GENERALIZATION OF A GEOMETRIC INEQUALITY

XIAO-GUANG CHU AND JIAN LIU

Abstract

In this paper, using Bottema's inequality for two triangles and other results, the generalization of an inequality involving the medians and angle-bisectors of the triangle is proved. This settles affirmatively a problem posed by J-Liu.

1. Introduction and Main Result

In [1], the author posed 100 unsolved triangle inequality problems. Among his conjectures is an inequality for medians and angle-bisectors of a triangle and so-called Shc53:

$$
\begin{equation*}
\left(m_{b}+m_{c}\right) \sin \frac{A}{2}+\left(m_{c}+m_{a}\right) \sin \frac{B}{2}+\left(m_{c}+m_{a}\right) \sin \frac{C}{2} \geqslant w_{a}+w_{b}+w_{c} \tag{1}
\end{equation*}
$$

where m_{a}, m_{b}, m_{c} and w_{a}, w_{b}, w_{c} denote the medians and angle-bisector of $\triangle A B C, A, B, C$ denote its angles.

Recently, we investigated inequality (11) again and found its generalization.

Theorem 1. Let P be an arbitrary point in the plane of triangle $A B C$. Then
$(P B+P C) \sin \frac{A}{2}+(P C+P A) \sin \frac{B}{2}+(P A+P B) \sin \frac{C}{2} \geqslant \frac{2}{3}\left(w_{a}+w_{b}+w_{c}\right)$.
Equality holds if and only if the triangle $A B C$ is equilateral and P is its center.

Obviously, if P is the centroid of $\triangle A B C$, then we easily obtain inequality (11) from (2).

2. Several Lemmas

In order to prove the theorem, we need some lemmas.
Besides the above notations, as usual, a, b, c denote the sides of triangle $A B C ; s, R, r, \Delta$ denote its semi-perimeter, the radius of its circumcircle, the radius of its incircle, and its area, respectively. In addition, \sum and

MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

\prod denote cyclic sum and product respectively (e.g., $\sum b c=b c+c a+a b$, $\left.\prod(b+c)=(b+c)(c+a)(a+b)\right)$.

Lemma 1. For any $\triangle A B C$, the following inequality holds.

$$
\begin{equation*}
\frac{1}{w_{a}}+\frac{1}{w_{b}}+\frac{1}{w_{c}} \leqslant \frac{1}{2 R}+\frac{3}{4 r} \tag{3}
\end{equation*}
$$

Equality holds if and only if triangle $A B C$ is equilateral.
Inequality (3) was proposed by the second author [2] of this paper and first proved by Jian-Ping Li [3. It can also be derived expediently from a result of Xue-Zhi Yang 4]. Here, we give a convenient direct proof.

Proof. From the well known formula $w_{a}=\frac{2}{b+c} \sqrt{b c s(s-a)}$ and Heron's formula

$$
\begin{equation*}
\Delta=\sqrt{s(s-a(s-b)(s-c)} \tag{4}
\end{equation*}
$$

we have

$$
\begin{aligned}
\frac{1}{w_{a}} & =\frac{(b+c) \sqrt{b c(s-b)(s-c)}}{2 b c \Delta} \\
& \leqslant \frac{b+c}{4 b c \Delta}\left[\frac{a b c}{b+c}+\frac{(b+c)(s-b)(s-c)}{a}\right] \\
& =\frac{a}{4 \Delta}+\frac{1}{4 a b c \Delta}(s-b)(s-c)(b+c)^{2}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\sum \frac{1}{w_{a}} \leqslant \frac{1}{4 \Delta} \sum a+\frac{1}{4 a b c \Delta} \sum(s-b)(s-c)(b+c)^{2} \tag{5}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
& \sum(s-b)(s-c)(b+c)^{2} \\
= & \frac{1}{4} \sum a^{2}(b+c)^{2}-\frac{1}{4} \sum\left(b^{2}-c^{2}\right)^{2} \\
= & \frac{1}{2}\left[\sum b^{2} c^{2}+a b c \sum a-\left(\sum a^{4}-\sum b^{2} c^{2}\right)\right] \\
= & \frac{1}{2}\left(a b c \sum a+2 \sum b^{2} c^{2}-\sum a^{4}\right) \\
= & 4(R+2 r) r s^{2}
\end{aligned}
$$

The last step was obtained using $\sum a=2 s, a b c=4 R r s$ and the equivalent form of Heron's formula:

$$
16 \Delta^{2}=2 \sum b^{2} c^{2}-\sum a^{4}
$$

Finally, we get

$$
\sum \frac{1}{w_{a}} \leqslant \frac{1}{2 r}+\frac{4(R+2 r) r s^{2}}{4 a b c \Delta}=\frac{1}{2 R}+\frac{3}{4 r}
$$

Inequality (3) is proved and it is easy to show that equality occurs if and only if $a=b=c$. The proof of Lemma 1 is complete.

