UNIQUE PRIME CARTESIAN FACTORIZATION OF GRAPHS OVER FINITE FIELDS

RICHARD H. HAMMACK

Abstract

A fundamental result, due to Sabidussi and Vizing, states that every connected graph has a unique prime factorization relative to the Cartesian product; but disconnected graphs are not uniquely prime factorable. This paper describes a system of modular arithmetic on graphs under which both connected and disconnected graphs have unique prime Cartesian factorizations.

1. Introduction

The Cartesian product of two simple graphs $G=(V(G), E(G))$ and $H=(V(H), E(H))$ is the graph $G \square H$ with $V(G \square H)=V(G) \times V(H)$, and $(u, x)(v, y) \in E(G \square H)$ if either $u=v$ and $x y \in E(H)$, or $u v \in E(G)$ and $x=y$. This product is commutative and associative: $G \square H=H \square G$ and $G \square(H \square K)=(G \square H) \square K$ (up to isomorphism) for all graphs G, H and K. Also $G \square H$ is connected if and only if both G and H are connected. For a full treatment of this product, see Chapter 4 of Imrich and Klažar [2].

We denote the empty graph (i.e. the graph with no vertices) as O, and the complete graph on n vertices as K_{n}. Notice that $G \square O=O$ and $G \square K_{1}=G$ for all graphs G. If $n \in \mathbb{N}$, then $n G$ denotes the graph that is the disjoint union of n copies of G (or O if $n=0$). Note $n(G \square H)=n G \square H=G \square n H$. For a positive integer n, we define $G^{n}=G \square G \square \cdots \square G$ (n factors) and we adopt the convention $G^{0}=K_{1}$.

A graph G is prime if it is nontrivial and $G=G_{1} \square G_{2}$ implies $G_{1}=K_{1}$ or $G_{2}=K_{1}$. Every graph G has a prime factorization $G=G_{1} \square G_{2} \square \cdots \square G_{p}$, where each factor G_{i} is prime. A fundamental theorem, proved independently by Sabidussi [3] and Vizing [4] states that the prime factorization of a connected graph is unique, that is if a connected graph G has prime factorizations $G_{1} \square G_{2} \square \cdots \square G_{p}$ and $H_{1} \square H_{2} \square \cdots \square H_{q}$, then $p=q$ and $G_{i}=H_{i}$ for $1 \leq i \leq p$ (after reindexing, if necessary).

But disconnected graphs are not uniquely prime factorable, in general. One standard example is the graph $G=K_{1}+K_{2}+K_{2}^{2}+K_{2}^{3}+K_{2}^{4}+K_{2}^{5}$, where the sum represents disjoint union. It is proved in [2] (Theorem 4.2) that G has two distinct prime factorizations

$$
\left(K_{1}+K_{2}+K_{2}^{2}\right) \square\left(K_{1}+K_{2}^{3}\right) \quad \text { and } \quad\left(K_{1}+K_{2}\right) \square\left(K_{1}+K_{2}^{2}+K_{2}^{4}\right)
$$

In this example we may think of G as having been obtained by substituting K_{2} for x in the polynomial $f=1+x+x^{2}+x^{3}+x^{4}+x^{5}$. This polynomial has two distinct factorizations into irreducibles over \mathbb{N}, namely

$$
\left(1+x+x^{2}\right)\left(1+x^{3}\right) \quad \text { and } \quad(1+x)\left(1+x^{2}+x^{4}\right)
$$

which yield the two factorizations of G. Of course, f can be uniquely prime factored over \mathbb{Z} as $f=(1+x)\left(1+x+x^{2}\right)\left(1-x+x^{2}\right)$, but this does not translate into a factoring of G because the negative has no immediate meaning when applied to graphs.

