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Abstract. An inverse problem for the identification of an unknown
spatially dependent coefficient in a parabolic partial differential equation is
considered as an application for this new technique. An integral identity
which explicitly relates changes in coefficients to changes in measured data
is presented. Using this identity, it is possible to show that the coefficient
to data map is continuous, strictly monotone and injective. Applying a
modified Backus-Gilbert method to this identity generates a sequence of
coefficients converging to the required unknown coefficient. Finally, imple-
mentation of the procedure is discussed and some numerical experiments
are displayed.

1. Introduction. Some inverse problems are generated by the need
to determine various internal physical properties from external measure-
ments [7]. The identification of a diffusion coefficient is chosen here as a
prototype coefficient identification problem that has been approached by
various methods. The most common technique for identifying an unknown
coefficient from some measured output is the method of least squares [9].
The method described in this paper is based on an idea that goes back
to Backus and Gilbert [2]. Mass and Louis [11] provided a mathematical
context for the Backus-Gilbert idea. A particular feature of this paper is to
apply the Backus–Gilbert method for an integral identity relating changes
in an unknown coefficient to corresponding changes in measured data in
order to generate a sequence of “trial coefficients” that converges to the
required unknown coefficient. The results of a few numerical experiments
are provided here to illustrate the working of the method.

2. Derivation of the Integral Identity. Consider the parabolic
partial differential equation,

∂tu (x, t) = ∂x [K (x) ∂xu (x, t)] 0 < x < 1, 0 < t < T

u (x, 0) = 0 0 < x < 1 (2.1)

∂xu (0, t) = 0 0 < t < T

u (1, t) = f (t) = t 0 < t < T.

We will suppose in all of what follows that the input data f and the coef-
ficient K satisfy,

(i) f ∈ C1 [0, T ] with f (0) = 0 and f ′ (t) > 0 for 0 < t < T .
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(ii) a ≤ K (x) ≤ b, and |K (x) −K (y)| ≤ c |x− y| for positive constants
a, b, c.

We shall say that such functions f and K are admissible. When func-
tions f and K are admissible, the so called direct problem (2.1) has a
unique weak solution [13] u = u (x, t;K) belonging to H0

[

0, T : H1 (0, 1)
]

∩
C

[

0, T : H0 (0, 1)
]

, where Hs (0, 1) is the Sobolev space of order s, s ≥ 0
[1].

For the direct problem (2.1), we consider the inverse problem in which
the coefficient, K (x), is to be identified from a single measurement of out-
put, K (1)∂xu (1, t;K) , (i.e., the flux at x = 1):

g (t) = K (1) ∂xu (1, t) , 0 < t < T. (2.2)

Alternatively, the identification of K (x) could be based on the measure-
ment of u (0, t;K) or even on simultaneous measurement of both quantities.
Additionally, boundary conditions other than those included in (2.1) may
be considered with corresponding alternative choices of measured output in
place of (2.2). For purposes of this presentation, we will consider the single
measurement (2.2).

We collect all necessary results in the next lemma, see also [3], [4] and
[6], where similar proofs for slightly different problems are to be found.

Lemma 2.1. For admissible coefficients K1 and K2, let g1 (t) and g2 (t)
denote the corresponding measured outputs (2.2). Let φ = φ (x, t) denote
the solution of the following adjoint problem to (2.1):

∂tφ (x, t) + ∂x[K1 (x) ∂xφ (x, t)] = 0 0 < x < 1, 0 < t < T

φ (x, T ) = 0 0 < x < 1 (2.3)

∂xφ (0, t) = 0 0 < t < T

φ (1, t) = θ (t) = T − t 0 < t < T.

Then

(i)
∫ T

0

[g1 (t) − g2 (t)]φ (1, t) dt

=

∫ T

0

∫ 1

0

[K1 (x) −K2 (x)] ∂xu (x, t,K2) ∂xφ (x, t) dxdt.

(ii) gi (t) > 0 for t > 0, i = 1, 2.
(iii)

∂xu (x, t,Ki) > 0 a.e. on QT = (0, 1) × (0, T ) , i = 1, 2. (2.4)

(iv) If θ (T ) = 0 and ∂tθ < 0 for 0 < t < T , then ∂xφ (x, t) > 0 a.e. on QT .
(v) If K1 (x) > K2 (x) for 0 < x < 1, then g1 (t) > g2 (t) for 0 < t < T .
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Result (i) is the previously mentioned integral identity relating changes
in the coefficient to the corresponding change in the measured output. Re-
sult (v) implies that the coefficient to data mapping is monotone.

