there exists an absolute constant c_1 such that $\sigma(n)$ is divisible by all primes

$$p < y := c_1 \frac{\log \log x}{\log \log \log x}$$

for all n < x except for a subset of such n of cardinality $O(x/\log \log \log x)$. Thus,

$$#\mathcal{SP}(x) \le \#\{n \le x : \gcd(n, p) = 1 \text{ for all } p \le y\} + O\left(\frac{x}{\log\log\log x}\right).$$
(1)

1

On the other hand, by the regular Erathostenes-Legendre sieve (see Theorem 1.1 in [4]), and Mertens's estimate,

$$\begin{split} \#\{n \leq x \ : \ \gcd(n,p) = 1 \ \text{ for all } \ p \leq y\} \ll x \prod_{p < y} \left(1 - \frac{1}{p}\right) \ll \frac{x}{\log y} \\ \ll \frac{x}{\log \log \log x}, \end{split}$$

which together with inequality (1) completes the proof of Theorem 1.

<u>Remark 1</u>. The author of [1] also makes the comment that "the set of prime powers has density zero and that the set of sigma-primes is not much larger". We point out that if we define *phi-primes* in the same way as the *sigma-primes* but with the function $\sigma(n)$ replaced by the Euler function $\phi(n)$, and if we write \mathcal{PP} for the set of all phi-primes, then Erdős [3] showed that the estimate

$$#\mathcal{PP}(x) = (1 + o(1))\frac{xe^{-\gamma}}{\log\log\log x},$$

holds as $x \to \infty$, where γ is the Euler constant. Given that the arithmetic properties of the function $\sigma(n)$ resemble the arithmetic properties of the function $\phi(n)$, it is likely that the estimate

$$#S\mathcal{P}(x) = (1+o(1))\frac{c_2 x}{\log\log\log x}$$
(2)

holds with some constant c_2 when x tends to infinity. We leave it to the reader to determine whether estimate (2) holds with some constant c_2 , and in the affirmative case to compute c_2 . If correct, estimate (2) shows that there are "a lot more" sigma-primes than prime powers given that the number of prime powers $p^{\alpha} \leq x$ is only $(1 + o(1))x/\log x$ as x tends to infinity.

2. Ans Numbers. Following [2], a positive integer *n* is called an *ans number* if it admits a representation of the form $p^2 - q^2$, where *p* and *q* are primes. Let \mathcal{ANS} denote the set of all ans numbers. It was conjectured in [2] that \mathcal{ANS} is of asymptotic density zero. Here, we prove this conjecture.

 $\mathbf{2}$

<u>Theorem 2</u>. The inequality

$$\#\mathcal{ANS}(x) \ll \frac{x}{\log x}$$

holds for all x > 1.

<u>Proof.</u> Let x be a large positive real number. Let n < x be such that $n = p^2 - q^2 = (p-q)(p+q)$. Write d = p-q. Note that d < p+q, therefore $d^2 < (p+q)(p-q) = n < x$. Hence, $d < x^{1/2}$. Fix d. Then $2q \le p+q = n/d < x/d$; thus, $q \le x/(2d)$. Hence, in order to get an upper bound on the number of ans numbers $n \le x$ for which d is fixed, it suffices to get an upper bound on the number of primes $q \le x/(2d)$ such that p = q + d is also prime. Let \mathcal{Q}_d denote the set of such primes. The combinatorial sieve (see, for example, Corollary 2.4.1 in [4]), shows that the number of such primes is

$$\#\mathcal{Q}_d \ll \prod_{p|d} \left(1 - \frac{1}{p}\right) \frac{x}{d(\log(x/d))^2} = \frac{x}{\phi(d)(\log(x/d))^2}.$$

Since $d \le x^{1/2}$, we have that $1/(\log(x/d)) \le 2/\log x$, therefore, the above estimate implies

$$#\mathcal{Q}_d \ll \frac{x}{\phi(d)(\log x)^2}.$$
(3)

Summing up inequality (3) over all possible $d \leq x^{1/2}$, we get

$$#\mathcal{ANS}(x) \le \sum_{d \le x^{1/2}} #\mathcal{Q}_d \ll \frac{x}{(\log x)^2} \sum_{d \le x^{1/2}} \frac{1}{\phi(d)} \ll \frac{x}{\log x},$$

where in the last estimate above we used the well-known fact, due to Landau, that the estimate

$$\sum_{n \le z} \frac{1}{\phi(n)} = c_3 \log z + c_4 + O\left(\frac{\log z}{z}\right) \ll \log z \qquad (z := x^{1/2})$$

 $\mathbf{3}$

holds with some constants c_3 and c_4 for all $z \ge 1$.

References

- 1. A. Feist, "Fun With the $\sigma(n)$ Function," Missouri J. of Math. Sci., 15 (2003), 173–177.
- N. E. Elliott and D. Richner, "An Investigation of the Set of Ans Numbers," Missouri J. of Math. Sci., 15 (2003), 189–199.
- P. Erdős, "Some Asymptotic Formulas in Number Theory," J. Indian Math. Soc. (N. S.), 12 (1948), 75–78.
- 4. H. Halberstam and H.-E. Rickert, *Sieve Methods*, Academic Press, London, 1974.
- 5. J.-M. DeKoninck and F. Luca, "On the Composition of the Euler Function and the Sum of Divisors Function," *Cologuium Math.*, 108 (2007), 31–51.

4

Mathematics Subject Classification (2000): 11A25, 11N37, 11N56

Florian Luca Mathematical Institute, UNAM Campus Morelia Ap. Postal 61-3 (Xangari), CP 58 089 Morelia, Michoacán MEXICO email: fluca@matmor.unam.mx