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Abstract. Let X , Y , and Z be random variables. If X is positively
correlated to Y and Y is positively correlated to Z, it does not necessarily
follow that X is positively correlated to Z. In this article we find ranges
for the correlation coefficients rXY and rY Z that guarantee that X and Z
have a specified level of correlation. We explore the implications of these
results to finding relationships between variables investigated in different
studies.

1. Introduction. Suppose X , Y , and Z are random variables with
X positively correlated to Y , and Y positively correlated to Z. It is very
tempting to conclude that X is positively correlated to Z. In fact, this
conclusion is not always valid; it is possible for the correlation coefficients
rXY and rY Z to be positive but for X and Z to be totally uncorrelated
(rXZ = 0), or even negatively correlated. (Recall that the correlation
coefficient is a number between 1 and −1 and is a measure of the strength of
linear association between two variables.) On the other hand, we will show
that if the correlation coefficients rXY and rY Z are very strong (both near
1 or −1), then it is possible to conclude that there is a positive correlation
between X and Z. Specifically, we find ranges for the different correlation
coefficients that guarantee that X and Z have a desired level of correlation.
We also explore the implications of these results in “studies of studies,”
that is, in attempting to find relationships among variables researched in
different studies.

Consider the following example. A logger wishes to estimate the height
of a pine tree in a forest. She recalls that in high school she learned a method
for finding the height of a tree using the length of its shadow and the angle
of elevation of the sun. But in the forest in which she works, it’s difficult
or impossible to find the shadow of a particular tree. She reasons that it’s
easy to measure the diameter of a tree, and that the diameter is related to
the height. After some research in the library she finds an article that gives
a positive correlation between the diameter D and the age A of a pine tree
and another article that gives a positive correlation between the age A and
the height H . This is rather frustrating because what she wants is to relate
diameter to height (D to H). As in many research studies the actual data
is not published, so she can’t calculate the correlation between D and H
directly. But even if the data for each study are available it’s probably not
for the exact same trees. So what is she to do?

This story points out a common situation. In studying the published
research on a specific topic, connections between certain properties of inter-
est may not be directly studied. In this example, the relationship between
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diameter and height is not directly studied. Is it necessary for the logger to
conduct a field study herself, or can she somehow use the information in the
studies already available? In other words, can one make new connections
by studying already available studies?

2. Positive Correlation Is Not Transitive. The general situation
typified by the above example is as follows: If X is correlated to Y , and
Y is correlated to Z, then how is X correlated to Z? In other words, how
much information about the data is encapsulated in the single number, the
correlation coefficient? To help give an answer to this question, consider
the following data.

Study 1
X Y Z
1 5 8
2 0 1
4 8 8
9 7 8
3 7 2

Study 2
X Y Z
7 7 4
4 1 5
5 9 9
6 3 0
5 2 3

For the data in Studies 1 and 2 we have

Study 1 rXY = .46 rY Z = .61 rXZ = .39
Study 2 rXY = .46 rY Z = .61 rXZ = −.36

This example shows that for different sets of data X , Y , Z we can have
identical correlations for rXY and rY Z , but vastly different values for rXZ .
Moreover, it’s possible that rXY and = rY Z are positive whereas rXZ is
negative. So the property of being positively correlated is not transitive.

3. How is rXZ related to rXY and rYZ? In general, rXY and rY Z

determine a range of possible values for rXZ [1, 2]. We can see this by
considering X , Y , Z as vectors in Euclidean space.

Suppose we have n-data points in a study

X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn).

Without loss of generality assume that each of these data sets has mean
zero, that is E(X) = E(Y ) = 0. By definition, the correlation coefficient of
X and Y [3] is

rXY =
E(XY ) − E(X)E(Y )

σ(X)σ(Y )

=
(x1y1 + x2y2 + · · · + xnyn)/n

√

(x2

1
+ x2

2
+ · · · + x2

n)/n ·
√

(y2

1
+ y2

2
+ · · · + y2

n)/n
=

X · Y
||X || · ||Y || .
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In the last equality X · Y = x1y1 + x2y2 + · · · + xnyn is the dot
product of the vectors X and Y , and ||X || =

√

(x2

1
+ x2

2
+ · · · + x2

n),

||Y || =
√

(y2

1
+ y2

2
+ · · · + y2

n) denote the lengths of the vectors X and Y .
It follows that rXY = cosα, where α is the angle between the vectors X
and Y (so 0 ≤ α ≤ π) [4]. Similarly, rY Z = cosβ and rXZ = cos γ. Figure
1 shows the vectors X , Y , and Z and the angles between them.

