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Abstract. A heuristic model of the motion of sperm in the vicinity
of an egg is developed and analyzed. The model is based on differential
equations and stochastic processes. Numerical simulations are performed.

Introduction. Many processes in Biology show both random and
deterministic effects. While the process gives “on average” the same out-
come, when repeated many times, it will show distinctive differences in
each individual experiment. Similar initial conditions may produce signifi-
cantly different outcomes. Despite these complications, such processes can
often be simulated using elementary methods from calculus and differential
equations, coupled with some methods from probability theory. Due to the
elementary nature of the mathematical tools involved, such models are well
suited for undergraduate research projects in applied mathematics.
This paper started out as an undergraduate research project in the
NASA/JPL/CSUN PAIR program. During experiments involving in vitro
fertilization of eggs of Lepidobatrachus laevis (a species of frog from South
America) [1, 2], the individual paths of frog sperm on its way to an egg
were video-taped. It is known that the sperm can detect a chemical sig-
nature of the egg. After detection of this signature, the sperm will start
swimming toward the egg. In this paper we will give a simple deterministic
model for this situation, based on the known forces acting on the sperm
(such as drag) and a simplified model of the sperm-egg interaction. This
deterministic model is described in detail in the following section. We will
then investigate some interesting analytical properties of this model and
give some numerical simulations. In the final section of this article, we
will introduce random effects to this model and simulate this new model
numerically.

The interaction between different sperms has been investigated using
game theory [4]. However, in this paper we will only try to derive a model
for the physical interaction between the egg and a sperm. As in the above
mentioned laboratory experiments, we will assume that the egg rests in
shallow water and that the sperm is released near the egg. This is very
similar to the actual situation in which frog eggs are in shallow ponds,
however, we will exclude environmental effects especially surface waves and
currents. We will restrict ourselves to a two dimensional geometry, however,
the model can easily be extended to three dimensions.

The Deterministic Model. We will assume that the egg rests at
the origin in R2. We will model the egg as a disk of radius r0 centered at
the origin. The sperm is modeled by a point located at x(t) ∈ R2, at time
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t ≥ 0. For simplicity, we will also assume that the sperm has unit mass.
The velocity of the sperm is given by

v(t) = x′(t).

In order to apply Newton’s law to the motion of the sperm we need to
model the forces acting on the sperm. We will assume that the plane is
perpendicular to gravity, such that gravity (or buoyancy for that matter)
will not have an effect on the motion of the sperm in the plane. The critical
part is to make a reasonable model for the attraction of the sperm to the
egg. It is assumed that the egg releases a chemical signature, and that the
sperm starts swimming toward the egg as soon as the sperm detects this
signature. For simplicity, we will assume that the sperm can only propel
itself at a fixed rate. Finally, let r1 > r0 be the radius at which the sperm
can detect the chemical signature of the egg. The geometry of this situation
is shown in Figure 1.

Figure 1: The geometry of the model.

After the sperm detects the signature it will accelerate toward the origin at
a fixed rate a. The attractive acceleration on the sperm can be written as:

f0(x(t)) = a
x(t)
|x(t)|

Θ(r1 − |x(t)|),
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where Θ denotes the usual Heaviside function:

Θ(ξ) =
{

0, for ξ < 0;
1, for ξ ≥ 0.

We shall also assume that this force is turned off after the sperm reached
the egg. This is easily done by multiplying the above expression with
Θ(|x(t)| − r0). Thus, the final form of the attraction is

f1(x(t)) = a
x(t)
|x(t)|

Θ(r1 − |x(t)|)Θ(|x(t)| − r0).

