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A TREE FOR COMPUTING THE

CAYLEY-DICKSON TWIST

John W. Bales

Abstract. A universal twist γ for all finite-dimensional Cayley-
Dickson algebras is defined recursively and a tree diagram ‘computer’ is
presented for determining the value of γ(p, q) for any two non-negative
integers p and q.

1. Introduction. The Cayley-Dickson algebras are a nested sequence
{Ak} of algebras with Ak ⊂ Ak+1. A0 = R and for any k ≥ 0, Ak+1 consists
of all ordered pairs of elements of Ak with a conjugate defined by [8]

(x, y)∗ = (x∗,−y) (1.1)

and multiplication by

(a, b)(c, d) = (ac − db∗, a∗d + cb). (1.2)

For k ≥ 0, the real number a is identified with the ordered pair (a, 0)
in Ak+1. Accordingly, scalar multiplication of an ordered pair (c, d) in Ak+1

by a real number a is (a, 0)(c, d) = (ac, ad). The first few algebras in this
sequence are A0 = R the reals, A1 = C the complex numbers, A2 = H the
quaternions, A3 = O the octonions, and A4 = S the sedenions [2].

In the following development of the sequence of Cayley-Dickson al-
gebras, every element of each algebra will be identified with an infinite
sequence of real numbers terminating in a sequence of zeros. A real num-
ber r is identified with the sequence r, 0, 0, 0, . . . . If each x = x0, x1, x2, . . .

and y = y0, y1, y2, . . . is an element in one of the Cayley-Dickson algebras,
then the ordered pair (x, y) is the sequence constructed by “shuffling” the
two sequences.

(x, y) = x0, y0, x1, y1, x2, y2, . . . . (1.3)

For example, a complex number (a, b) is formed by shuffling the se-
quences a, 0, 0, 0, . . . and b, 0, 0, 0, . . . to obtain (a, b) = a, b, 0, 0, 0, . . . . The
quaternion ((a, b), (c, d)) is formed by shuffling the sequences a, b, 0, 0, 0, . . .

and c, d, 0, 0, 0, . . . to obtain the sequence a, c, b, d, 0, 0, 0 . . . . This process
may be repeated indefinitely to represent all Cayley-Dickson elements as
finite sequences terminated by an infinite sequence of zeros. This construc-
tion of the elements of the algebras leads to a universal Cayley-Dickson
algebra A which is simply the union of all the algebras with each Ak a
proper subspace of A. Furthermore, if a, b ∈ A, then the ordered pair
(a, b) ∈ A. Since A ⊆ `2, the Hilbert space of square summable sequences,
and since `2 is a completion of A, it is natural to ask whether the product
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defined on A can be extended to `2 and whether `2 is closed under that
product. The answer to the first question is ‘yes’ and the answer to the
second is unknown.

The sequences

i0 = (1, 0) = 1, 0, 0, 0, . . .

i1 = (0, 1) = 0, 1, 0, 0, . . .

i2 = (i1, 0) = 0, 0, 1, 0, . . .

i3 = (0, i1) = 0, 0, 0, 1, . . .

...

i2n−1

form the canonical basis for An and satisfy the identities

i2k = (ik, 0) (1.4)

i2k+1 = (0, ik) (1.5)

i∗p =

{

ip, if p = 0;

−ip, if p > 0.
(1.6)

One may establish immediately that i0 = (1, 0) is both the left and the
right identity for An. Furthermore, applying the Cayley-Dickson product
(1.2) to all the unit basis vectors yields the following identities:

i2pi2q = (ip, 0) (iq , 0) = (ipiq, 0) (1.7)

i2pi2q+1 = (ip, 0) (0, iq) =
(

0, i∗piq
)

(1.8)

i2p+1i2q = (0, ip) (iq , 0) = (0, iqip) (1.9)

i2p+1i2q+1 = (0, ip) (0, iq) = −
(

iqi
∗

p, 0
)

. (1.10)

For p = q = 0 this generates the multiplication table for complex
numbers (Table 1).

i0 i1
i0 i0 i1
i1 i1 −i0

Table 1. Multiplication Table for Complex Number Basis Vectors

For 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1 one obtains, using binary notation, the
multiplication table for quaternions (Table 2).



