ON THE DENSITIES OF SOME SUBSETS OF INTEGERS

Florian Luca

In this note, we prove two conjectures concerning densities of subsets of positive integers suggested in [1] and [2], respectively. Throughout this paper, we use p and q for prime numbers and x for a large positive real number. If $\mathcal{A} \subset \mathbb{N}$ is a subset of the positive integers, we write $\mathcal{A}(x)=\mathcal{A} \cap[1, x]$. We use the Vinogradov symbols \ll and $>$, and the Landau symbols O and o with their usual meanings. Namely, we say that $f(x) \ll g(x)$, or that $f(x)=O(g(x))$, if the inequality $|f(x)|<c g(x)$ holds with some positive constant c for all sufficiently large x. The notation $g(x) \gg f(x)$ is equivalent to $f(x) \ll g(x)$, while $f(x)=o(g(x))$ means that $f(x) / g(x)$ tends to zero when x tends to infinity. We use $\log x$ for the natural logarithm of x.

1. Sigma-Primes. Following [1], a positive integer n is called a sigma-prime if n and $\sigma(n)$ are coprimes, where $\sigma(n)$ is the sum of the divisors of n. Let $\mathcal{S P}$ be the set of all sigma-primes. It was conjectured in [1] that $\mathcal{S P}$ is of asymptotic density zero. Here, we prove this conjecture.

Theorem 1. The inequality

$$
\# \mathcal{S P}(x) \ll \frac{x}{\log \log \log x}
$$

holds for all $x>e^{e}$.
Proof. Let x be a large positive real number. Lemma 4 in [5] asserts that there exists an absolute constant c_{1} such that $\sigma(n)$ is divisible by all primes

$$
p<y:=c_{1} \frac{\log \log x}{\log \log \log x}
$$

for all $n<x$ except for a subset of such n of cardinality $O(x / \log \log \log x)$. Thus,

$$
\begin{equation*}
\# \mathcal{S P}(x) \leq \#\{n \leq x: \operatorname{gcd}(n, p)=1 \text { for all } p \leq y\}+O\left(\frac{x}{\log \log \log x}\right) \tag{1}
\end{equation*}
$$

On the other hand, by the regular Erathostenes-Legendre sieve (see Theorem 1.1 in [4]), and Mertens's estimate,

$$
\begin{aligned}
\#\{n \leq x: \operatorname{gcd}(n, p)=1 \text { for all } p \leq y\} & \ll x \prod_{p<y}\left(1-\frac{1}{p}\right) \ll \frac{x}{\log y} \\
& \ll \frac{x}{\log \log \log x}
\end{aligned}
$$

which together with inequality (1) completes the proof of Theorem 1.
Remark 1. The author of [1] also makes the comment that "the set of prime powers has density zero and that the set of sigma-primes is not much larger". We point out that if we define phi-primes in the same way as the sigma-primes but with the function $\sigma(n)$ replaced by the Euler function $\phi(n)$, and if we write $\mathcal{P} \mathcal{P}$ for the set of all phi-primes, then Erdős [3] showed that the estimate

$$
\# \mathcal{P} \mathcal{P}(x)=(1+o(1)) \frac{x e^{-\gamma}}{\log \log \log x}
$$

holds as $x \rightarrow \infty$, where γ is the Euler constant. Given that the arithmetic properties of the function $\sigma(n)$ resemble the arithmetic properties of the function $\phi(n)$, it is likely that the estimate

$$
\begin{equation*}
\# \mathcal{S P}(x)=(1+o(1)) \frac{c_{2} x}{\log \log \log x} \tag{2}
\end{equation*}
$$

holds with some constant c_{2} when x tends to infinity. We leave it to the reader to determine whether estimate (2) holds with some constant c_{2}, and in the affirmative case to compute c_{2}. If correct, estimate (2) shows that there are "a lot more" sigma-primes than prime powers given that the number of prime powers $p^{\alpha} \leq x$ is only $(1+o(1)) x / \log x$ as x tends to infinity.
2. Ans Numbers. Following [2], a positive integer n is called an ans number if it admits a representation of the form $p^{2}-q^{2}$, where p and q are primes. Let $\mathcal{A N S}$ denote the set of all ans numbers. It was conjectured in [2] that $\mathcal{A N S}$ is of asymptotic density zero. Here, we prove this conjecture.

Theorem 2. The inequality

$$
\# \mathcal{A N S}(x) \ll \frac{x}{\log x}
$$

holds for all $x>1$.
Proof. Let x be a large positive real number. Let $n<x$ be such that $n=$ $p^{2}-q^{2}=(p-q)(p+q)$. Write $d=p-q$. Note that $d<p+q$, therefore $d^{2}<(p+q)(p-q)=n<x$. Hence, $d<x^{1 / 2}$. Fix d. Then $2 q \leq p+q=n / d<x / d$; thus, $q \leq x /(2 d)$. Hence, in order to get an upper bound on the number of ans numbers $n \leq x$ for which d is fixed, it suffices to get an upper bound on the number of primes $q \leq x /(2 d)$ such that $p=q+d$ is also prime. Let \mathcal{Q}_{d} denote the set of such primes. The combinatorial sieve (see, for example, Corollary 2.4.1 in [4]), shows that the number of such primes is

$$
\# \mathcal{Q}_{d} \ll \prod_{p \mid d}\left(1-\frac{1}{p}\right) \frac{x}{d(\log (x / d))^{2}}=\frac{x}{\phi(d)(\log (x / d))^{2}}
$$

Since $d \leq x^{1 / 2}$, we have that $1 /(\log (x / d)) \leq 2 / \log x$, therefore, the above estimate implies

$$
\begin{equation*}
\# \mathcal{Q}_{d} \ll \frac{x}{\phi(d)(\log x)^{2}} \tag{3}
\end{equation*}
$$

Summing up inequality (3) over all possible $d \leq x^{1 / 2}$, we get

$$
\# \mathcal{A N S}(x) \leq \sum_{d \leq x^{1 / 2}} \# \mathcal{Q}_{d} \ll \frac{x}{(\log x)^{2}} \sum_{d \leq x^{1 / 2}} \frac{1}{\phi(d)} \ll \frac{x}{\log x}
$$

where in the last estimate above we used the well-known fact, due to Landau, that the estimate

$$
\sum_{n \leq z} \frac{1}{\phi(n)}=c_{3} \log z+c_{4}+O\left(\frac{\log z}{z}\right) \ll \log z \quad\left(z:=x^{1 / 2}\right)
$$

holds with some constants c_{3} and c_{4} for all $z \geq 1$.
References

1. A. Feist, "Fun With the $\sigma(n)$ Function," Missouri J. of Math. Sci., 15 (2003), 173-177.
2. N. E. Elliott and D. Richner, "An Investigation of the Set of Ans Numbers," Missouri J. of Math. Sci., 15 (2003), 189-199.
3. P. Erdős, "Some Asymptotic Formulas in Number Theory," J. Indian Math. Soc. (N. S.), 12 (1948), 75-78.
4. H. Halberstam and H.-E. Rickert, Sieve Methods, Academic Press, London, 1974.
5. J.-M. DeKoninck and F. Luca, "On the Composition of the Euler Function and the Sum of Divisors Function," Cologuium Math., 108 (2007), 31-51.

Mathematics Subject Classification (2000): 11A25, 11N37, 11N56
Florian Luca
Mathematical Institute, UNAM
Campus Morelia
Ap. Postal 61-3 (Xangari), CP 58089
Morelia, Michoacán
MEXICO
email: fluca@matmor.unam.mx

