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Abstract. The parallel frame of a curve is an alternative approach to
defining a moving frame. In this paper, we express the parallel frames of
timelike and spacelike curves in a Minkowski space.

1. Introduction. The Frenet frame is constructed for the curve of
3-time continuously differentiable non-degenerate curves. Curvature may
vanish at some points on the curve. That is, the second derivative of the
curve may be zero. In this situation, we can use an alternative frame. We
use the tangent vector ~T and two relatively parallel vector fields to construct
this alternative frame such that the normal vector field ~N along the curve
is relatively parallel if its derivative is tangential. We call this frame a
parallel frame along ~T . The reason for the name parallel is because the
normal component of the derivatives of the normal vector field is zero. The
advantages of the parallel frame and the comparable parallel frame with
the Frenet frame in Euclidean 3-space was given and studied by Bishop [1]
and Hanson [3, 4].

The basic concept of this frame is to take the unique tangent vector
and choose any convenient basis { ~N1 (s) , ~N2 (s)} in the plane perpendicular

to ~T (s) at each point such that the derivatives of { ~N1 (s) , ~N2 (s)} depend

on only ~T (s) and not each other. A parallel frame is not unique, in contrast
to a Frenet frame.

In three dimensional Euclidean space the alternative parallel frame
equations are





~T ′ (s)
~N ′

1
(s)

~N ′

2
(s)



 =





0 k1 (s) k2 (s)
−k1 (s) 0 0
−k2 (s) 0 0









~T (s)
~N1 (s)
~N2 (s)





for a parametrized unit length curve. The relation between Frenet frames
and parallel frames is as follows:





~T (s)
~N (s)
~B (s)



 =





1 0 0
0 cos θ (s) sin θ (s)
0 − sin θ (s) cos θ (s)









~T (s)
~N1 (s)
~N2 (s)





such that sin θ = k1

κ
and cos θ = k2

κ
. Also, κ (s) =

√

k2

1
(s) + k2

2
(s),

θ (s) = arctan
k2

k1

, and τ (s) = θ′ (s) so that k1 (s) and k2 (s) corre-

spond to a Cartesian coordinate system for the polar coordinates κ, θ with
θ =

∫

τ (s) ds.

1



The functions k1 (s), k2 (s) are called the principal curvature along
~N1 (s) , ~N2 (s), respectively. Also, (k1 (s) , k2 (s)) can be seen as a sort of
invariant of the curve. This is more difficult to conceive than in the case
(κ, τ), since parallel frames are not unique. We call (k1 (s) , k2 (s)) the
normal development of the curve. If two regular curves in Euclidean space
have the same normal development, then the curves are congruent [1].

2. Preliminaries. The Minkowski space E
3

1
is the Euclidean space E

3

provided with the Lorentzian inner product 〈~u,~v〉L = −u1v1 +u2v2 +u1v2,
where ~u = (u1, u1

, u3), ~v = (v1, v2, v3) ∈ E
3. We say that a vector ~u

in E3

1
is spacelike, lightlike, or timelike if 〈~u, ~u〉L > 0, 〈~u, ~u〉L = 0, or

〈~u, ~u〉L < 0, respectively. The norm of the vector ~u ∈ E
3

1
is defined by

‖~u‖ =
√

|〈~u, ~u〉L|. For any ~u = (u1, u1
, u3), ~v = (v1, v2, v3) ∈ E

3

1
, the

Lorentzian vector product ~u ×L ~v of ~u and ~v is defined as follows:

~u ×L ~v = (−u2v3 + u3v2, u3v1 − u1v3, u1v2 − u2v1) .

An arbitrary curve α = α (s) : I → E
3

1
is spacelike, timelike, or null, if

all of its velocity vectors α′ (s) are respectively spacelike, timelike, or null,
for each s ∈ I ⊂ R. Throughout this paper we shall assume all curves are
parametrized by their arc length.

Let α (s) be a non-lightlike curve and {~T (s) , ~N (s) , ~B (s)} are Frenet
vector fields. Then Frenet formulas are as follows:





~T
′

(s)
~N

′

(s)
~B

′

(s)



 =





0 κ (s) 0
(

ε~B

)

κ (s) 0 τ (s)

0
(

ε~T

)

τ (s) 0









~T (s)
~N (s)
~B (s)



 , (1)

where ε ~X
=< ~X, ~X >L and κ (s) and τ (s) are the curvature and torsion

function, respectively [5, 6].