Proof. Let ψ (x, t) be an arbitrary test function. To prove (i), write

∫ ∫

QT

[∂tu (x, t,K1) − ∂tu (x, t,K2)]ψ (x, t) dxdt

=

∫ ∫

QT

∂x [K1 (x) ∂xu (x, t,K1)]ψ (x, t) dxdt

−
∫ ∫

QT

∂x [K2 (x) ∂xu (x, t,K2)]ψ (x, t) dxdt.

Integrating by parts and requiring ψ (x, t) to satisfy (2.3) (i.e., choose ψ =
φ) shows that (2.4) must hold.

To prove (ii), note first that the strong maximum principle for parabolic
equations implies

u (x, 0) = f(0) < u (x, t) < f (T ) = u (1, T ) for 0 < x < 1 and 0 < t < T.

In particular,
u (1 − ε, t) < u (1, t) for 0 < x < 1.

Then
u (1, t) − u (1 − ε, t)

ε
> 0 for 0 < t < T .

It follows that ∂xu (1, t) > 0 for 0 < t < T which means that g(t) > 0,
since K(1) > 0. Note also that since u (x, t,K) is the solution to a linear,
parabolic problem; the function g (t) = K (1) ∂xu (1, t) is very smooth on
(0, T ). In particular, pathological behavior like infinitely rapid oscillation
is precluded for such functions.

To prove (iii), let ψ (x, t) be an arbitrary test function and write

∫ ∫

QT

(∂tu (x, t,K) − ∂x [K (x) ∂xu (x, t,K)]) ∂xψ (x, t) dxdt = 0.

Integration by parts reduces this to

∫ ∫

QT

∂xu [∂tψ (x, t) +K (x) ∂xxψ (x, t)] dxdt (2.5)

=

∫ T

0

[K (1) ∂xu (1, t) ∂xψ (1, t) + u (1, t)∂tψ (1, t) − u (0, t)∂tψ (0, t)] dt

+

∫ 1

0

[u (x, T ) ∂xψ (x, T ) − u (x, 0) ∂xψ (x, 0)] dx.
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Now choose ψ to be the solution of

∂tψ (x, t) +K (x) ∂xxψ (x, t) = F (x, t) 0 < x < 1, 0 < t < T

ψ (x, T ) = 0 0 < x < 1

ψ(0, t) = 0 0 < t < T

ψ(1, t) = 0 0 < t < T.

Then ∂xψ (x, T ) = ∂tψ (1, t) = ∂tψ (0, t) = 0, and this, together with (2.2)
simplifies (2.5) to

∫ ∫

QT

∂xu (x, t)F (x, t) dxdt =

∫ T

0

g(t)∂xψ (1, t) dt. (2.6)

The maximum principle applied to the adjoint problem for ψ (x, t)
shows that for an arbitrary continuous and nonnegative function F (x, t) we
have ψ (x, t) ≤ 0 on QT . Then ψ(1, t) = 0 implies that ∂xψ (1, t) > 0. This
fact, together with (2.4 ii) shows that the right side of (2.6) is nonnegative
for every continuous and nonnegative function F (x, t), which is to say,
∂xu (x, t) ≥ 0 on QT in the sense of distributions. The regularity of the
solution u (x, t) for (2.1) then implies that ∂xu (x, t) ≥ 0 a.e. on QT .

To prove (2.4 iv), an argument similar to that used in the proof of (2.4
iii), applied to the adjoint problem (2.3), shows that the assumption on
θ (t) implies ∂xφ (x, t) > 0 a.e. on QT .

Finally, to prove (v), note first that g1 (t) < g2 (t) for 0 < t < T
leads to an immediate contradiction with (i), (iii), and (iv) of (2.4). Now
suppose that for some τ such that 0 < τ < T , we have g1 (t) > g2 (t) for
0 < t < τ , and g1 (t) < g2 (t) for τ < t < T. Then, applying (2.4 i), first on
(0, 1) × (0, τ) and then on (0, 1) × (0, T ), leads to

∫ τ

0

[g1 (t) − g2 (t)]φ (1, t) dt

=

∫ τ

0

∫ 1

0

[K1 (x) −K2 (x)] ∂xu (x, t,K2) ∂xφ (x, t) dxdt

and
∫ T

0

[g1 (t) − g2 (t)]φ (1, t) dt

=

∫ T

0

∫ 1

0

[K1 (x) −K2 (x)] ∂xu (x, t,K2) ∂xφ (x, t) dxdt.