The only other force acting on the sperm is drag. If we assume that the
body of the sperm is nearly spherical, the drag is given by Stokes’ formula:

f2 = −b(x)|v|v,

where b is a positive function which depends on the size of the sperm and
the viscosity of the medium in which the sperm moves. The viscosity may
be dependent on the location. In particular, the entrance into the egg can
be modeled by a rapid increase of the viscosity, i.e.

b(x) = b1 + b2Θ(r0 − |x(t)|),

where b2 > b1 > 0. We can now combine these forces with Newton’s second
law to get the following initial value problem:

x′(t) = v(t) (1)

v′(t) = a
x(t)
|x(t)|

Θ(r1 − |x(t)|)Θ(|x(t)| − r0)− (b1 + b2Θ(r0 − |x(t)|))|v|v(2)

x(0) = x0 (3)
v(0) = v0. (4)

This is a nonlinear system of ordinary differential equations. Moreover, the
right hand side of this system is not continuous.

Analytical Treatment of the Model. Despite the discontinuous
right hand side, existence and uniqueness for this differential equation do
not pose a problem. In each of the three regions |x| ≤ r0, r0 < |x| ≤ r1, and
|x| > r1, the right hand side of the equation satisfies Lipschitz conditions
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which guarantee unique solutions. In fact, in the one-dimensional case, the
explicit solutions can be easily obtained by separating variables. However,
problems may arise at the boundaries of these regions. If the trajectory of a
sperm starts in the region |x| > r1 and reaches the circle |x| with a positive
speed transversally, it is clear that this trajectory will enter the region
|x| ≤ r1, where it observes a different well-posed initial value problem. In
the region |x| > r1, the trajectory will be a straight line, along which the
sperm travels with speed v that satisfies.

v′ = −bv2.

However, this equation has the unique solution

v(t) =
v0

v0bt+ 1
,

which satisfies v(t) > 0 as long as the initial speed v0 is positive. That is, if
the sperm reaches the region |x| ≤ r1, it will do so with positive speed, and
it will enter the region if it reaches it transversally. If the sperm reaches the
circle |x| = r1 tangentially, the situation is somewhat more complicated.
To understand this case, let us assume that the sperm reaches the circle
|x| = r1 at time t = t0 in a tangential direction at a point x1. This situation
is also shown in Figure 1. Without loss of generality we set t0 = 0. We
then have to solve the initial value problem

x′(t) = v(t)

v′(t) = −a x(t)
|x(t)|

− b1|v|v

x(0) = x1

v(0) = v1,

where v1 is tangential to the circle |x| = r1. In order to simplify the
situation, we decompose the velocity into a normal component vr and a
tangential component vφ. Let er and eφ be the unit normal and tangent
vectors. Then

v = vrer + vφeφ,

and
v′ = v′rer + vre′r + v′φeφ + vφe′φ. (5)
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From the geometry and calculus we know that

e′r = eφφ′,

and that

dφ =
vφdt

r1
.

It follows that
φ′ = r1vφ.

Similarly, we get that
e′φ = −r1ervr.

Hence, (5) becomes

v =
(
v′r − r1v

2
φ

)
er +

(
v′φ + r1v

2
r

)
eφ. (6)

Locally, near the circle |x| = r1, the right hand side of the differential
equation (6) for v becomes:

−era− b1vvφeφ − b1vvrer,

where v denotes |v| =
√
v2
r + v2

φ. We now obtain the following system for

the components:

v′r = −a− b1vvr + r1v
2
φ (7)

v′φ = −b1vvφ − r1v
2
r . (8)

At the time t = 0, when the trajectory is tangential to the circle, we have
vr = 0. The right hand side of (7) becomes

−a+ r1v
2
φ = −a+ r1v

2.

The sperm will be able to enter the circle if v′r is negative at this time, i.e.
if

a > r1v
2. (9)

This is clearly a sufficient condition. If a = r1v
2, we are in the situation

of uniform circular motion known from celestial mechanics, where the cen-
trifugal acceleration r1v

2 balances the acceleration due to the central force.
If drag were absent, the sperm would start a uniform circular motion about

5



the egg, which is not observed in nature. However, due to drag, the tan-
gential velocity will decrease and (9) will be satisfied instantaneously, and
the sperm will enter the circle. Only if a < r1v

2 at the point of tangency
will the sperm fail to enter the circle and continue along a straight line in
the region |x| > r1. If the trajectory meets this boundary from the inside
of the circle tangentially, the same inequality applies.