VOLUME 21, NUMBER 2, 2009 85

i00 i01 i10 i11
i00 i00 i01 i10 i11
i01 i01 −i00 i11 −i10
i10 i10 −i11 −i00 i01
i11 i11 i10 −i01 −i00

Table 2. Multiplication Table for Quaternion Basis Vectors

For 0 ≤ p ≤ 2 and 0 ≤ q ≤ 2 one obtains the multiplication table for
octonions (Table 3).

i000 i001 i010 i011 i100 i101 i110 i111
i000 i000 i001 i010 i011 i100 i101 i110 i111
i001 i001 −i000 i011 −i010 i101 −i100 i111 −i110
i010 i010 −i011 −i000 i001 i110 −i111 −i100 i101
i011 i011 i010 −i001 −i000 −i111 −i110 i101 i100
i100 i100 −i101 −i110 i111 −i000 i001 i010 −i011
i101 i101 i100 i111 i110 −i001 −i000 −i011 −i010
i110 i110 −i111 i100 −i101 −i010 i011 −i000 i001
i111 i111 i110 −i101 −i100 i011 i010 −i001 −i000

Table 3. Multiplication Table for Octonion Basis Vectors

Representing the basis vectors with binary subscripts reveals that the
product of ip and iq is a multiple of the basis vector subscripted by the
sum of p and q in Zn

2 . This is equivalent to the bit-wise ‘exclusive or’ of
the binary numbers p and q. The multiple is either +1 or −1. The basis
vectors are indexed by elements of the group Zn

2 with a ‘twist’ γ [6]. That
is, there is a function γ: Zn

2 × Zn
2 → {−1, 1} such that for all p, q ∈ Zn

2 ,

ipiq = γ(p, q)ipq, (1.11)

where pq represents the sum of p and q in the group Z
n
2 . The elements of the

group Zn
2 may be regarded as integers ranging from 0 to 2n − 1 with group

operation the ‘exclusive or’ of the binary representions. This operation is
equivalent to addition in Zn

2 .
If G is a group and K is a ring, then one may construct a ‘group

algebra’ A(K) consisting of all elements
∑

r∈G krir, where kr ∈ K and ir is
a basis vector in A(K). The product of basis vectors ip and iq is ipiq = ipq .
This scheme may be modified by adding a ‘twist.’ A twist is a function α

from G × G to {−1, 1}. For the twisted group algebra, the product of the
basis vectors is ipiq = α(p, q)ipq .

2. The Recursive Definition of the Universal Cayley-Dickson

Twist γ.

Theorem 2.1. There is a twist γ(p, q) mapping ∪Zk
2 ×∪Zk

2 onto {−1, 1}
such that if p, q ∈ ∪Zk

2 , then ipiq = γ(p, q)ipq.
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Proof. Assume 0 ≤ p < 2n and 0 ≤ q < 2n and proceed by induction
on n using (1.4)–(1.10).

If n = 0, then p = q = 0 and ipiq = i0i0 = i0 = γ(p, q)ipq provided
γ(0, 0) = 1.

Suppose the principle is true for n = k. Let 0 ≤ p < 2k+1 and
0 ≤ q < 2k+1. Then there are numbers r and s such that 0 ≤ r < 2k and
0 ≤ s < 2k and such that one of the following is true:

• p = 2r, q = 2s

• p = 2r, q = 2s + 1
• p = 2r + 1, q = 2s

• p = 2r + 1, q = 2s + 1

(1) Assume p = 2r, q = 2s. Then

ipiq = i2ri2s = (iris, 0)

= (γ(r, s)irs, 0) = γ(r, s)(irs, 0)

= γ(r, s)i2rs = γ(2r, 2s)i(2r)(2s)

= γ(p, q)ipq ,

provided γ(2r, 2s) = γ(r, s).
(2) Assume p = 2r, q = 2s + 1. Then ipiq = i2ri2s+1 = (0, i∗ris).

If r 6= 0, then

ipiq = −(0, iris) = −(0, γ(r, s)irs)

= −γ(r, s)i2rs+1 = γ(2r, 2s + 1)i(2r)(2s+1)

= γ(p, q)ipq ,

provided γ(2r, 2s + 1) = −γ(r, s) when r 6= 0.
If r = 0, then

ipiq = i0i2s+1 = (0, i0is)

= (0, γ(0, s)is) = γ(0, s)i2s+1

= γ(0, 2s + 1)ipq = γ(p, q)ipq,

provided γ(0, 2s + 1) = γ(0, s).
(3) Assume p = 2r + 1, q = 2s. Then

ipiq = i2r+1i2s = (0, isir)

= γ(s, r)(0, isr) = γ(s, r)i2sr+1

= γ(2r + 1, 2s)i(2r+1)(2s) = γ(p, q)ipq ,

provided γ(2r + 1, 2s) = γ(s, r).
(4) Assume p = 2r + 1, q = 2s + 1. Then ipiq = i2r+1i2s+1 = −(isi

∗

r , 0).
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If r 6= 0, then

ipiq = (isir, 0) = γ(s, r)(isr, 0)

= γ(s, r)i2sr = γ(2r + 1, 2s + 1)i(2r+1)(2s+1)

= γ(p, q)ipq,

provided γ(2r + 1, 2s + 1) = γ(s, r) when r 6= 0.
If r = 0, then

ipiq = i1i2s+1 = −(isi
∗

0, 0)

= −(isi0, 0) = −γ(s, 0)(is, 0)

= −γ(s, 0)i2s = γ(1, 2s + 1)i1(2s+1)

= γ(p, q)ipq ,

provided γ(1, 2s + 1) = −γ(s, 0).
Thus, the principle is true for n = k + 1 provided the twist is defined as
required in these four cases.