Lemma 2. For any triangle $A B C$, the following inequality holds.

$$
\begin{equation*}
\left(w_{a}+w_{b}+w_{c}\right)^{2} \leqslant \frac{9}{4}\left(s^{2}+9 r^{2}\right) \tag{6}
\end{equation*}
$$

Equality holds if and only if triangle $A B C$ is equilateral.
Proof. From inequality (3) and the well-known identities

$$
\begin{equation*}
w_{a} w_{b} w_{c}=\frac{16 R r^{2} s^{2}}{s^{2}+2 R r+r^{2}} \tag{7}
\end{equation*}
$$

and

$$
\sum w_{a}^{2}=\frac{s^{6}+3 r^{2} s^{4}+\left(32 R^{2}+40 R r+3 r^{2}\right) r^{2} s^{2}+r^{4}(4 R+r)^{2}}{\left(s^{2}+2 R r+r^{2}\right)^{2}}
$$

we have

$$
\begin{align*}
& \left(\sum w_{a}\right)^{2}=\sum w_{a}^{2}+2 \sum w_{b} w_{c}=\sum w_{a}^{2}+\frac{2}{w_{a} w_{b} w_{c}} \sum \frac{1}{w_{a}} \\
& \leqslant \frac{s^{6}+3 r^{2} s^{4}+\left(32 R^{2}+40 R r+3 r^{2}\right) r^{2} s^{2}+r^{4}(4 R+r)^{2}}{\left(s^{2}+2 R r+r^{2}\right)^{2}} \\
& \quad+\frac{8 r(3 R+2 r) s^{2}}{s^{2}+2 R r+r^{2}} \tag{8}\\
& =\frac{s^{6}+(24 R+19 r) r s^{4}+\left(80 R^{2}+96 R r+19 r^{2}\right) r^{2} s^{2}+(4 R+r)^{2} r^{4}}{\left(s^{2}+2 R r+r^{2}\right)^{2}}
\end{align*}
$$

Now, we will prove that

$$
\begin{align*}
& \frac{s^{6}+(24 R+19 r) r s^{4}+\left(80 R^{2}+96 R r+19 r^{2}\right) r^{2} s^{2}+(4 R+r)^{2} r^{4}}{\left(s^{2}+2 R r+r^{2}\right)^{2}} \\
& \leqslant \frac{9}{4}\left(s^{2}+9 r^{2}\right) \tag{9}
\end{align*}
$$

It is equivalent to

$$
\begin{align*}
5 s^{6} & -(60 R-23 r) r s^{4}-\left(284 R^{2}+24 R r-95 r^{2}\right) r^{2} s^{2} \\
& +\left(260 R^{2}+292 R r+77 r^{2}\right) r^{4} \geqslant 0 \tag{10}
\end{align*}
$$

This can be written as

$$
\begin{align*}
& \left(s^{2}-16 R r+5 r^{2}\right)\left[5 s^{4}+\left(20 R r-2 r^{2}\right) s^{2}+(12 R+39 r) r^{3}\right] \\
& \quad+4 r^{2}\left(9 s^{2}+17 r^{2}\right)(R-2 r)^{2} \geqslant 0 \tag{11}
\end{align*}
$$

OCTOBER 2009

MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

It follows from the well-known Gerretsen's inequality $s^{2} \geqslant 16 R r-5 r^{2}$ (see [5] and also [6]) and Chapple-Euler's inequality $R \geqslant 2 r$.

From (8) and (9), we obtain (6). Clearly, the equality in (6) occurs if and only if the triangle is equilateral. Lemma 2 is proved.
Lemma 3. The identity

$$
\begin{equation*}
\sum a^{2} \sin ^{2} \frac{A}{2}=\frac{(2 R-3 r) s^{2}+(4 R+r) r^{2}}{2 R} \tag{12}
\end{equation*}
$$

holds for all triangles $A B C$.
Proof. This identity follows from

$$
\begin{aligned}
& \sum a^{2} \sin ^{2} \frac{A}{2} \\
& =\frac{1}{2}\left[\sum a^{2}-4 R^{2} \sum\left(1-\cos ^{2} A\right) \cos A\right] \\
& =\frac{1}{2} \sum a^{2}-2 R^{2}\left(\sum \cos A-\sum \cos ^{3} A\right),
\end{aligned}
$$

and the following identities [6]:

$$
\begin{align*}
& \sum a^{2}=2\left(s^{2}-4 R r-r^{2}\right) \tag{13}\\
& \sum \cos A=1+\frac{r}{R} \tag{14}\\
& \sum \cos ^{3} A=\frac{(2 R+r)^{3}-3 r s^{2}}{4 R^{3}}-1 . \tag{15}
\end{align*}
$$