3. Parallel Frame of a Non-Lightlike Curve. In this section,
we describe parallel frames for timelike and spacelike curves in Minkowski
3-space using methods similar to the methods in Euclidean 3-space. The
parallel frame is an alternative frame for curves and can be more useful
compared to the Frenet frame. First, we state the following known propo-
sition.

Proposition 1. Let e1, e2, . . . , en: [a, b] → E
n
1

be smooth maps and
{e1 (s) , e2 (s) , . . . , en (s)} be an orthonormal basis of E

n
1

for all s ∈ [a, b].
Then, there exists a matrix valued function A (s) = (aij (s)) so that

i) e′i (s) =
n
∑

j=1

aji (s) ej (s),

ii) aij = εei
< e′j , ei >L,
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iii) εejaij + εei
aji = 0 (that is A (t) is semi-skew symmetric), where εei

=
< ei, ei >L.

First, we construct the parallel frame for the timelike curves. Let
{~T , ~Z1, ~Z2} be a smooth orthonormal frame along a unit speed timelike
curve α (s) : I → E

3

1
. According to the proposition above, there exist

smooth functions f1, f2, and f3 such that





~T ′

~Z1

~Z2



 =





0 f1 f2

f1 0 f3

f2 −f3 0









~T
~Z1

~Z2



 .

Now, let’s change the orthonormal frame {~T, ~Z1, ~Z2} to {~T , ~N1, ~N2}
such that entries 2,3 and 3,2 of the resulting matrix





~T ′

~N ′

1

~N ′

2





are zero. So, we rotate the spacelike normal vectors { ~Z1, ~Z2} by angle θ (s).
That is,

~N1 = cos θ (s) ~Z1 − sin θ (s) ~Z2,

~N2 = sin θ (s) ~Z1 + cos θ (s) ~Z2.

We want the normal component of the derivative of ~N1 and ~N2 to be
zero. Namely, < ~N ′

1
, ~N2 >L= 0 and < ~N1, ~N ′

2
>L= 0. So,

< ~N ′

1
, ~N2 >L

= < −θ′ sin θ ~Z1 − θ′ cos θ ~Z2 + cos θ (s) ~Z1 − sin θ (s) ~Z2, ~N2 >L

= −θ′
(

sin2 θ + cos2 θ
)

+ cos θ (f3 cos θ) + sin θ (f3 sin θ)

= −θ′ + f3.

Thus, if we choose θ (s) to satisfy the equality

θ′ (s) = f3, (2)

we obtain a new orthonormal frame {~T , ~N1, ~N2} satisfying the derivative
formulas





~T ′

~N ′

1

~N ′

2



 =





0 k1 k2

k1 0 0
k2 0 0









~T
~N1

~N2



 ,

such that k1 =< ~T ′, ~N1 >L and k2 =< ~T ′, ~N2 >l. Observe that the parallel
frame is not unique, since the choice only depends on (2).
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Now, let’s construct parallel frames for spacelike curves using a similar
method. But, in this case we must consider that one of ~N1 or ~N2 is timelike.

At first, suppose that {~T, ~Z1, ~Z2} is a smooth orthonormal frame along

a unit speed spacelike curve α (s) : I → E
3

1
such that ~Z1 is timelike. Then

there exist smooth functions f1, f2 and f3 satisfying





~T ′

~Z1

~Z2



 =





0 f1 f2

f1 0 f3

−f2 f3 0









~T
~Z1

~Z2



 ,

where the matrix on the right side is semi-skew symmetric with respect
to the signature (+,−, +), that is in the order of the causal characters of

{~T , ~Z1, ~Z2}.
We wish to make entries 2,3 and 3,2 vanish in the resulting matrix of





~T ′

~N ′

1

~N ′

2





that rotates {~T, ~Z1, ~Z2} to {~T , ~N1, ~N2}. So, we rotate the normal vectors

{~Z1, ~Z2} by angle θ (s). But, in this case, we express the rotation matrix

using hyperbolic functions since ~Z1 is timelike. So we can write

~N1 = cosh θ (s) ~Z1 + sinh θ (s) ~Z2,

~N2 = sinh θ (s) ~Z1 + cosh θ (s) ~Z2.

