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Abstract. In the present paper, we offer a new form of firm continu-
ity, called firm contra-continuity, by which we characterize strongly
S-closed spaces. Moreover, we investigate the basic properties of
firmly contra-continuous functions. We also introduce and investi-
gate the notion of locally contra-closed graphs.

1. Introduction

Kupka [8] has used firm continuity to investigate compactness. Recently
Caldas, et al. have used firm semi-continuity to study semi-compactness.
In this note we continue this line of investigation by introducing a form of
firm continuity, which we call firm contra-continuity, and using it to study
strongly S-closed spaces. Dontchev [6] introduced strongly S-closed spaces
and showed that contra-continuous images of strongly S-closed spaces are
compact. Baker [2] extended this result by showing that subcontra-continuous
images of strongly S-closed spaces are compact. Quite recently, Ganster
et al. [7] further investigated, among others, the notion of strongly S-
closedness. Our purpose in this note is to characterize strongly S-closed
spaces in terms of firm contra-continuity and subcontra-continuity. In par-
ticular, we show that a space X is strongly S-closed if and only if for
every space Y every subcontra-continuous function f : X → Y is firmly
contra-continuous. Moreover, some of the basic properties of firmly contra-
continuous functions are investigated. For example, we show that firm
contra-continuity implies slight continuity. Finally, we introduce the no-
tion of locally contra-closed graphs and present some of its fundamental
properties.

2. Preliminaries

The symbols X and Y represent topological spaces with no separation
properties assumed unless explicitly stated. All sets are considered to be
subsets of topological spaces. The closure and interior of a set A are signified

OCTOBER 2009 175



MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

by Cl(A) and Int(A), respectively. A set A is regular open if A = Int(Cl(A)).
A set A is semiopen [9] (respectively, preopen [10], β-open [1]) provided
that A ⊆ Cl(Int(A)) (respectively, A ⊆ Int(Cl(A)), A ⊆ Cl(Int(Cl(A)))).
A set A is regular closed (respectively, semiclosed, preclosed, β-closed) if the
complement of A is regular open (respectively, semiopen, preopen, β-open).
We denote the intersection of all semiclosed sets containing A by sCl(A).
Recall that a set A ⊂ X is called a semi-generalized closed set (briefly sg-
closed set) [3] if sCl(A) ⊂ U whenever A ⊂ U and U is semi-open. The
complement of an sg-closed set is called sg-open.

Definition 1. A space X is said to be S-closed [12] (respectively, almost
compact [6]) if every semiopen cover (respectively, open cover) of X has a
finite subfamily, the closures of whose members cover X.

Definition 2. 1) A space X is said to be strongly S-closed [6] if every
closed cover of X has a finite subcover.
2) Let A be a subset of X. We say that A is strongly S-closed relative to
X if every cover of A by closed sets of X has a finite subcover.

Observe that if X is regular and strongly S-closed then the weight of X
does not exceed 2|A|, where A is the finite dense subset of X . Recall that
the least cardinal of a base for the space X is called the weight of X .

Remark 2.1. Dontchev [6] showed that strongly S-closedness and compact-
ness are independent of each other. For example the Hilbert cube is com-
pact but not strongly S-closed. But the real line with a topology in which
non-empty open sets are the ones containing the origin is an example of
a strongly S-closed space which is not compact (see [6], Remark 3.1). He
also noticed that a set is regular closed if and only if it is both closed and
sg-open. It follows that a topological space X is S-closed if and only if it is
strongly S-closed and sg-compact. Recall that a topological space X is called
sg-compact [4] if every cover of X by sg-open sets has a finite subcover.

Definition 3. A function f : X → Y is said to be contra-continuous [6] if
f−1(V ) is closed for every open subset V of Y .

Definition 4. A function f : X → Y is said to be subcontra-continuous
[2] provided there is an open base B for Y such that f−1(V ) is closed for
every V ∈ B.

Definition 5. A function f : X → Y is said to be β-continuous [1] (re-
spectively, precontinuous [10]) if f−1(V ) is β-open (respectively, preopen)
for every open subset V of Y .