Lemma 4. For any triangle $A B C$, we have

$$
\begin{equation*}
\sqrt{\prod \sin \frac{A}{2} \sum \sin \frac{A}{2}} \geqslant \frac{r(4 R+r)}{2 s R} \tag{16}
\end{equation*}
$$

Equality holds if and only if triangle $A B C$ is equilateral.
Proof. By the simple inequality $\cos B+\cos C \leqslant 2 \sin \frac{A}{2}$, etc. It is deduced $\sum \sin \frac{A}{2} \geqslant \sum \cos A$. Hence, using identity (14), we have

$$
\begin{equation*}
\sum \sin \frac{A}{2} \geqslant 1+\frac{r}{R} \tag{17}
\end{equation*}
$$

According to the above inequality and the known relation

$$
\begin{equation*}
\prod \sin \frac{A}{2}=\frac{r}{4 R} \tag{18}
\end{equation*}
$$

to prove (16) we need to show that

$$
\sqrt{\frac{r}{4 R}\left(1+\frac{r}{R}\right)} \geqslant \frac{r(4 R+r)}{2 s R} .
$$

After squaring both of sides and simplifying, it becomes

$$
(R+r) s^{2}-r(4 R+r)^{2} \geqslant 0
$$

i.e.,

$$
(R+r)\left(s^{2}-16 R r+5 r^{2}\right)+3(R-2 r) r^{2} \geqslant 0
$$

This follows from $s^{2} \geqslant 16 R r-5 r^{2}$ and $R \geqslant 2 r$. Thus, inequality (16) is true.

Lemma 5. For any triangle $A B C$, the following inequality holds.

$$
\begin{equation*}
\sum\left(b^{2}+c^{2}-a^{2}\right) \sin \frac{B}{2} \sin \frac{C}{2} \geqslant \frac{s^{4}-10 R r s^{2}-\left(8 R^{2}+6 R r+r^{2}\right) r^{2}}{4 R^{2}} \tag{19}
\end{equation*}
$$

Equality holds if and only if triangle $A B C$ is equilateral.
Proof. If $\triangle A B C$ is a non-obtuse triangle, using the simple well-known inequality $\sin \frac{A}{2} \leqslant \frac{a}{b+c}$, etc. we have

$$
\begin{equation*}
\sum \frac{b^{2}+c^{2}-a^{2}}{\sin \frac{A}{2}} \geqslant \sum \frac{b+c}{a}\left(b^{2}+c^{2}-a^{2}\right) \tag{20}
\end{equation*}
$$

Indeed, the above inequality holds for all triangles. Next, we shall prove our result.

Since $\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}$, inequality (20) is also

$$
\sum\left(b^{2}+c^{2}-a^{2}\right)\left[\frac{\sqrt{b c}}{\sqrt{(s-b)(s-c)}}-\frac{b+c}{a}\right] \geqslant 0
$$

or equivalently

$$
\begin{equation*}
\sum \frac{(s-a)\left(b^{2}+c^{2}-a^{2}\right)(b-c)^{2}}{a[a \sqrt{b c(s-b)(s-c)}+(b+c)(s-b)(s-c)]} \geqslant 0 \tag{21}
\end{equation*}
$$

Without loss of generality, we may assume that A is an obtuse angle and $a>b \geqslant c$, then we easily know that

$$
\begin{aligned}
& a \sqrt{b c(s-b)(s-c)}>b \sqrt{c a(s-c)(s-a)} \\
& (b+c)(s-b)(s-c)>(c+a)(s-c)(s-a)
\end{aligned}
$$

Putting

$$
\begin{aligned}
& X=a \sqrt{b c(s-b)(s-c)}+(b+c)(s-b)(s-c) \\
& Y=b \sqrt{c a(s-c)(s-a)}+(c+a)(s-c)(s-a)
\end{aligned}
$$

