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LIMIT SETS AND CLOSED SETS IN

SEPARABLE METRIC SPACES

Candyce Hecker and Richard P. Millspaugh

Abstract. Example 2 in Chapter 5 of [1] constructs, for an arbitrary
closed subset of the real line, a sequence whose set of limit points is exactly
the original closed set. We use a similar construction to show that an
arbitrary nonempty closed set in a separable metric space is always the
set of limit points of some sequence. We note further that if all nonempty
closed subsets of a metric space can be realized as sets of limit points of
sequences, then that metric space is separable.

A subset A of the real line is closed if and only if there is a sequence
of real numbers with the property that A is precisely the set of limits
of convergent subsequences of that sequence. One construction of such
a sequence for an arbitrary closed set A is found in [1]. We were first
made aware of this result by Tom Sibley [3]. The purpose of this note
is to determine which other metric spaces have this property. We have
attempted to provide enough background and detail in this note to make it
accessible to an undergraduate with some basic knowledge of real analysis
and metric space topology.

We use the notation (xn) to denote a sequence and {xn} to denote the
set of points of the sequence. The limit of a convergent subsequence of a
sequence is a subsequential limit of the sequence; the set of all subsequential
limits is the limit set of the sequence. If A is a subset of the space X , we
use A to denote the closure of A. Finally, if S = (xn) is a sequence we use
L(S) or L(xn) to denote the limit set of S.

We will make use of the following well-known result [2].

Theorem 1. Let X be a metric space and (xn) a sequence of points in
X . If p is a limit point of {xn}, then there is a subsequence of (xn) that
converges to p.

The converse of the above theorem is not true. For example, the se-
quence (1, 2, 1, 3, 1, 4, 1, 5, . . .) has a constant subsequence that converges
to 1, which is not a limit point of the set {1, 2, 3, . . .}.

We are interested in two questions.

1. For which metric spaces is the limit set of every sequence closed?
2. For which metric spaces is every nonempty closed set the limit set of

a sequence?
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The first question is answered by the following theorem.

Theorem 2. The limit set of a sequence in a metric space is closed.

Proof. Let (xn) be a sequence in the metric space X and let A be the
limit set of (xn). Suppose that p is a limit point of A and let U be an open
neighborhood of p, then U must contain a point a of A distinct from p.
Since X is Hausdorff, there are disjoint open neighborhoods V of a and W
of p such that V ∪W ⊂ U . The point a is a subsequential limit of (xn), so
V must contain some term xk of the sequence (xn). Since V ∩W = ∅ and
V ⊂ U , xk 6= p and xk ∈ U . We have shown that every open neighborhood
U of p contains a point of {xk} distinct from p, so p is a limit point of the
set {xn}. By Theorem 1, p must be a subsequential limit of (xn), hence in
A. Since A contains all of its limit points, A is closed.

The remainder of this note is devoted to answering the second question.
Note first that if X is a metric space in which every closed set is the limit
set of a sequence, then X itself is the limit set of some sequence (xn). It is
routine to show that the set {xn} is dense in X , so X must be separable.
We will show that in any separable metric space, every nonempty closed set
is the limit set of a sequence. We note that our general result differs from
that for the real line in that we are only able to realize nonempty closed
sets as limit sets of sequences. This additional hypothesis is critical when
the metric space in question is compact since every sequence in a compact
metric space has a convergent subsequence.

The following elementary result concerning the algebra of limit sets
will prove useful.

Theorem 3. Let X be a metric space and let A and B be limit sets of
sequences in X , then A ∪B is the limit set of a sequence in X .

Proof. Suppose that A is the limit set of the sequence (xn) and that
B is the limit set of the sequence (yn). We create a new sequence (zn)
by “shuffling” these two sequences. More precisely, define z2k = xk and
z2k+1 = yk. We claim that A ∪ B is the limit set of (zn). Note first that
if p ∈ A, then p is the limit of some subsequence (xnk

) of (xn). This
subsequence is also a subsequence of (zn), so p is in the limit set of (zn).
A similar argument shows that every element of B is in the limit set of
(zn), so A ∪B is a subset of the limit set of (zn). To see that the opposite
containment holds, suppose that q is the limit of a subsequence (znk

) of
(zn). Considering our construction of (zn), the subsequence (znk

) must
contain a subsequence (wi) of either (xn) or (yn). Since znk

→ q, it must
be true that wi → q. Hence, either q ∈ A or q ∈ B as desired.