The properties of the twist γ may be summarized as follows:

γ(0, 0) = γ(p, 0) = γ(0, q) = 1 (2.1)

γ(2p, 2q) = γ(p, q) (2.2)

γ(2p + 1, 2q) = γ(q, p) (2.3)

γ(2p, 2q + 1) =

{

−γ(p, q) if p 6= 0;

1 otherwise
(2.4)

γ(2p + 1, 2q + 1) =

{

γ(q, p) if p 6= 0;

−1 otherwise.
(2.5)











































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1
1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 -1 -1
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1
1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1
1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1
1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1
1 1 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1











































Table 4. Sedenion Twist Table
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Table 4 is the twist table for A4, the sedenions–the fourth algebra
in the sequence of algebras formed by the Cayley-Dickson process. The
sedenions consist of all ordered pairs of octonions. The rows and columns
of Table 4 are numbered 0 through 15. The entry in row p column q is
γ(p, q). The sedenion twist table subsumes the twist tables for the octo-
nions, quaternions, complex numbers and reals in the following sense. The
submatrix formed by rows 0–7 and columns 0–7 is the twist table for the
octonions, rows 0–3 columns 0–3 the twist table for the quaternions, etc.
The table reveals a uniform structure which is common to the twist tables
of all higher order Cayley-Dickson algebras.

In general, the twist table for Zn
2 may be partitioned into 2×2 matrices,

where each 2× 2 matrix is one of three matrices or the negatives of two of
those three matrices.

To see why this is the case, reform the recursive definition 2.1–2.5 of the
Cayley-Dickson twist on ∪Zk

2 as follows: For p, q ∈ ∪Zk
2 and r, s ∈ {0, 1},

γ(0, 0) = 1 (2.6)

γ(2p + r, 2q + s) = γ(p, q)Epq(r, s), (2.7)

where

Epq =

(

1 1
1 −1

)

if p = 0 (2.8)

=

(

1 −1
1 1

)

if 0 6= p = q or p 6= q = 0 (2.9)

=

(

1 −1
−1 −1

)

if 0 6= p 6= q 6= 0. (2.10)

Define γ0 = (1). Then for each non-negative integer n, γn+1 is a
partitioned matrix defined by

γn+1 = (γn(p, q)Epq) . (2.11)

This arrangement is interesting enough, but the structure of the table
can also be analyzed in a different way using the same three matrices.

Theorem 2.2. For n > 0, the Cayley-Dickson twist table γn can be
partitioned into 2 × 2 blocks of matrices A, B, C, −B, or −C, defined as
follows:

A0 = A =

(

1 1
1 −1

)

, B =

(

1 −1
1 1

)

, C =

(

1 −1
−1 −1

)

.

Proof. To construct γn+1 from γn, replace each entry γ(p, q) in γn by
the 2 × 2 block

Epq =

(

γ(2p, 2q) γ(2p, 2q + 1)
γ(2p + 1, 2q) γ(2p + 1, 2q + 1)

)

. (2.12)
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When p = 0,

E0q =

(

γ(0, 2q) γ(0, 2q + 1)
γ(1, 2q) γ(1, 2q + 1)

)

=

(

1 1
1 −1

)

. (2.13)

When p 6= 0 we have

Epq =

(

γ(p, q) −γ(p, q)
γ(q, p) γ(q, p)

)

. (2.14)

There are only five possible values for the 2 × 2 matrix Epq in (2.14).
These may be found by considering the following cases:

(1) 0 = p = q

(2) 0 = p 6= q

(3) p 6= q = 0
(4) p = q 6= 0
(5) 0 6= p 6= q 6= 0.

For the first two cases, Epq = E0q =

(

1 1
1 −1

)

= A.

For the third case, Epq =

(

1 −1
1 1

)

= B.

For the fourth case, Epq =

(

−1 1
−1 −1

)

= −B.

For the fifth case, Epq =

(

1 −1
−1 −1

)

= C when γ(p, q) = 1 and Epq =
(

−1 1
1 1

)

= −C when γ(p, q) = −1.

The first few tables are displayed in Tables 5 through 8.