Proposition 1. If the trajectory of a sperm meets the boundary of the
region |x| < r1 tangentially, it will enter this region or stay in this region if
and only if

a ≥ r1v
2 (10)

holds.

At the circle |x| = r0, the situation is somewhat different, since there
is no attraction inside this circle, and the trajectory will not enter the
circle tangentially, independent of the speed at the time tangency. This,
however, is an artifact of the model itself, and can be changed by allowing
the attractive force to continue inside this circle. This circle, after all,
represents the egg and we are only interested in modeling the path of the
sperm toward the egg. The above proposition illustrates the nonlinear
behavior of the trajectories well. Only a small change in the initial velocity
will make the difference on whether the trajectory reaches the egg or not. In
other words, at any fixed t0, the location x(t0) does not depend continuously
on the initial values. Before going on to numerical simulations, we will
establish an interesting result about the kinetic energy of the sperm. For
this we rewrite equation (2) in the following way:

v′ = a(|x|) x|x| − b(|x|)|v|v, (11)

where a and b are piecewise constant functions, which only depend on |x|.
If we take the scalar product of (11) with v, we obtain

vv′ = −a x|x|v − b|v|3. (12)

Next, since v = x′, we can write

x|x|v = x|x|x′ =
1
2

d|x|2
dt

|x|
=

1
|x|

d|x|
dt

.

Using this, we get

−a x|x|v = − d

dt
a ln |x|
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at all points x(t) which do not lie on one of the circles with radius r0 and
r1. This is true since a is constant in every region, except on these circles.
Thus, our equation becomes

1
2
d|v|2

dt
= −a

1
|x|

d|x|
dt
− b|v|3.

We can integrate this equation from 0 to t to get

1
2
|v(t)|2 − 1

2
|v(0)|2 = −

∫ t

0

d

dt
a ln |x| ds−

∫ t

0
b|v|3 ds. (13)

The left hand side of this equation is the difference of kinetic energy along
the trajectory starting at t = 0. The last term on the right is the loss of
energy due to friction, which is always negative. The first term on the right
is the work done by the sperm. This term needs some further investigation.
Let us assume that |x(0)| > r1 and that r0 < |x(t)| < r1, and that the
trajectory entered the circle |x| < r1 at time t0. Then

−
∫ t

0

d

dt
a ln |x| ds = −

∫ t

t0

d

dt
a ln |x| ds = −a ln

|x(t)|
|x(t0)|

= −a ln
|x(t)|
r1

.

If the sperm enters the egg, the propulsion term is turned off, and the
energy balance (13) becomes

1
2
|v(t)|2 − 1

2
|v(0)|2 = −a ln

r0

r1
−
∫ t

0
b|v|3 ds. (14)

If the sperm stays inside the egg, this is the final balance for the kinetic
energy. However, our model leaves the possibility that the sperm leaves the
egg again, and we will show below that this will actually happen. Then the
new balance is

1
2
|v(t)|2 − 1

2
|v(0)|2 = −a ln

r0

r1
− a ln

|x(t)|
r0
−
∫ t

0
b|v|3 ds.

This shows that the terms ln rj , j = 0, 1, cancel whenever the sperm exits
the region |x| < rj , which it previously entered. As t → ∞, the sperm

7



cannot come to rest in the region r0 < |x| < r1, since there is a constant
central force there. Therefore, the sperm will be either eventually inside
the egg or in the region |x| > r1.

Proposition 2. For t→∞, the kinetic energy U(t) = 1
2 |v(t)|2 satisfies

U(t)− U(0) = −a ln
r0

r1
−
∫ t

0
b(2U(s))

3
2 ds,

if the sperm is inside the egg at t, and

U(t)− U(0) = −
∫ t

0
b(2U(s))

3
2 ds,

if the sperm is in the region |x| > r1.

Finally, we analyze the distance traveled by the sperm. Assume that
after some finite time t0, the sperm is in the region |x| < r0 or |x| > r1.
Then after replacing 1

2 |v|
2 by U(t), equation (12) becomes

U ′(t) = −cU 3
2 (t).