OCTOBER 2009

MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

then $X>Y$. In addition, from

$$
\begin{aligned}
\frac{s-b}{b Y}-\frac{s-a}{a X} & =\frac{(a X-b Y) s-a b(X-Y)}{a b X Y} \\
& >\frac{(b X-b Y) s-a b(X-Y)}{a b X Y}=\frac{(s-a)(X-Y)}{a X Y} \geqslant 0
\end{aligned}
$$

we find

$$
\frac{s-b}{b Y}>\frac{s-a}{a X}
$$

According to this and $a^{2}+b^{2}-c^{2}>0, c^{2}+a^{2}-b^{2}>0, s-b>s-a$, $(a-c)^{2}>(b-c)^{2}$, we have that

$$
\begin{aligned}
& \sum \frac{(s-a)\left(b^{2}+c^{2}-a^{2}\right)(b-c)^{2}}{a[a \sqrt{b c(s-b)(s-c)}+(b+c)(s-b)(s-c)]} \\
& \geqslant \frac{s-a}{a X}\left(b^{2}+c^{2}-a^{2}\right)(b-c)^{2}+\frac{s-b}{b Y}\left(c^{2}+a^{2}-b^{2}\right)(a-c)^{2} \\
& \geqslant \frac{s-a}{a X}\left(b^{2}+c^{2}-a^{2}\right)(b-c)^{2}+\frac{s-a}{a X}\left(c^{2}+a^{2}-b^{2}\right)(b-c)^{2} \\
& =\frac{2(s-a)}{a X}(b-c)^{2} c^{2} \geqslant 0 .
\end{aligned}
$$

Therefore, the inequality (20) holds for obtuse triangles. Furthermore, we know that (20) is valid for all triangles.

Now, by (20) and (18), we obtain

$$
\begin{aligned}
& \sum\left(b^{2}+c^{2}-a^{2}\right) \sin \frac{B}{2} \sin \frac{C}{2} \\
& \geqslant \frac{r}{4 R} \sum \frac{b+c}{a}\left(b^{2}+c^{2}-a^{2}\right) \\
& =\frac{r}{4 a b c R}\left[\sum b c(b+c) \sum a^{2}-2 a b c \sum a(b+c)\right] \\
& =\frac{r}{4 a b c R}\left[\left(\sum a \sum b c-3 a b c\right) \sum a^{2}-4 a b c \sum b c\right] \\
& =\frac{s^{4}-10 R r s^{2}-\left(8 R^{2}+6 R r+r^{2}\right) r^{2}}{4 R^{2}}
\end{aligned}
$$

Lemma 5 is proved.
Lemma 6. Let P is an arbitrary point in the plane of triangle $A B C$, $a^{\prime}, b^{\prime}, c^{\prime}$ denote the sides of $\triangle A^{\prime} B^{\prime} C^{\prime}$ and Δ^{\prime} denote its area. Then

$$
\begin{align*}
& \left(a^{\prime} P A+b^{\prime} P B+c^{\prime} P C\right)^{2} \geqslant \tag{22}\\
& \frac{1}{2}\left[a^{2}\left(b^{\prime 2}+c^{\prime 2}-a^{\prime 2}\right)+b^{2}\left(c^{\prime 2}+a^{\prime 2}-b^{\prime 2}\right)+c^{2}\left(a^{\prime 2}+b^{\prime 2}-c^{\prime 2}\right)\right]+8 \triangle \triangle^{\prime}
\end{align*}
$$

Equality holds in one of the following cases: (i) $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}, P$ lies inside of $\triangle A B C$, and $A^{\prime}+\angle B P C=B^{\prime}+\angle C P A=C^{\prime}+\angle A P B=\pi$; (ii)
P coincides with one of the vertices of $\triangle A B C$, the sum of the angle where lies this vertices of triangle $A B C$ and the relevant angle of triangle $A^{\prime} B^{\prime} C^{\prime}$ is π.

Inequality (25) is Bottema's inequality for two triangles (6) 7].

3. Proof of Theorem

Proof. Inequality (2) is also

$$
\begin{equation*}
\sum\left(\sin \frac{B}{2}+\sin \frac{C}{2}\right) P A \geqslant \frac{2}{3} \sum w_{a} \tag{23}
\end{equation*}
$$