Figure 1.

From Figure 1 we see that for fixed α and β the largest and smallest
possible values for γ occur when the vectors X , Y , and Z lie in the same
plane. So that the largest possible angle is γ = α + β and the smallest is
γ = |α − β|.

Let us assume that rXY and rY Z are positive. Then α = cos−1 rXY

and β = cos−1 rY Z are between 0 and π/2. Using the formula for the cosine
of a sum we have

cos(α + β) = cosα cosβ − sin α sin β

= cosα cosβ −
√

1 − cos2 α
√

1 − cos2 β

= rXY rY Z −
√

1 − r2

XY

√

1 − r2

Y Z
.

We have used the positive sign for the square roots because α and β are
acute angles. Similarly, using the formula for the cosine of a difference we
get

cos(α − β) = rXY rY Z +
√

1 − r2

XY

√

1 − r2

Y Z
.

Now, since 0 ≤ |α−β| ≤ γ ≤ α + β, and since cosine is decreasing on [0, π]
we have cos(α + β) ≤ cos γ ≤ cos(α − β), and we get the inequalities

rXY rY Z −
√

1 − r2

XY

√

1 − r2

Y Z
≤ rXZ ≤ rXY rY Z +

√

1 − r2

XY

√

1 − r2

Y Z
.

(3.1)
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It is easy to check that these inequalities hold in the remaining cases, that
is, if both rXY and rY Z are negative, or if one of rXY , rY Z is negative and
the other positive.

The inequalities in (3.1) have the following interesting special cases.
If one of rXY or rY Z is equal to 1, say rXY = 1, then the inequalities
reduce to the equality rY Z = rXZ . If both rXY = 1 and rY Z = 1, then
the inequalities imply that rXZ = 1. In other words, as we would expect,
if X and Y are perfectly linearly correlated and Y and Z are also perfectly
linearly correlated, then so are X and Z. On the other hand, if one of the
correlation coefficients is 0, say rXY = 0, then the inequalities in (3.1) be-
come −

√

1 − r2

Y Z
≤ rXZ ≤

√

1− r2

Y Z
; in particular, 0 is a possible value

for rXZ . Finally, if both rXY = 0 and rY Z = 0, then the inequalities in
(3.1) become −1 ≤ rXZ ≤ 1. In other words, if X and Y are totally uncor-
related and Y and Z are totally uncorrelated, then any level of correlation
is possible for X and Z.

4. Bounds for the Correlation Coefficient rXZ. If we have the
data that relates X to Y and Y to Z (as in Study 1) then the correlation
coefficient rXZ can be calculated directly from the data. In practice we may
have different sets of data relating these variables. For example, the studies
on pine trees may be made on different trees, possibly with different sample
sizes. But if the studies were made on pine trees from the same population,

then it is reasonable to assume that the calculated correlation coefficients
are representative of the population as a whole. Then we can use inequality
(3.1) to determine bounds for the correlation coefficient of X and Z.

Inequalities (3.1) have their obvious use: given rXY and rY Z we can
find bounds for rXZ . But we use inequalities (3.1) in a different way.
Namely, if we want a desired level of correlation for rXZ we can use these
inequalities to find the possible pairs (rXY , rY Z) that guarantee that level
of correlation. These pairs will be expressed as a region within the square
S = [−1, 1] × [−1, 1] in the coordinate plane. We consider the situation in
two cases. For simplicity of notation we let a = rXY , b = rY Z .

Case 1. Suppose we require that rXZ have a value at least k (0 ≤ k ≤
1). In this case the “worst case scenario” for the correlation coefficient rXZ

is determined by the left-hand side of inequality (3.1). So, we must have

k ≤ ab −
√

1 − a2

√

1 − b2. (4.1)

When equality holds in (4.1), we can rearrange, square, and simplify to get

a2 − 2kab + b2 = 1 − k2. (4.2)

This is the equation of a rotated ellipse with eccentricity 2
√

k/(1 + k) and
major axis along the line a = b [5]. Note that (4.1) implies that both |a| ≥ k
and |b| ≥ k. To see this, write (4.1) as

√
1 − a2

√
1 − b2 ≤ ab− k, so ab− k
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must be nonnegative. Thus, 0 ≤= k ≤ ab, and so a and b are either both
positive or both negative. Since |a| ≤ 1 and |b| ≤ 1, it follows ab ≤ |a|
and ab ≤ |b|, and the result follows. So the solution of inequality (4.1) is
the region inside the square S, outside the ellipse (4.1), with |a| ≥ k and
|b| ≥ k.