But what if the factoring is done over \mathbb{Z}_{2} ? Then f factors uniquely as $(1+x)\left(1+x+x^{2}\right)\left(1+x+x^{2}\right)$. Substituting K_{2} gives $\left(K_{1}+K_{2}\right) \square\left(K_{1}+\right.$ $\left.K_{2}+K_{2}^{2}\right) \square\left(K_{1}+K_{2}+K_{2}^{2}\right)=K_{1}+3 K_{2}+5 K_{2}^{2}+5 K_{2}^{3}+3 K_{2}^{4}+K_{2}^{5}$. This is not G, but rather $G+2 K_{2}+4 K_{2}^{2}+4 K_{2}^{3}+2 K_{2}^{4}$. However, if the coefficients are regarded as elements in \mathbb{Z}_{2}, it seems reasonable to define $2 K_{2}=O$, $4 K_{2}^{2}=O$, etc., so $\left(K_{1}+K_{2}\right) \square\left(K_{1}+K_{2}+K_{2}^{2}\right) \square\left(K_{1}+K_{2}+K_{2}^{2}\right)$ is a factorization of G "over \mathbb{Z}_{2}."

The next section makes this idea precise. For each prime number k, we construct a ring \mathscr{G}_{k} of graphs that are added modulo k and multiplied with the Cartesian product. These rings are shown to be unique factorization domains, so every graph-connected or disconnected-has a unique prime factorization in \mathscr{G}_{k}.

2. Graphs Modulo K

In this section, k denotes a prime number and \mathbb{Z}_{k} is the field $\mathbb{Z} / k \mathbb{Z}$. We regard \mathbb{Z}_{k} as the subset $\{0,1,2, \ldots, k-1\} \subset \mathbb{Z}$ with addition and multiplication done modulo k. So if $n \in \mathbb{Z}_{k}$ and G is a graph, then $n G$ denotes the graph that is the disjoint union of n copies of G.

Let Γ be the set of all simple graphs, including O, and let $\Gamma_{c} \subset \Gamma$ denote the set of all connected graphs, excluding O. Denote by \mathscr{G}_{k} the infinite dimensional vector space over \mathbb{Z}_{k} with basis Γ_{c}. An element in \mathscr{G}_{k} is thus a $\operatorname{sum} \sum_{A \in \Gamma_{c}} a_{A} A$ with each a_{A} in \mathbb{Z}_{k} and $a_{A}=0$ for all but finitely many $A \in \Gamma_{c}$. Such a sum can be visualized as the graph that has a_{A} components isomorphic to A, for each connected graph A. (If all a_{A} are 0 , the sum is identified with the empty graph.) Thus we will think of \mathscr{G}_{k} as a collection of graphs, and a nonzero $G=\sum_{A \in \Gamma_{c}} a_{A} A$ in \mathscr{G}_{k} is connected provided exactly one coefficient a_{A} is nonzero, and it equals 1 .

In words, \mathscr{G}_{k} consists of all graphs G having the property that G has no more than $k-1$ components that are isomorphic to any other graph A, so for large k, \mathscr{G}_{k} can be thought of as an "approximation" of Γ. But unlike
Γ, there is an operation + on \mathscr{G}_{k}. For $G, H \in \mathscr{G}_{k}$, graph $G+H$ has the following property. If exactly m of G 's components and exactly n if H 's components are isomorphic to a connected graph A, then exactly $m+n$ $(\bmod k)$ components of $G+H$ are isomorphic to A.

Define a product \mathbb{K} on \mathscr{G}_{k} as

$$
\left(\sum_{A \in \Gamma_{c}} a_{A} A\right) \mathbb{K}\left(\sum_{A \in \Gamma_{c}} b_{A} A\right)=\sum_{A, B \in \Gamma_{c}} a_{A} b_{B}(A \square B) .
$$

Notice that $G \mathbb{K} H=G \square H$ if G and H are connected. If G and H are not both connected, then, intuitively, $G \mathbb{K} H$ can be regarded as the graph $G \square H$ with all sets of k isomorphic components deleted. For example, in \mathscr{G}_{3}, we have $2 K_{2}$ 3 $2 K_{3}=K_{2} \square K_{3}$, while $2 K_{2} \square 2 K_{3}=4\left(K_{2} \square K_{3}\right)$. Deleting three of the four isomorphic components of $4\left(K_{2} \square K_{3}\right)$ leaves $K_{2} \square K_{3}$.