By Heron's formula (4), it is easily known that $\sin \frac{B}{2}+\sin \frac{C}{2}, \sin \frac{C}{2}+$ $\sin \frac{A}{2}, \sin \frac{A}{2}+\sin \frac{B}{2}$ form a triangle with area $\sqrt{\prod \sin \frac{A}{2} \sum \sin \frac{A}{2}}$. Hence, by using Lemma 6, we get

$$
\begin{aligned}
& {\left[\sum\left(\sin \frac{B}{2}+\sin \frac{C}{2}\right) P A\right]^{2}} \\
& \geqslant \frac{1}{2} \sum\left(b^{2}+c^{2}-a^{2}\right)\left(\sin \frac{B}{2}+\sin \frac{C}{2}\right)^{2}+8 \Delta \sqrt{\prod \sin \frac{A}{2} \sum \sin \frac{A}{2}} \\
& =\frac{1}{2} \sum\left(b^{2}+c^{2}-a^{2}\right)\left(\sin ^{2} \frac{B}{2}+\sin ^{2} \frac{C}{2}\right) \\
& \quad+\sum\left(b^{2}+c^{2}-a^{2}\right) \sin \frac{B}{2} \sin \frac{C}{2}+8 \Delta \sqrt{\prod \sin \frac{A}{2} \sum \sin \frac{A}{2}} \\
& = \\
& \quad \sum a^{2} \sin ^{2} \frac{A}{2}+\sum\left(b^{2}+c^{2}-a^{2}\right) \sin \frac{B}{2} \sin \frac{C}{2} \\
& \quad+8 \Delta \sqrt{\prod \sin \frac{A}{2} \sum \sin \frac{A}{2}}
\end{aligned}
$$

In order to prove (23), we need to show that

$$
\begin{array}{r}
\sum a^{2} \sin ^{2} \frac{A}{2}+\sum\left(b^{2}+c^{2}-a^{2}\right) \sin \frac{B}{2} \sin \frac{C}{2} \\
+8 \Delta \sqrt{\prod \sin \frac{A}{2} \sum \sin \frac{A}{2}} \geqslant \frac{4}{9}\left(\sum w_{a}\right)^{2} \tag{24}
\end{array}
$$

According to Lemma 5 , it suffices to prove that

$$
\begin{aligned}
& \frac{(2 R-3 r) s^{2}+(4 R+r) r^{2}}{2 R}+\frac{s^{4}-10 R r s^{2}-\left(8 R^{2}+6 R r+r^{2}\right) r^{2}}{4 R^{2}} \\
& +\frac{4(4 R+r) r^{2}}{R} \geqslant s^{2}+9 r^{2}
\end{aligned}
$$

One may simplify this to

$$
\begin{equation*}
s^{4}-16 R r s^{2}+\left(28 R^{2}+12 R r-r^{2}\right) r^{2} \geqslant 0 \tag{25}
\end{equation*}
$$

OCTOBER 2009

MISSOURI JOURNAL OF MATHEMATICAL SCIENCES

which is equivalent to

$$
\left(s^{2}-5 r^{2}\right)\left(s^{2}-16 R r+5 r^{2}\right)+4(R-2 r)(7 R-3 r) r^{2} \geqslant 0
$$

This follows from Gerretsen's inequality $s^{2} \geqslant 16 R r-5 r^{2}$ and ChappleEuler's inequality $R \geqslant 2 r$. Hence, inequality (23), i.e., (2) is proved. It is easy to obtain the condition when equality occurs in (2). This completes the proof of Lemma 6 .

4. Acknowledgment

The authors are grateful to professor Zhang Zhi-Hua for valuable suggestions for the improvement of this paper and his help.

References

[1] J.-Liu, 100 Problems to be Solved About Triangular Inequality, Geometric Inequality in China (chief editor-Zun Shan), Jiangsu Educational Press, NanJing, China, 1996, 137-161 (Chinese).
[2] J.-Liu, Some New Inequalities for the Triangle, Zhongxue Shuxue, 5 (1994), 9-12 (Chinese).
[3] J.-P. Li, A Proof of a Conjecture, Hunan Mathematical Communication, 2 (1995), 39-40 (Chinese).
[4] X.-Zh. Yang, A Inequality of the Bisector, Shuxue Tongxun, 8 (1995), 17 (Chinese).
[5] O. Bottema, R. Ž. Djordjević, R. R. Janić, D. S. Mitrinović, and P. M. Vasić, Geometric Inequalities, Wolters-Noordhoff, Groningen, 1969.
[6] D. Mitrinović, J. E. Pečarić, and V. Volenec, Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, Dordrecht, Netherlands, 1989.
[7] O. Bottema, Hoofdstukken uit de Elementaire Meetkunde, Den Haag, (1944), 97-99.
MSC2000: 51M16
East China Jiaotong University, Nanchang City, Jiangxi Province, 330013, China

E-mail address: srr345@163.com
East China Jiaotong University, Nanchang City, Jiangxi Province, 330013, China

E-mail address: liujian99168@yahoo.com.cn