Definition 6. A function f : X → Y is said to be firmly continuous [8] if
for every open cover Λ of Y there exists a finite open cover Γ of X such
that for every U ∈ Γ there exists V ∈ Λ such that f(U) ⊆ V .
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3. Characterization of strongly S-closed spaces

Definition 7. A function f : X → Y is said to have property ϕ [8] provided
that for every open cover Λ of Y there exists a finite cover (the members
of which need not be open) {A1, A2, . . . , An} of X such that for each i ∈
{1, 2, . . . , n} there exists V ∈ Λ for which f(Ai) ⊆ V .

Definition 8. A function f : X → Y is said to be firmly contra-continuous
if for every open cover Λ of Y there exists a finite closed cover F of X such
that for every F ∈ F there exists V ∈ Λ such that f(F ) ⊆ V .

The following examples show that firm contra-continuity is independent
of firm continuity.

Example 3.1. Let X = {a, b, c} have the topology τ = {X, ∅, {a}, {a, b}, {a, c}}
and let f : X → X be the identity mapping. Since f is continuous and X is
finite, f is obviously firmly continuous. Since any closed cover of X must
contain X, we see that f is not firmly contra-continuous.

Example 3.2. Let X = {a, b, c} have the topologies τ = {X, ∅, {b}, {c}, {b, c}}
and σ = {X, ∅, {a}, {a, b}, {a, c}}, and let f : (X, τ) → (X, σ) be the iden-
tity mapping. Since any τ -open cover of X must contain X, it follows that
f is not firmly continuous. However, since f is contra-continuous and X
is finite, f is firmly contra-continuous.

If (X, τ) is a topological space, then the topology on X with a base
consisting of the τ -closed sets will be denoted by τc.

Theorem 3.3. For a space (X, τ) the following properties are equivalent:

(a) (X, τ) is strongly S-closed;
(b) For every space Y , every subcontra-continuous function f : X → Y

is firmly contra-continuous;
(c) The identity function f : (X, τ) → (X, τc) is firmly contra-continuous;
(d) The identity function f : (X, τ) → (X, τc) has property ϕ;
(e) For every space Y , every subcontra-continuous function f : X → Y

has property ϕ.

Proof. (a) ⇒ (b) Assume X is strongly S-closed and that f : X → Y ,
where Y is an arbitrary space, is subcontra-continuous with respect to the
base B for Y . Let Λ be an open cover of Y . Therefore for each y ∈ f(X)
there exists Vy ∈ Λ such that y ∈ Vy and there exists By ∈ B such that
y ∈ By ⊆ Vy. Then {By : y ∈ f(X)} is an open cover of f(X). Since
the subcontra-continuous image of a strongly S-closed space is compact
[2], we have that f(X) is compact. Therefore there is a finite subcover
{Byi

: i = 1, 2, . . . , n} which covers f(X). If we let Fi = f−1(Byi
) for every

i ∈ {1, 2, . . . , n}, then {Fi : i = 1, 2, . . . , n} is a finite closed cover of X
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for which f(Fi) ⊆ Byi
⊆ Vyi

for every i ∈ {1, 2, . . . , n}. Hence, f is firmly
contra-continuous.

(b) ⇒ (c) The proof is clear since the identity function f : (X, τ) →
(X, τc) is subcontra-continuous with respect to the base consisting of the
τ -closed sets.

(c) ⇒ (d) The proof is clear since firm contra-continuity obviously implies
property ϕ.

(d) ⇒ (a) Assume the identity function f : (X, τ) → (X, τc) has property
ϕ. Let F be a closed cover of (X, τ). Then F is an open cover of (X, τc).
Since the identity function f : (X, τ) → (X, τc) has property ϕ, there exists
a finite cover {A1, A2, . . . , An} of (X, τ) such that for each i ∈ {1, 2, . . . , n}
there exists Fi ∈ F for which Ai = f(Ai) ⊆ Fi. Obviously {Fi : i =
1, 2, . . . , n} is a finite subcover of F , which proves that (X, τ) is strongly
S-closed.

(b) ⇒ (e) The proof is clear since firm contra-continuity implies property
ϕ.

(e) ⇒ (d) The proof is clear since the identity function f : (X, τ) →
(X, τc) is subcontra-continuous with respect to the base B consisting of the
τ -closed sets. �

Since a subcontra-continuous, β-continuous image of an S-closed space
is compact [2], we have the following version of the implication (a) ⇒ (b)
in Theorem 3.3.