We can integrate this equation to get

U
1
2 (t) =

2
c(t− t0) + U

1
2 (t0)

.

The right hand side is always positive, and therefore, the kinetic energy
will always be positive. Furthermore, since U

1
2 = |v|/

√
2 = v/

√
2, we get

the equation

v(t) =
2
√

2

c(t− t0) + v(t0)√
2

for the speed v(t). Clearly, the distance traveled is

d(t) =
∫ t

t0

2
√

2 ds

c(s− t0) + v(t0)√
2

,
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which is an integral that diverges as t→∞. Outside the annulus r0 < |x| <
r1, the trajectory will be straight lines. This implies that the trajectory
will not stay inside the region |x| < r0. It will leave the egg and possibly
re-enter it again, and so on.

Proposition 3. The trajectory of the sperm does not stop in finite time.
Furthermore, the sperm will travel an infinite distance.

This last proposition clearly shows the limitations of our model. It is
an inherent property of the Stokes drag term −b|v|v. Any particle, moving
with positive speed and subject to Stokes drag will not stop in either finite
time or finite distance. In order to get a simple drag model which leads to
stopping in finite time, we need to look at an equation of the type

v′ = −cvα

for some 0 < α < 1. A particle, which is subject to a drag term of this
type will stop in finite time and travel only a finite distance. If α = 1, the
particle will travel for an infinite time, but cover only a finite distance. The
model is only good for the first approach to the egg. We could, of course, fix
this by changing the original differential equation and having v = x′ = 0,
if |x| < r0. This model, however, would have less nice analytic properties.

Numerical Simulations. The initial value problem can be solved
numerically. This can be done using one of the standard solvers which
are available. The trajectories in the simulations below were obtained by
using the MATLAB function “ode45”, which is based on an explicit Runge-
Kutta (4,5) method [6]. In all simulations, we used r0 = 0.2, r1 = 1, a = 1,
b1 = 0.5, and b2 = 10000. For the ten trajectories in Figure 2, we used the
following initial data:

v0 = (−3, 0); x0 = (1.5, x2),

where x2 ranged from 0.5 to 1.4 in increments of 0.1.

Figure 2: Ten trajectories with different initial data.
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Figure 3: Five trajectories with different initial data.

We see that there are several different possibilities for the trajectories.
If they reach the circle |x| = r1, they may exit this region again and never
return, or they may eventually end up in the egg. One of the trajectories
is actually tangential to the circle. However, the tangential velocity at
this point is about 1.4, and Proposition 1 predicts this behavior. However,
the limiting case for a tangential trajectory is difficult to observe in the
numerical simulation; the single point of tangency needs to be one of the
numerically computed points. For a second simulation, we choose the initial
data

v0 = (−0.8, 0); x0 = (1.5, x2),

where x2 ranged from 0.5 to 0.9 in increments of 0.1. The resulting five
trajectories are shown in Figure 3.

Noise and Stochastic Differential Equations. While the deter-
ministic model shows the expected behavior of the trajectories of sperm,
the actual observed path of sperm are somewhat more irregular. One pos-
sible reason for this is Brownian motion of the water molecules. The sperm
exchanges momentum with water molecules around it. Due to the high
polarity of water molecules and strong hydrogen bonds between them, liq-
uid water does not consist of individual molecules, but of larger collections
of many molecules, which are bound together and move as single units.
Therefore, the momentum exchange with these units is not negligible (as it
would be with single molecules). The motion of the sperm is now described
by the two random variables xt and vt, which satisfy the coupled system
of integral equations

xt = x0 +
∫ t

0
vs ds+ c1

∫ t

0
dMs (15)

vt = V0 +
∫ t

0
f(xs,vs) ds+ c2

∫ t

0
dNs, (16)
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where, for each t > 0, Mt and Nt are random variables. The function f is
the right-hand side of (2), i.e.,

f(xt,vt) = a
xt
|xt|

Θ(r1 − |xt|)Θ(|xt| − r0)− (b1 + b2Θ(r0 − |xt|))|vt|vt.