Case 2. If we require that rXZ have a value less than −k (0 ≤ k ≤ 1),
then the “worst case scenario” for rXZ is determined by the right-hand-side
of inequality (3.1). So, we must have

ab +
√

1 − a2

√

1 − b2 ≤ −k. (4.3)

The equality in (4.3) determines the ellipse

a2 + 2kab + b2 = 1 − k2 (4.4)

with eccentricity 2
√

k/(1 + k) and major axis along the line a = −b. As in
the preceding case we have |a| ≥ k and |b| ≥ k. So the solution to inequality
(4.3) is the region inside the square S, outside the ellipse (4.4), with |a| ≥ k
and |b| ≥ k.

The situation is illustrated graphically for k = 0.6 in Figure 2. If
we require that rXZ ≥ 0.6 then (rXY , rY Z) must lie in the first or third
quadrants inside the square S, outside the ellipse, with |rXY | ≥ 0.6 and
|rY Z | ≥ 0.6. This is the shaded region in the first and third quadrants.
If we require that rXZ ≤ −0.6 then the pair (rXY , rY Z) must lie in the
corresponding shaded regions in the second and fourth quadrants.

Figure 2. Regions determined by k = 0.6.

In each of the above cases, as k gets closer to 0 the ellipses in Figure
2 have smaller eccentricity. In the extreme case k = 0 the ellipses reduce
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to the unit circle. So, to guarantee rXZ > 0 or rXZ < 0 we must have the
pair (rXY , rY Z) inside the unit square but outside the unit circle, in the
appropriate quadrants. Note that the points inside the unit circle do not
belong to either case (for any value of k). So, if (rXY , rY Z) is inside the
unit circle no information can be obtained about that rXZ (not even its
sign).

Also, in each of the above cases, as k gets closer to 1 or −1, the ellipses
in Figure 2 have larger eccentricity and the shaded regions become smaller.
In the extreme case k = ±1, the solutions of inequalities (4.1) and (4.3),
are single points (the corners of the square S). In other words, if we require
rXZ to be perfectly correlated (k = ±1) then rXY and rY Z must also be
perfectly correlated (a = ±1 and b = ±1). This provides the converse of
the obvious fact, noted earlier, that if we substitute 1 for rXY and rY Z in
inequality (3.1), we get rXZ = 1.

5. An Application. As an application of the above observations,
consider the following scenario. To encourage high school students to study,
a counselor tells students that high school grades H and college grades
C are positively correlated (rHC = 0.61) and college grades and starting
job salary J are also highly correlated (rCJ = 0.72). The implication is
that starting salary is positively correlated to high school grades. A sharp
student sees the flaw in the counselor’s pitch. Using inequality (3.1) the
student reasons that

−0.11 ≤ rHJ ≤ 0.99.

(Since the point (.61, .72) is inside the unit circle in Figure 2, no useful
information is obtained from the given correlations.) So, in order to deter-
mine whether H and J are actually positively correlated, a separate study
must be made. On the other hand, if the counselor had slightly better
correlation data, say rHC = 0.70 and rCJ = 0.85 then we have

0.22 ≤ rHJ ≤ 0.987.

(Since the point (.70, .85) is outside the circle in Figure 2, it follows that
rHJ is positive). Finally, each correlation coefficient would have to be very
high to guarantee that rHJ is really strong (say, at least 0.6). For instance
for rHC = 0.83 and rCJ = 0.95 we have

0.61 ≤ rHJ ≤ 0.96.

(Since the point (.83, .95) is in the shaded region in Figure 2, rHJ ≥ 0.60.)

6. Conclusion. The single number (the correlation coefficient) does
not encapsulate enough information to guarantee transitivity of the prop-
erty of being positively correlated. However, if we know the correlation
coefficient rXY and rY Z then we can find upper and lower bounds for rXZ .
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Moreover, both rXY and rY Z must be extraordinarily strong in order to
guarantee that rXZ is significant.
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