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Abstract. The Dorroh extension is typically applied to embed a ring
without unity into a ring containing unity. However, de Alwis investigated
the ring resulting from applying this extension to the ring of integers. We
show that the Dorroh extension of any ring with unity is isomorphic to a
direct product of rings. Using this isomorphism we are able to verify the
results of de Alwis and extend them to the Dorroh extension of any ring
with unity. Also, given any ring R, we give conditions under which an
ideal of the Dorroh extension Z ∗ R can be expressed as a product (in the
extension) of an ideal in Z and an ideal in R.

1. Introduction. Let R be a ring and let Z denote the set of in-
tegers. A common method for embedding R into a ring with identity
is via the Dorroh extension. On the underlying set Z × R, define ad-
dition and multiplication by (z1, r1) + (z2, r2) = (z1 + z2, r1 + r2) and
(z1, r1) ∗ (z2, r2) = (z1z2, z1r2 + z2r1 + r1r2). Then (Z × R,+, ∗) is a ring
with identity (1, 0). We denote this ring by Z ∗R.

In [1], the ring Z ∗ Z is investigated with the invertible elements, zero
divisors, and prime and maximal ideals being identified. We extend these
results to Z ∗R, where R is any ring with identity. Throughout the paper,
for subrings I and J of Z and R, respectively, I ∗ J will denote the subring
(I × J,+, ∗). For any two rings S and T , S × T will denote the Cartesian
product ring with the usual componentwise addition and multiplication.

2. Ideals in Z ∗R. It is an exercise to show that S is an ideal of
Z×R if and only if S = I × J , where I is an ideal of Z and J is an ideal of
R. However, the same is not true in Z ∗R. De Alwis [1] shows that 〈(1, 1)〉
is an ideal in Z ∗ Z that cannot be written in the form I ∗ J , where I and
J are ideals of Z. We first determine when I ∗ J is an ideal of Z ∗R.

Theorem 2.1. Let R be a ring, not necessarily with unity, and let I be
an ideal of Z and J be an ideal of R. Then I ∗ J is an ideal of Z ∗R if and
only if ir ∈ J for all i ∈ I and r ∈ R.

Proof. Assume that I ∗ J is an ideal of Z ∗ R. Let (i, j) ∈ I ∗ J
and (z, r) ∈ Z ∗ R. Then (i, j) ∗ (z, r) = (iz, ir + zj + jr) ∈ I ∗ J and
ir + zj + jr ∈ J . Since J is an ideal of R, then zj ∈ J and jr ∈ J . It
follows that ir ∈ J . The converse is now clear.

Theorem 2.2. Let R be a ring with identity 1R and let I be an ideal of
Z and J be an ideal of R. If I ∗J is an ideal of Z∗R, then (Z∗R)/(I ∗J) ∼=
Z/I ×R/J .
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Proof. Define a mapping ϕ:Z ∗ R → Z/I × R/J by ϕ(z, r) = (z +
I, z · 1R + r + J). Then ϕ[(z1, r1) + (z2, r2)] = ϕ(z1 + z2, r1 + r2) = (z1 +
z2 + I, (z1 + z2) · 1R + r1 + r2 + J) = (z1 + I, z1 · 1R + r1 + J) + (z2 +
I, z2 · 1R + r2 + J) = ϕ(z1, r1) +ϕ(z2, r2) and ϕ is a group homomorphism.
Also, ϕ[(z1, r1) ∗ (z2, r2)] = ϕ(z1z2, z1r2 + z2r1 + r1r2) = (z1z2 + I, (z1z2) ·
1R + z1r2 + z2r1 + r1r2 + J) = (z1 + I, z1 · 1R + r1 + J) · (z2 + I, z2 · 1R +
r2 + J) = ϕ(z1, r1) · ϕ(z2, r2), and ϕ is a ring homomorphism. Finally, let
(z + I, r + J) ∈ Z/I × R/J and consider (z,−z · 1R + r) ∈ Z ∗ R. Then
ϕ(z,−z · 1R + r) = (z + I, z · 1R +−z · 1R + r + J) = (z + I, r + J), and ϕ
is a surjection.

If (z, r) is in the kernel of ϕ, then ϕ(z, r) = (z+I, z ·1R+r+J) = (I, J).
Thus, z + I = I and z ∈ I. Since I ∗ J is an ideal of Z ∗ R, then by the
previous theorem, z ·1R ∈ J . Since z ·1R+ r+J = J , it follows that r ∈ J .
So the kernel of ϕ is a subset of I ∗ J . Using the above theorem again, for
(i, j) ∈ I ∗ J , ϕ(i, j) = (i + I, i · 1R + j + J) = (I, J). So the kernel of ϕ is
I ∗J . Since ϕ is a surjection with kernel I ∗J , then by the first isomorphism
theorem, (Z ∗R)/(I ∗ J) ∼= Z/I ×R/J .