The random variables Mt and Nt have the property that if t1 6= t2, then
Mt1 and Mt2 are independent and Nt1 and Nt2 are independent. To con-
tinue, we need to model these random variables. The momentum exchange
will only effect the momentum equation; it is therefore reasonable to as-
sume that the random variable Mt = 0, for all t ≥ 0. After all, we do
not assume that the sperm can change its position at random. For Nt, it
is reasonable to assume that it is a normally distributed random variable
with values in R2 and mean 0. It is known that the velocities in Brownian
motion satisfy a normal distribution. Using this, we can rewrite (15) and
(16) in differential form:

dxt = vt dt (17)
dvt = f(xt,vt) dt+ c2 dNt, (18)

with given initial values x0 and v0. For the theory of the solution of such
a stochastic differential equation, we refer the reader to [5]. It suffices to
say here, that f satisfies a Lipschitz condition in each of the three regions
of Figure 1. Then by Theorem 5.5 of [5], the initial value problem has
a unique solution in this region. However, we cannot give a condition,
similar to Proposition 1, on what happens if the trajectory enters a new
region tangentially, due to the random variable Nt.

For the remainder of this section we will concentrate on the numerical
simulation of the stochastic differential equation above. High order numer-
ical solvers do not work well for stochastic differential equations. The most
common method is a variation of the traditional Euler method, which is
known as the Euler-Mayurama method. In (18), the function Nt represents
a two dimensional Brownian process. Since in such a process, the random
variable Nt+∆t is independent from Nt; this process can be initially deter-
mined for all t ∈ [0, T ]. The Euler-Mayurama method now works as follows.
First, the function Nt is determined for all t ∈ [0, T ]. To do this, let ∆t be
a given discretization of the time interval [0, T ]. Then at time tk = k∆t,
we have

∆Ntk =
√

∆tY,

where Y is a normal random variable with mean 0 and standard deviation
1. Using this, we get

Ntk =
k∑
j=1

∆Nty .
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Having established Nt, we solve the initial value system using the regular
Euler method with a time discretization tj = jh, where h is a multiple of ∆t.
Figure 4 below shows ten trajectories computed by the Euler-Mayurama
method, each with the initial conditions x0 = (1.5, 0.5) and v0 = (−0.8, 0).
Figure 5 contains five trajectories with initial data x0 = (1.5, 0.8) and
v0 = (−1, 0). In both simulations, we used the same constants r0 = 0.2,
r1 = 1, a = 1, and b1 = 0.5. However, due to the relatively bad behavior
of the Euler method (as compared to the 4th order Runge-Kutta method),
we needed to change b2 to a smaller value b2 = 100. This only effects the
behavior of the trajectories inside the egg.

Figure 4: Ten trajectories for identical initial data.

Figure 5: Five trajectories for identical initial data.

We see that, even though the individual trajectories may vary signif-
icantly; they all follow a general trend. The theory of stochastic differen-
tial equations predicts that the means of samples of n trajectories will be
distributed normally about the trajectory x(t) of the corresponding deter-
ministic equation. This is tested in a final numerical experiment. Figure 6
shows 50 trajectories for the stochastic differential equation, using the same
initial data as in Figure 5. Figure 7 shows the mean of these 50 trajectories
and the solution of the deterministic equation.
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Figure 6: 50 trajectories for identical initial data.

Figure 7: The mean of the 50 trajectories in Figure 6, and the
deterministic trajectory for the same initial data.

We see that there is relatively good agreement between the mean of
the trajectories and the trajectory of the deterministic equation. Perfect
agreement is, of course, not expected, specifically with a small sample of 50
trajectories. We also see that the deviation between the mean trajectory
and the deterministic trajectory increases along the trajectories. This is to
be expected, since we look at trajectories of the spatial variable xt, which
is the integral of vt. Small variations in the velocity at time t1 can have a
large effect in the position at a later time.
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