Then, it follows by subtracting that

∫ T

τ

[g1 (t) − g2 (t)]φ (1, t) dt

=

∫ T

τ

∫ 1

0

[K1 (x) −K2 (x)] ∂xu (x, t,K2) ∂xφ (x, t) dxdt.
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However, (iii) and (iv) of (2.4) together with the hypothesis that
K1 (x) > K2 (x) for 0 < x < 1, imply that the right side of this last
expression is positive, while g1 (t) < g2 (t) for τ < t < T implies that the
left side is negative. As remarked in the proof of (ii), pathological be-
havior for g (t) is precluded and it follows that when K1 (x) > K2 (x) for
0 < x < 1, anything other than g1 (t) > g2 (t) for 0 < t < T leads to a
similar contradiction of (2.4 i).

The results in this lemma imply the injectivity of the coefficient to
data mapping K → g.

For a given direct problem, the integral identity (2.4 i) asserts that if
the coefficient K is changed from K1 to K2, there will be a corresponding
change in the output g (t) from g1 to g2. On the other hand, if g1, corre-
sponding to an unknown coefficient K1, is measured experimentally and if,
for a given coefficient K2, the output g2 is obtained by solving (2.1), then
the integral identity provides an integral equation, which may be solved
for the unknown K1 (x). In the next sections, the Backus-Gilbert method
is applied to the integral equation to approximate the unknown coefficient
K (x).

3. Approximate Solution to the Integral Equation. We intro-
duce the Backus-Gilbert method in (3.1), and in (3.2) we apply this method
to the solution of integral equation arising out of the integral identity (2.4
i).

3.1 The Backus-Gilbert Method. Consider the problem of ap-
proximating an unknown function κ (x), from a finite set of moments
µi = 〈κ, σi〉Hs×H−s , where σi ∈ H−s (0, 1) are known (generalized) func-
tions, i = 1, 2, . . . , N . This problem can be stated as follows.

Define Λ:Hs(0, 1) → R
N ,

κ→ Λ (κ) =
(

〈κ, σ1〉Hs×H−s , . . . , 〈κ, σN 〉Hs×H−s

)

.

Given (σ1, . . . , σN ) σi ∈ H−s (0, 1) and (µ1, . . . , µN ) ∈ R
N .

Find κ ∈ Hs (0, 1) such that Λ (κ) = (µ1, . . . , µN ).

Now, for x0 ∈ (0, 1), fixed, assume that

κ (x0) =

N
∑

j=1

Φj (x0) µj . (3.1)

Here, the quantities µj = 〈κ, σj〉Hs×H−s are given and Φj (x0) are unknown
functions to be determined. Then

κ (x0) =

N
∑

j=1

Φj (x0) 〈κ, σj〉Hs×H−s =

〈

κ,

N
∑

j=1

Φj (x0)σj

〉

Hs×H−s

.
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But this implies
N

∑

j=1

Φj (x0)σj (x) = δ (x− x0) , (3.2)

where δ (x− x0) is the Dirac distribution concentrated at x0 [1].
Since 〈Λ (κ) , ~v〉

RN =
〈

κ,Λ> (~v)
〉

Hs×H−s
, where Λ> denotes the trans-

pose of the operator Λ, and

〈Λ (κ) , ~v〉
RN =

(

〈κ, σ1〉Hs×H−s , . . . , 〈κ, σN 〉Hs×H−s

)

· ~v

=

N
∑

j=1

〈κ, σj〉Hs×H−s vj =

〈

κ,

N
∑

j=1

vjσj

〉

Hs×H−s

,

it follows that

Λ>: RN → H−s (0, 1) , Λ> (~v) =

N
∑

j=1

vjσj (x) .