Similarly, we want the normal component of the derivative of ~N1 and
~N2 to vanish. Therefore, the equalities < ~N ′

1
, ~N2 >L= 0 and < ~N1, ~N ′

2
>L=

0 must be satisfied. Thus, considering also that the normal vector M1 is
timelike,

< ~N ′

1
, ~N2 >L

= < θ′ sinh θ ~Z1 + θ′ cosh θ ~Z2 + cosh θ (s) ~Z1 + sinh θ (s) ~Z2, ~N2 >L

= θ′
(

− sinh2 θ + cosh2 θ
)

+ cosh θ (f3 cosh θ) − sinh θ (f3 sinh θ)

= θ′ + f3.

Thus, if we choose θ (s) to satisfy the equality

θ′ (s) = −f3, (3)

we obtain a new orthonormal frame {~T , ~N1, ~N2} satisfying the derivative
formulas





~T ′

~N ′

1

~N ′

2



 =





0 k1 k2

k1 0 0
−k2 0 0









~T
~N1

~N2




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such that k1 = − < ~T ′, N1 >L and k2 =< ~T ′, N2 >L.
For the third case, that is, for the spacelike curves such that ~Z2 is

timelike, we find





~T ′

~N ′

1

~N ′

2



 =





0 k1 k2

−k1 0 0
k2 0 0









~T
~N1

~N2





such that k1 =< ~T ′, ~N1 >L and k2 = − < ~T ′, ~N2 >L.
So, we have described parallel frames of spacelike and timelike curves

in Minkowski 3 space. We can summarize the derivative formulas of parallel
frames for timelike and spacelike curves as follows:





~T ′

~N ′

1

~N ′

2



 =





0 k1 k2

−ε ~N1

k1 0 0
−ε ~N2

k2 0 0









~T
~N1

~N2



 , (4)

where k1 = ε ~N1

< ~T ′, ~N1 >L, k2 = ε ~N1

< ~T ′, ~N2 >L with ε ~X
=< ~X, ~X >L.

The functions k1 and k2 are called the principal curvatures along ~N1 and
~N2. Also, parallel frames are not unique, since the choice of the parallel
frame only depends on (2) and (3).

Also, we assume that {~T, ~N1, ~N2} is positively oriented and the vector
products of these vectors are defined as follows:

~T ×L
~N1 = ε ~N2

~N2, ~N1 ×L
~N2 = ε~T

~T and ~N2 ×L
~T = ε ~N1

~N1.

In Minkowski 3-space, the Darboux vector ~w of the Frenet frame of a
curve α is defined as follows:

1) If α is timelike, ~wf = τ ~T + κ~B;

2) If α is spacelike with timelike normal, ~wf = τ ~T − κ~B;
3) If α is spacelike with timelike binormal, ~wf = −τT + κB.

For the parallel frame of a timelike curve, considering the parallel frame
derivative formulas and properties of the vector products of {~T , ~N1, ~N2}, it
can be seen that the equalities

d
−→
T

ds
= ~wp ×L

−→
T ,

d ~N1

ds
= ~wp ×L

−→
N1,

d ~N2

ds
= ~wp ×L

−→
N2

are satisfied in the case of the vector ~wp = −k2
~N1 +k1

~N2. So, the Darboux

vector of the parallel frame of a timelike curve is ~wp = −k2
~N1 + k1

~N2.
In a similar way, we find the Darboux vector of a spacelike curve in the
Minkowski 3-space as follows:

1) If ~N1 is timelike, then ~wp = −k2
~N1 − k1

~N2.

2) If ~N2 is timelike, then ~wp = k2
~N1 + k1

~N2.
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Now let’s find the relation between Frenet frames and parallel frames
of a non-lightlike curve. Suppose α (s) : I → E

3

1
is a non-lightlike curve in

Minkowski 3-space. Also, let the Frenet frame and the parallel frame of
this curve be {~T, ~N, ~B} and {~T , ~N1, ~N2}, respectively.

From the Frenet formulas, we know that ~T ′ = κ ~N . So, using this
equality and the parallel frame derivative formulas, we find that

~N =
~T ′

κ
=

k1
~N1 + k2

~N2

κ
. (5)

Taking the vector product of ~T on the left with both sides of equation (5),
we obtain

B =
ε ~N2

k1
~N2 − ε ~N1

k2
~N1

ε~B
κ

. (6)

Now, we examine equations (5) and (6) with respect to the causal
character of the curve.