Corollary 2.3. Let R be a ring with identity. Then Z ∗R ∼= Z×R.

Proof. Consider the ideals I = {0} of Z and J = {0} of R. Then
ir ∈ J for all i ∈ I and r ∈ R and I ∗ J is an ideal of Z ∗ R. By Theorem
2.2, Z ∗R ∼= (Z ∗R)/(I ∗ J) ∼= Z/I × R/J ∼= Z×R.

Since the isomorphism above reduces the study of Z ∗ R to that of
Z×R, we collect some results about the direct product Z×R. The proofs
of these results are typical undergraduate exercises; as such, they are left
to the reader.

Theorem 2.4. Let R be a ring.

1. All ideals of Z×R are of the form I × J , where I is an ideal of Z and
J is an ideal of R.

2. All prime ideals of Z× R are of the form Z × P , pZ× R, or {0} ×R,
where P is a prime ideal of R and p ∈ Z is prime.

3. All maximal ideals of Z×R are of the form Z×M or pZ×R, where
M is a maximal ideal of R and p ∈ Z is prime.

4. If R has an identity, then the invertible elements of Z × R are of the
form (±1, u), where u is a unit in R.

5. The zero divisors of Z×R are of the form (z, 0) or (0, r) for any z ∈ Z

and r ∈ R, or (z, s), where z ∈ Z and s is a zero divisor in R.

By combining the previous two results, one can determine the ideals,
prime ideals, maximal ideals, invertible elements, and zero divisors of Z∗R
using the corresponding results in Z × R. Letting R = Z, we verify the
following results given in [1].
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Theorem 2.5. Consider the ring Z ∗ Z.

1. All prime ideals of Z ∗ Z are given by I1 = 〈(0, 1)〉, I2 = 〈(1,−1)〉,
I3 = 〈(1,−1 + p)〉, and I4 = 〈(p, 1− p)〉, where p ∈ Z is prime.

2. All maximal ideals of Z ∗ Z are given by I3 = 〈(1,−1 + p)〉, and I4 =
〈(p, 1− p)〉, where p ∈ Z is prime.

3. The invertible elements of Z∗Z are (1, 0), (−1, 0), (1,−2), and (−1, 2).
4. The set of zero divisors of Z ∗Z is S = {(0, y) | y ∈ Z}∪ {(x,−x) | x ∈

Z}.

Proof. We use the results of Theorem 2.4 and the inverse of the isomor-
phism ϕ from Theorem 2.2 as applied in Corollary 2.3. The proof entails
following the ideal generators under the mapping ϕ−1:Z×Z → Z ∗Z given
by ϕ−1(z, r) = (z,−z + r).

1. Let p ∈ Z be any prime. The prime ideals of Z × Z are of the form
Z × pZ =< (1, p) >, pZ × Z =< (p, 1) >, {0} × Z =< (0, 1) >, and
Z×{0} =< (1, 0) >. Applying the mapping ϕ−1 we arrive at de Alwis’
list of the prime ideals of Z∗Z: I1 = ϕ−1(< (0, 1) >) =< (0, 1) >, I2 =
ϕ−1(< (1, 0) >) =< (1,−1) >, I3 = ϕ−1(< (1, p) >) =< (1,−1+p) >,
and I4 = ϕ−1(< (p, 1) >) =< (p,−p+ 1) >.

2. The maximal ideals of Z×Z are of two forms: Z×pZ and pZ×Z. Hence,
the maximal ideals in Z ∗ Z are of the form I3 = ϕ−1(< (1, p) >) =
< (1,−1 + p) >, and I4 = ϕ−1(< (p, 1) >) =< (p,−p+ 1) >.

3. The only invertible elements in Z×Z are (1, 1), (−1,−1), (1,−1), and
(−1, 1). Therefore, the only invertible elements in Z∗Z are ϕ−1(1, 1) =
(1, 0), ϕ−1(−1,−1) = (−1, 0), ϕ−1(1,−1) = (1,−2), and ϕ−1(−1, 1) =
(−1, 2).

4. All zero divisors in Z×Z have the form (z, 0) or (0, z), where z is any
integer. Thus, the zero divisors in Z ∗ Z are of the form ϕ−1(z, 0) =
(z,−z) or ϕ−1(0, z) = (0, z).

Hence, we have quickly arrived at the results presented in [1].
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