γ1 =

(

1 1
1 −1

)

= A0

Table 5. Complex Twist Table

γ2 =





1 1 1 1
1 -1 1 -1
1 -1 -1 1
1 1 -1 -1



 =

(

A0 A

B −B

)

Table 6. Quaternion Twist Table
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γ3 =

















1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 1 1 -1 -1

















=







A0 A A A

B −B C −C

B −C −B C

B C −C −B







Table 7. Octonion Twist Table

γ4 =





















A0 A A A A A A A
B −B C −C C −C C −C

B −C −B C C −C −C C
B C −C −B −C −C C C

B −C −C C −B C C −C
B C C C −C −B −C −C

B −C C −C −C C −B C
B C −C −C C C −C −B





















Table 8. Sedenion Twist Table

For n > 0, γn can be partitioned into 2×2 matrices, or blocks consisting
of only A, B, −B, C, or −C. The first row of the partitioned γn will consist
entirely of A blocks. The first such A block in row 1 will be denoted A0.
The first column of the partitioned γn, with the exception of A0, will consist
of B blocks. All blocks occurring along the diagonal of the partitioned γn,
with the exception of A0 will be −B. All other blocks of the partitioned
γn will consist of either C or −C. Notice that the signs of the entries in γn

are the same as the signs of the corresponding blocks in γn+1.
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The function T maps each of the six 2 × 2 blocks A0, A, B, −B, C,
and −C into a 4 × 4 block according to the following rules.

T (A0) =

(

A0 A

B −B

)

(2.15)

T (A) =

(

A A

C −C

)

(2.16)

T (B) =

(

B −C

B C

)

(2.17)

T (−B) =

(

−B C

−C −B

)

(2.18)

T (C) =

(

C −C

−C −C

)

(2.19)

T (−C) =

(

−C C

C C

)

. (2.20)

For a given twist table γn, let T (γn) denote the matrix which results
by replacing each occurrence of A0, A, B, −B, C, and −C in γn with the
2 × 2 blocks T (A0), T (A), T (B), T (−B), T (C), and T (−C), respectively.
Then the Cayley-Dickson twist tables can be defined recursively as follows:

(1) γ1 = A0

(2) γn+1 = T (γn).

This process can be summarized by the tree in Figure 9 which for
clarity is broken into its components. The root of the tree is A0.

Table 9. Cayley-Dickson Twist Tree

The Cayley-Dickson twist for any pair of non-negative integers may be
found using this tree.

Example. Use the Cayley-Dickson tree to find γ(9, 11).
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(1) First, rewrite 9 and 11 in binary form 1001 and 1011.
(2) Next, “shuffle” the two numbers to obtain 11000111. It will be easier

to use this bit string if it is separated by commas into pairs 11, 00,
01, 11. Each pair, beginning at the left of the string is a navigation
instruction for the Cayley-Dickson tree. A 0 is an instruction to move
down the left branch and a 1 is an instruction to move down the right
branch.

(3) Beginning at the root A0 and applying the first instruction 11 on the
left yields A0(11) = −B.

(4) Beginning at −B and applying the next instruction 00 yields −B(00) =
−B. (Notice that 00 always leaves the state unchanged.)

(5) Beginning at −B and applying the next instruction 01 yields −B(01) =
C.

(6) Finally, beginning at C and applying the final instruction 11 yields
C(11) = −C. Since the ‘coefficient’ of C is −1, γ(9, 11) = −1.

(7) This particular traversal of the tree may be summarized as follows:

γ(9, 11) = γ(1001, 1011) → 11, 00, 01, 11 → −B,−B, C,−C → (−1).

3. Conclusion. The Cayley-Dickson twist for any pair of non-
negative integers may be found using the recursive definition (2.1) or by
traversing the Cayley-Dickson tree.

The fact that a universal twist γ on ∪Zk
2 exists establishes that the

set A = ∪Ak of all finite sequences of real numbers is a Cayley-Dickson
algebra. The twist γ on the group ∪Zk

2 is a proper [3] twist, meaning that
it satisfies the properties

γ(p, q)γ
(

q, q−1
)

= γ
(

pq, q−1
)

(3.1)

γ
(

p−1, p
)

γ(p, q) = γ
(

p−1, pq
)

. (3.2)

All properly twisted group algebras, including the Cayley-Dickson and
Clifford algebras, satisfy the adjoint properties [10,3]. The adjoint proper-
ties state that for elements x, y, and z of the algebra,

〈xy, z〉 = 〈y, x∗z〉 (3.3)

〈x, yz〉 = 〈xz∗, y〉 (3.4)

from which it follows that the Cayley-Dickson product of finite sequences
x and y has [3] the Fourier expansion

xy =
∑

r

〈xy, ir〉ir =
∑

r

〈x, iry
∗〉ir =

∑

r

〈y, x∗ir〉ir. (3.5)

If the product in (3.5) is applied to sequences x and y in `2 the resulting
product xy is a well-defined number sequence, but it is not obviously square
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summable. So it remains to be seen whether `2 is closed under the Cayley-
Dickson product. If it were, it would be a universal topologically complete
Cayley-Dickson algebra.
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