Theorem 3.4. If X is an S-closed space, then for every space Y , every
subcontra-continuous, β-continuous function f : X → Y is firmly contra-
continuous.

Similarly, since a subcontra-continuous, precontinuous image of an al-
most compact space is compact [2], we have the following result.

Theorem 3.5. If X is almost compact, then for every space Y , every
subcontra-continuous, precontinuous function f : X → Y is firmly contra-
continuous.

4. Additional properties of firmly contra-continuous
functions

All of the results in this section are special cases of the following theorem.

Theorem 4.1. Let f : X → Y be firmly contra-continuous. If V is an
open subset of Y and A is a closed subset of Y such that A ⊆ V , then
Cl(f−1(A)) ⊆ f−1(V ).

Proof. Let x ∈ f−1(A). Since {V, Y − A} is an open cover of Y , there
exists a finite closed cover F of X such that for every F ∈ F , we have
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f(F ) ⊆ V or f(F ) ⊆ Y − A. Let Fx ∈ F such that x ∈ Fx. Then
f(Fx) ⊆ V and hence f−1(A) ⊆ ∪x∈f−1(A)Fx ⊆ f−1(V ). Since F is finite,
∪x∈f−1(A)Fx is a finite union of closed sets and hence closed. Therefore

Cl(f−1(A)) ⊆ ∪x∈f−1(A)Fx ⊆ f−1(V ). �

Kupka [8] observed that a firmly continuous function need not be contin-
uous. The following example shows that a firmly contra-continuous func-
tion need not be subcontra-continuous, even when the domain is strongly
S-closed. In particular, the requirements that f be subcontra-continuous
and firmly contra-continuous in Theorem 3.3(b) cannot be interchanged.

Example 4.2. Let X = [0, 3] have the topology σ = {U ⊆ X : 3 ∈ U}∪{∅}
and let Y be the real numbers with the topology τ = {(a, +∞) : a ∈ Y } ∪
{Y, ∅}. Finally, let f : (X, σ) → (Y, τ) be the inclusion mapping. To see
that f is firmly contra-continuous, note that every open cover of Y must
contain either Y or a set of the form (a, +∞), where a < 0, and that both
of these sets contain f(X). To see that f is not subcontra-continuous, let B
be an open base for Y . Then there exists B ∈ B such that 3 ∈ B ⊆ (2, +∞).
Then B = (a, +∞) where 2 ≤ a < 3 and hence f−1(B) = (a, 3], which is
not closed in X. Finally note that X is strongly S-closed.

Recall that a space is called zero dimensional provided it has a clopen
base.

Corollary 4.3. If f : X → Y is firmly contra-continuous and Y is zero
dimensional, then f is subcontra-continuous.

Proof. Assume B is a clopen base for Y and let B ∈ B. Then by Theorem
4.1, if we let A = V = B, we have Cl(f−1(B)) ⊆ f−1(B), which proves
that f−1(B) is closed. Therefore f is subcontra-continuous with respect to
the base B. �

Definition 9. A function f : X → Y is said to be slightly continuous [11]
provided that for every x ∈ X and for every clopen subset V of Y containing
f(x), there exists an open subset U of X containing x such that f(U) ⊆ V .

The following characterizations of slight continuity will be useful.

Theorem 4.4. For a function f : X → Y the following properties are
equivalent:

(a) f is slightly continuous;
(b) [11] The inverse image of every clopen subset of Y is an open subset

of X;
(c) The inverse image of every clopen subset of Y is a closed subset of

X;
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(d) [11] The inverse image of every clopen subset of Y is a clopen subset
of X.

The proof of the following corollary is analogous to that of Corollary 4.3.

Corollary 4.5. If f : X → Y is firmly contra-continuous, then f is slightly
continuous.

If the codomain of a function is either T1 or regular, then Theorem 4.1
can be used to prove that firm contra-continuity implies a local version of
contra-continuity.

Definition 10. A function f : X → Y is said to be locally contra-continuous
provided that for every x ∈ X and for every open subset V of Y containing
f(x), there exists a closed subset F of X containing x such that f(F ) ⊆ V .

Example 4.6. The identity mapping on the real numbers with the usual
topology is locally contra-continuous, but not contra-continuous. Actually
the identity function on any regular or T1 space with an open nonclosed set
has this property.