Then equation (3.2) is equivalent to

Λ>

(

~Φ (x0)
)

=
N

∑

j=1

Φj (x0)σj (x) = δ (x− x0) . (3.3)

To solve equation (3.3) for ~Φ (x0), we have to acknowledge that, in
general, there will be no solution. However, the normal equation [7]

(

Λ>
)∗

Λ>

(

~Φ (x0)
)

=
(

Λ>
)∗

δ (x− x0)

is always uniquely solvable, where
(

Λ>
)∗

is the adjoint of Λ> and is defined
by

(Λ>)∗:H−s (0, 1) → R
N ,

〈

Λ> (~v) , G
〉

H−s
= ~v · (Λ>)∗ (G) .

Note that

〈

Λ> (~v) , G
〉

H−s
=

〈

N
∑

j=1

vjσj (x) , G

〉

H−s

=

N
∑

j=1

vj 〈σj , G〉H−s ,

which implies that (Λ>)∗ (G) = (〈σ1, G〉H−s , . . . , 〈σN , G〉H−s).
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Now,

(Λ>)∗Λ>

(

~Φ (x0)
)

= (Λ>)∗





N
∑

j=1

Φj (x0)σj (x)





=

N
∑

j=1

Φj (x0) (Λ>)∗[σj (x)]

=
N

∑

j=1

Φj (x0)
(

〈σ1, σj (x)〉
H−s , . . . , 〈σN , σj (x)〉

H−s

)

=

N
∑

j=1

Φj (x0)
(

〈Jσ1, σj (x)〉
Hs×H−s , . . . , 〈JσN , σj (x)〉

Hs×H−s

)

and
(

Λ>
)∗

δ (x− x0) = (〈σ1, δx0
〉H−s , . . . , 〈σN , δx0

〉H−s)

=
(

〈Jσ1, δx0
〉Hs×H−s , . . . , 〈JσN , δx0

〉Hs×H−s

)

,

where J :H−s (0, 1) → Hs (0, 1) denotes the duality isomorphism [12] de-
fined by

Jσ (x) =

∞
∑

n=1

λ−s
n 〈σ, ωn〉Hs×H−s ωn (x)

and where {ωn} denotes any suitable orthonormal basis of eigenfunctions
in Hs (0, 1) with positive eigenvalues {λ2

n}. In this case,

〈Jσi, δx0
〉Hs×H−s =

∞
∑

n=1

λ−s
n 〈σi, ωn〉Hs×H−s ωn (x0)

and

〈Jσi, σj〉Hs×H−s =
∞
∑

n=1

λ−s
n 〈σi, ωn〉Hs×H−s 〈σj , ωn〉Hs×H−s

= 〈σi, σj〉H−s .

Finally, to approximate κ (x0), we generate the N-vector ~d (x0) =
[di (x0)] =

[

〈Jσi, δx0
〉Hs×H−s

]

and the N by N symmetric matrix [Mij ] =
〈σi, σj〉H−s , and solve

[Mij ] [Φj (x0)] = [di (x0)]. (3.4)

3.2 Applying the Backus-Gilbert Method to the Integral

Equation. Let us suppose that for admissible input f (t) and an unknown
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admissible coefficient K1 (x), the corresponding output g1 (t) in (2.2) has
been obtained from experimental measurements. Suppose further that for
some arbitrarily chosen admissible coefficient K0 (x), the direct problem
(2.1) has been solved and g0 (t) has been computed. Then if we can ap-
proximate the function κ (x) = K1 (x) −K0 (x), we obtain the approxima-
tion K1 (x) = κ (x) +K0 (x) for the unknown coefficient. Let us suppose,
for convenience, that K1 (0) = K0 (0) and K1 (1) = K0 (1), which is to
say κ (0) = κ (1) = 0. Then it is reasonable to consider the eigenfunc-

tions {ωn (x)} =
{√

2 sinnπx
}

and the eigenvalues
{

λ2
n

}

=
{

(nπ)
2
}

as the

orthonormal basis for Hs (0, 1).
Now, the integral identity (2.4 i),

∫ T

0

∫ 1

0

κ (x) ∂xu
(

x, t,K0
)

∂xφ (x, t) dtdx =

∫ T

0

[g1 (t) − g0 (t)]φ (1, t) dt,

can be expressed as

∫ 1

0

κ (x)σj (x) dx = µj , j = 1, . . . , N, (3.5)

where

σj (x) =

∫ T

0

∂xu
(

x, t,K0
)

∂xφj (x, t) dt

µj =

∫ T

0

[g1 (t) − g0 (t)]φj (1, t) dt.