Case 1. Assume the curve is timelike.
In this case, if we write cos θ = k1

κ
and sin θ = k2

κ
in (5) and (6), we

obtain the equation





~T
~N
~B



 =





1 0 0
0 cos θ sin θ

0 − sin θ cos θ









~T
~N1

~N2



 .

This means that the parallel frame of a timelike curve is obtained by
rotating the Frenet frame about the timelike vector ~T with angle θ.

Case 2. Assume the curve is spacelike with timelike normal ~N1.
If we write ε ~N1

= −1, cosh θ = k1

κ
and sinh θ = k2

κ
in equations (5) and

(6), we obtain the equation





~T
~N
~B



 =





1 0 0
0 cosh θ sinh θ

0 sinh θ cosh θ









~T
~N1

~N2



 .

Case 3. Assume the curve is spacelike with timelike normal ~N2.
In this case, B is also timelike and if we write again ε ~N2

= ε~B
= −1,

cosh θ = k1

κ
and sinh θ = k2

κ
in equations (5) and (6), we obtain





~T
~N
~B



 =





1 0 0
0 cosh θ sinh θ

0 sinh θ cosh θ









~T
~N1

~N2



 .
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Corollary 2. The parallel frame of a non-lightlike curve in Minkowski
3-space is obtained by rotating the Frenet frame of the curve about the
speed vector ~T with angle θ (s) = arctan k2

k1

(s).

Corollary 3. Causal characters of ~N and ~N1 or ~B and ~N2 are the same,
respectively.

Lemma 4. Let α be a unit speed timelike curve. Then

κ (s) =
√

k2

1
+ k2

2
and τ (s) = θ′ (s) , θ (s) = arctan

k2

k1

,

where κ (s) and τ (s) are the curvature and torsion functions of the curve

and k1, k2 are the principal curvatures along the ~N1 and ~N2, respectively.

Proof. Using the equation κ = ‖T ′‖, we obtain κ (s) =
√

k2

1
+ k2

2
. For

the second equation in the lemma, we write

α′′′ = k′

1
~N1 + k′

2
~N2 + k2

1
~T + k2

2
~T ,

α′ × α′′ = T ×
(

k1
~N1 + k2

~N2

)

= k1
~N2 − k2

~N1,

in the formula

τ =
< α′′′, α′ × α′′ >L

‖α′ × α′′‖2
.

Therefore,

τ =
−k′

1
k2 + k1k

′

2
∥

∥

∥
k1

~N2 + k2
~N1

∥

∥

∥

2
=

k1k
′

2
− k2k

′

1

k2

1
+ k2

2

=

(

arctan
k2

k1

)

′

.

Also, we can state the following lemma for a spacelike curve.

Lemma 5. Let α be a unit speed spacelike curve. Then

κ (s) =
√

ε ~N1

k2

1
+ ε ~N2

k2

2

and

τ (s) = ε ~N1

θ′ (s) , θ (s) = arctanh
k2

k1

,

where κ (s) and τ (s) are the curvature and torsion functions of the curve

and k1, k2 are the principal curvatures along the ~N1 and ~N2, respectively.

Corollary 6. k1 and k2 correspond to a Cartesian coordinate system
for the polar coordinates κ, θ with θ =

∫

τ (s) ds.

Corollary 7. A unit speed non-lightlike curve in Minkowski 3-space lies
in a plane if and only if its normal development lies on a line through the
origin.
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Proof. It is well-known that a curve lies in a plane if and only if the
torsion function of the curve is zero (τ (s) = 0). This means that θ′ = 0.
On the other hand,

κ (s) =
√

ε ~N1

k2

1
+ ε ~N2

k2

2
=

∣

∣

∣
k1

~N1 + k2
~N2

∣

∣

∣
.

Thus, the normal development (k1, k2) has θ = constant. That is, its
normal development lies on a line through the origin.

In addition, the parallel frame of a timelike curve in Minkowski n-space
can be expressed as



















~T ′

~N ′

1

~N ′

2

...
~N ′

n−1

~N ′

n



















=

















0 k1 k2 k3 . . . kn

k1 0 0 0 . . . 0
k2 0 0 0 . . . 0
...