Corollary 4.7. If f : X → Y is firmly contra-continuous and Y is either
regular or T1, then f is locally contra-continuous.

Proof. Assume Y is regular. Let x ∈ X and let V be an open subset of
Y containing f(x). Then there exists an open subset U of Y such that
f(x) ∈ U ⊆ Cl(U) ⊆ V . By Theorem 4.1 x ∈ Cl(f−1(Cl(U))) ⊆ f−1(V ).
Thus, if F = Cl(f−1(Cl(U))), then F is a closed set containing x for which
f(F ) ⊆ V and therefore f is locally contra-continuous.

The proof for the case where Y is T1 is analogous if {f(x)} is used in
place of U . �

5. Locally contra-closed graphs

Recall that for a function f : X → Y , the subset {(x, f(x)) | x ∈ X} ⊂
X × Y is called the graph of f and is denoted by G(f).

Definition 11. A function f : X → Y has a locally contra-closed graph
if for each (x, y) ∈ (X × Y ) \ G(f), there exist a closed subset D of X
containing x and an open subset V of Y containing y such that (D × V ) ∩
G(f) = ∅.

Lemma 5.1. A function f : X → Y has a locally contra-closed graph if
and only if for each (x, y) ∈ (X × Y ) \ G(f), there exist a closed subset
D of X containing x and an open subset V of Y containing y such that
f(D) ∩ V = ∅.
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Proof. It is an immediate consequence of Definition 11 and the fact that
for any subsets D ⊂ X and V ⊂ Y , (D × V ) ∩ G(f) = ∅ if and only if
f(D) ∩ V = ∅. �

Theorem 5.2. If f : X → Y is locally contra-continuous and Y is Haus-
dorff, then G(f) is locally contra-closed in X × Y .

Proof. Let (x, y) ∈ (X × Y ) \ G(f). Then y 6= f(x). Since Y is Hausdorff,
there exist open subsets V1 and V2 of Y containing y and f(x), respectively,
such that V1 ∩ V2 = ∅. Since f is locally contra-continuous, there exists
a closed set D of X containing x such that f(D) ⊂ V2. This means that
f(D) ∩ V1 = ∅. It follows that G(f) is locally contra-closed in X × Y . �

Corollary 5.3. If f : X → Y is firmly contra-continuous and Y is Haus-
dorff, then G(f) is locally contra-closed in X × Y .

Theorem 5.4. If f : X → Y has a locally contra-closed graph, f(K) is
closed in Y for each subset K strongly S-closed relative to X.

Proof. Suppose that y is a point in Y \ f(K). We have (x, y) /∈ G(f)
for each x ∈ K. Since G(f) is locally contra-closed, there exists a closed
subset Dx of X containing x and an open set Vx of Y containing y such that
f(Dx)∩Vx = ∅. The family {Dx | x ∈ K} is a cover of K by closed sets of X .
Then, there exists a finite subset K0 of K such that K ⊂

⋃
{Dx | x ∈ K0}.

Set V =
⋂
{Vx | x ∈ K0}. Now we have

f(K) ∩ V ⊂
⋃

x∈K0
(f(Dx) ∩ V ) ⊂

⋃
x∈K0

(f(Dx) ∩ Vx) = ∅.

This shows that y /∈ Cl(f(K)) and hence f(K) is closed in Y . �

Corollary 5.5. If f : X → Y is a surjection with a locally contra-closed
graph, then Y is T1.

Proof. Suppose that q is a point of Y . Since f is surjective, there exists
a point d ∈ X such that f(d) = q. The singleton {d} is strongly S-closed
relative to X . By Theorem 5.4, {q} is closed in Y . Since the singleton sets
in Y are closed, Y is T1. �

Theorem 5.6. If f : X → Y is a injection with a locally contra-closed
graph, then X is T1.

Proof. Let x and y be two distinct points of X . Then f(x) 6= f(y). Since f
has a locally contra-closed graph, there exist a closed set D in X containing
x and an open set V in Y containing f(y) such that f(D) ∩ V = ∅. This
means that y /∈ D and therefore X is T1. �

Corollary 5.7. If f : X → Y is a bijection with a locally contra-closed
graph, then both X and Y are T1.
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