Here, we are assuming that the adjoint problem (2.3) has been solved for
N linearly independent boundary input functions, θj (t) = φj (1, t), and we
denote the correspondingN solutions of (2.3) by φj (x, t). Thus, the integral
identity provides us with the N moments for the unknown function κ (x),
and the Backus-Gilbert method requires us to solve (3.4) for the functions
Φj (x0). Then the approximate recovered coefficient is given by

K1 (x0) = K0 (x0) +

N
∑

j=1

Φj (x0)µj .

Of course, in order to solve the adjoint problem (2.3) to generate the in-
gredients of (3.5), it is necessary that the coefficient K1 (x) is known. Con-
sequently, we are forced to introduce an iteration procedure which will
converge to K1 (x). For a fixed N and for n = 0, 1, . . .

(i) with coefficient, Kn (x),
(ii) and data θ = θj , solve (2.3) for φj for j = 1, . . . , N ,
(iii) using φj compute σj,n and µj,n,
(iv) generate Mij and dj (x0) and solve (3.4) for Φj,n (x0),
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(v) Kn+1 (x0) = Kn (x0) +
∑N

j=1 Φj,n (x0)µj,n.

Note that the injectivity of the coefficient to data mapping implies that
if µj,n = (g1 (t) − gn (t) , φj (1, t))

L2(0,T ) tends to zero, then Kn must tend

to the true coefficient K1 (x). Note also that once Mij has been generated
in step (iv), one can solve for Φj,n (x0) at as many points x0 in (0, 1) as
desired, simply by re-evaluating the vector dj (x0) at each x0. Thus, it is
possible to obtain arbitrarily fine spatial resolution with little additional
work. The actual resolution parameter is the dimension N of the approx-
imation subspace spanned by the independent vectors {σ1, . . . , σN}. The
most striking feature of this approach is that a reasonable approximation
to the coefficient K (x) will be shown to be obtained with just N = 1. This
means that the matrix Mij is, in fact, a scalar and (3.4) is solved not by
inversion but by simply dividing.

4. Numerical Experiments. Consider the initial boundary value
problem (2.1) with f (t) = t, and the adjoint problem (2.3) with θ (t) = 1−t.
Then the conditions of the lemma are satisfied.

Experiment 1. Let the unknown coefficient be given by

K (x) = 2x2 − x+ 1.

Then Figure 1 shows the result of choosing an initial guessK0 (x) = 1+
x and executing 5 steps of the iteration withN = 1 and s = 3. Note that the
sequence of coefficients Kn (x) converge to the limit K (x) monotonically
in this case. The difference sequence printed at the top of the figure are
the successive values of ‖g1 (t) − gn (t)‖2

L2(0,T ).

Figure 1. K(x) = 2x2 − x+ 1
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Figure 2. K(x) = PW linear N = 1

Experiment 2. Let the unknown coefficient be the following piecewise
linear function,

K(x)



























4 if 0 ≤ x ≤ 3/8

7 − 8x if 3/8 ≤ x ≤ 1/2

3 if 1/2 ≤ x < 3/4

9 − 8x if 3/4 ≤ x ≤ 7/8

2 if 7/8 ≤ x < 1.

With an initial guess of K0 (x) = 4x2 − 6x + 4, five steps of the iteration
process are executed. At this point, the coefficient K5 (x) is a reasonable
approximation toK (x) and the approximation is not improved significantly
by additional iterations.

In order to obtain better resolution of the unknown coefficient, it would
seem to be necessary to increase the value of N . However, numerical ex-
periments have shown no real improvement in the identified coefficient as
the result of increasing N to 2 and higher values. Evidently, it will be nec-
essary to find a strategy for choosing the adjoint inputs θj so as to produce
functions σj which span an approximation subspace that better captures
the behavior of K (x).

5. Conclusion. This approach to coefficient identification has ex-
tremely modest requirements as to the data that must be measured, and
the computational complexity of the algorithm to recover the unknown co-
efficient from this data is similarly modest. In spite of the simplicity, the
approach produces a reasonably good approximation to the unknown co-
efficient in some simple numerical experiments. It remains to be seen how
the method will perform when the method is applied in a two dimensional
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example and whether a strategy to choose better inputs to the adjoint
problem can be devised.
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