...
...

... . . .
...

kr−1 0 0 0 . . . 0
kn 0 0 0 . . . 0



































~T
~N1

~N2

...
~Nn−1

~Nn



















and the parallel frame of a spacelike curve in Minkowski n-space can be
expressed as



















~T ′

~N ′

1

~N ′

2

...
~N ′

n−1

~N ′

n



















=

















0 k1 k2 k3 ... kn

− (εN1
) k1 0 0 0 . . . 0

− (εN2
) k2 0 0 0 . . . 0

...
...

...
... . . .

...
−

(

εNn−1

)

kr−1 0 0 0 . . . 0
− (εNn

) kn 0 0 0 . . . 0



































~T
~N1

~N2

...
~Nn−1

~Nn



















.

Now, we will determine the osculating sphere of a non-lightlike curve using
its parallel frame. Let α be a non-lightlike curve in E

3

1
. Take the function

F (t) as
F (t) =< α(t) − c, α(t) − c >L ±r2,

where r and c are the radius and center of the osculating sphere, respec-
tively. Since, the osculating sphere must have 4-point contact with α, then
we have

F (t) = F ′(t) = F ′′(t) = F ′′′(t) = 0.

If we use ~T ′ = k1
~N1 + k2

~N2 for a non-lightlike curve and

(

< ~N1, α(t) − c >L

)

′

=
(

< ~N2, α(t) − c >L

)

′

= 0
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we find that











F ′(t) = 0 =⇒ ~T ⊥ α(t) − c

F ′′(t) = 0 =⇒ k1 < ~N1, α(t) − c >L +k2 < ~N2, α(t) − c >L= −ε~T

F ′′′(t) = 0 =⇒ k′

1
< ~N1, α(t) − c >L +k′

2
< ~N2, α(t) − c >L= 0.

(7)

If we say
(

ε ~N1

)

a =< ~N1, α(t) − c >L and
(

ε ~N2

)

b =< ~N2, α(t) − c >L in

the equations in (7) such that a and b are constant from above, we obtain

k1

(

ε ~N1

)

a +
(

ε ~N2

)

k2b = −εT (8)

k′

1

(

ε ~N1

)

a +
(

ε ~N2

)

k′

2
b = 0.

From the solution of this linear equation system, we find that

a = −

(

ε~T

)

(

ε ~N1

)

k′

2

k1k
′

2
− k2k

′

1

and

b =

(

ε~T

)

(

ε ~N2

)

k′

1

k1k
′

2
− k2k

′

1

.

So, from α (s) − c = a ~N1 + b ~N2, the center and radius of the osculating
sphere is

c (s) = α(s) +

(

ε~T

)

(

ε ~N1

)

k′

2

k1k
′

2
− k2k

′

1

~N1 −

(

ε~T

)

(

ε ~N2

)

k′

1

k1k
′

2
− k2k

′

1

~N2 (9)

and

r =

√

√

√

√

(

ε ~N1

)

k′2

1
+

(

ε ~N2

)

k′2

2

(k1k
′

2
− k2k

′

1
)
2

, (10)

respectively. Thus, we have proved the following theorem.

Theorem 8. Let α be a unit speed non-lightlike curve. Then the radius
and the center of the osculating sphere of α at α (t) are

r =

√

√

√

√

(

ε ~N1

)

k′2

1
+

(

ε ~N2

)

k′2

2

(k1k
′

2
− k2k

′

1
)2

and

c = α(t) −

(

ε~T

)

(

ε ~N1

)

k′

2

k1k
′

2
− k2k

′

1

~N1 −
(εN2

) k′

1

k1k
′

2
− k2k

′

1

~N2,

9



where ~N1 and ~N2 are parallel vector fields along the curve α.

Corollary 9. Let α be a unit speed non-lightlike curve in the E
3

1
. α has

an osculating sphere at α (s) if and only if k1k
′

2
6= k2k

′

1
.

Also, we can state the following corollary from (8) related to the normal
development (k1, k2) of the curve.

Corollary 10. A unit speed non-lightlike curve is spherical if and only if
its normal development (k1, k2) lies on a line not through the origin. Also,
the distance of this line from the origin is radius of the sphere since

r2 =< α (s) − c, α (s) − c >L=
(

ε ~N1

)

a2 +
(

ε ~N2

)

b2.
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