Suppose now that X is a separable metric space. We wish to construct,
for any closed set A in X , a sequence with limit set A. The existence of
isolated points (a point x is isolated if the singleton {x} is open in X)
in A changes our construction, so we choose to deal with those points
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separately. Since our space X is separable, and since any dense subset of
X must contain every isolated point, there can be at most countably many
isolated points in X .

For any point p ∈ X , the constant sequence (p) has limit set {p}, so
every singleton is the limit set of some sequence. Applying Theorem 3, we
see that any finite set is the limit set of a sequence. If A = {p1, p2, p3, . . . }
is a countably infinite subset of X and each point of A is an isolated point,
consider the sequence S constructed by arranging the points of A in the
following order: S = (p1, p2, p1, p2, p3, p1, p2, p3, p4, p1, . . . ). We note two
important facts about S:

1. For each point of A, there is a (constant) subsequence of S converging
to that point.

2. Every sequence of points in A is a subsequence of S.

These facts imply that A ⊆ L(S) ⊆ A. Since the limit set of S is
closed, it follows that L(S) = A.

We now have the following theorem.

Theorem 4. Let X be a separable metric space and A a nonempty
subset of X such that every point of A is an isolated point of X . Then
there is a sequence of points in X with limit set A.

For a closed set containing no isolated points we have the following
theorem.

Theorem 5. Let X be a separable metric space and A a nonempty
closed subset of X such that no point of A is an isolated point of X . Then
there is a sequence (xn) in X so that A is the limit set of (xn).

Proof. Let d denote the metric on X .
Since X is a separable metric space, there is a countable basis

{B1, B2, . . . } for the topology on X . Fix a point a0 ∈ A. We construct the
desired sequence by choosing terms from each basis element that intersects
A. Since we want points of A to be limit points of our sequence, we find it
convenient to choose two distinct terms from each such basis element. To
be more precise, we choose x2n−1 and x2n as follows:

If A ∩Bn = ∅, then x2n−1 = x2n = a0.
If A ∩ Bn 6= ∅, choose distinct points x2n−1 and x2n ∈ Bn with

d(x2n−1, A) < 1/n and d(x2n, A) < 1/n. This is always possible since
no point of A is an isolated point, so every open set containing a point of
A must contain at least two distinct points.

We will show that A is the limit set of the sequence (xn). If a ∈ A and
Bn is a basis element containing a, then x2n−1 and x2n are distinct points
of {xn} in Bn. Since at least one of these points must be distinct from
a, Bn contains a point of {xn} other than a. Hence, a is a limit point of
{xn} and must be a subsequential limit of the sequence (xn) by Theorem
1. Therefore, A ⊆ L(xn).
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Now suppose that w /∈ A. Since A is closed, there must exist ǫ > 0
so that d(x,w) < ǫ implies that x /∈ A. Choose a natural number K large
enough that 2/K < ǫ/2. Finally, note that for any subsequence (zk) of
(xn) there is an index J such that if j ≥ J and zj = xm, then m ≥ K.
We will show that for any j ≥ J , d(zj , w) ≥ ǫ/2, so no subsequence of (zk)
converges to w. Assume to the contrary that d(zj , w) < ǫ/2 for some j ≥ J .
By our choice of J , zj = xm for some m ≥ K. If m = 2n, then there is
an a ∈ A so that d(a, xm) = d(a, x2n) < 1/n = 2/m. If m = 2n− 1, then
there is an a ∈ A so that d(a, xm) = d(a, x2n−1 < 1/n = 2/(m+ 1) < 2/m.
In either case we have

d(a, w) ≤ d(a, xm) + d(xm, w) < 2/m+ ǫ/2 < ǫ/2 + ǫ/2 = ǫ, (1)

which contradicts our choice of ǫ.

We are now ready to state and prove the desired result.

Theorem 6. Let X be a separable metric space and A a nonempty
closed subset of X . Then there is a sequence (xn) in X so that A is the
limit set of (xn).

Proof. Let B be the set of isolated points in A and let C be the
remaining points in A. Since B is a union of open singletons, B is open.
Thus, C = A−B is closed and Theorem 5 implies that C is the limit set of
a sequence in X . Furthermore, Theorem 4 implies that B is the limit set
of a sequence in X , so B ∪ C is the limit set of a sequence by Theorem 3.
Since A is closed, B ⊆ A. Hence,

A = B ∪ C ⊆ B ∪ C ⊆ A, (2)

and A = B ∪ C is the limit set of a sequence as desired.
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