Next, we verify that $[\mathbb{K}$ is distributive and associative. For this, let $G=$ $\sum_{A \in \Gamma_{c}} a_{A} A, H=\sum_{A \in \Gamma_{c}} b_{A} A$, and $K=\sum_{A \in \Gamma_{c}} c_{A} A$. For distributivity, observe the following.

$$
\begin{aligned}
& G \mathbb{K}(H+K)=\left(\sum_{A \in \Gamma_{c}} a_{A} A\right) \mathbb{K}\left[\left(\sum_{A \in \Gamma_{c}} b_{A} A\right)+\left(\sum_{A \in \Gamma_{c}} c_{A} A\right)\right] \\
& =\left(\sum_{A \in \Gamma_{c}} a_{A} A\right) \mathbb{K}\left(\sum_{A \in \Gamma_{c}}\left(b_{A}+c_{A}\right) A\right) \\
& =\sum_{A, B \in \Gamma_{c}} a_{A}\left(b_{B}+c_{B}\right)(A \square B)=\sum_{A, B \in \Gamma_{c}}\left(a_{A} b_{B}+a_{A} c_{B}\right)(A \square B) \\
& =\sum_{A, B \in \Gamma_{c}} a_{A} b_{B}(A \square B)+\sum_{A, B \in \Gamma_{c}} a_{A} c_{B}(A \square B)=G \mathbb{k} H+G \mathbb{k} K .
\end{aligned}
$$

Next, associativity is verified.

$$
\begin{aligned}
& (G \text { K } H) \mathbb{K} K=\left[\left(\sum_{A \in \Gamma_{c}} a_{A} A\right) \mathbb{k}\left(\sum_{A \in \Gamma_{c}} b_{A} A\right)\right] \mathbb{K}\left(\sum_{A \in \Gamma_{c}} c_{A} A\right) \\
& =\left[\sum_{A, B \in \Gamma_{c}} a_{A} b_{B}(A \square B)\right] \mathbb{K}\left(\sum_{C \in \Gamma_{c}} c_{C} C\right) \\
& =\sum_{A, B \in \Gamma_{c}}\left(a_{A} b_{B}(A \square B) \mathbb{k} \sum_{C \in \Gamma_{c}} c_{C} C\right) \text { (distributivity from right) } \\
& =\sum_{A, B \in \Gamma_{c}} \sum_{C \in \Gamma_{c}} a_{A} b_{B} c_{C}(A \square B) \square C \\
& =\sum_{B, C \in \Gamma_{c}} \sum_{A \in \Gamma_{c}} a_{A} b_{B} c_{C} A \square(B \square C)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{B, C \in \Gamma_{c}}\left[\left(\sum_{A \in \Gamma_{c}} a_{A} A\right) \mathbb{k} b_{B} c_{C}(B \square C)\right] \\
& =\left(\sum_{A \in \Gamma_{c}} a_{A} A\right) \mathbb{k}\left(\sum_{B, C \in \Gamma_{c}} b_{B} c_{C} B \square C\right) \text { (distributivity from left) } \\
& =\left(\sum_{A \in \Gamma_{c}} a_{A} A\right) \text { 目 }\left[\left(\sum_{A \in \Gamma_{c}} b_{A} A\right) \mathbb{k}\left(\sum_{A \in \Gamma_{c}} c_{A} A\right)\right]=G \text { 因 }(H \mathbb{K} K) .
\end{aligned}
$$

From this it follows that \mathscr{G}_{k} is a commutative ring with zero element O. It is immediate from the definition of \mathbb{k} that $K_{1} \mathbb{K} G=G$ for all ring elements G, so \mathscr{G}_{k} has identity K_{1}. Notice that there is an injective homomorphism $\phi: \mathbb{Z}_{k} \rightarrow \mathscr{G}_{k}$ defined as $\phi(n)=n K_{1}$. Additionally, observe that if G is connected then $n G=\left(n K_{1}\right) \mathbb{k} G$. Thus, $\sum_{A \in \Gamma_{c}} a_{A} A=\sum_{A \in \Gamma_{c}}\left(a_{A} K_{1}\right) \mathbb{K} A$, and this sum is O if and only if each a_{A} is zero.

The remainder of this paper hinges on the following construction. Let $P_{1}, P_{2}, P_{3}, \ldots$ be an enumeration of all connected prime graphs indexed so that $\left|V\left(P_{1}\right)\right| \leq\left|V\left(P_{2}\right)\right| \leq\left|V\left(P_{3}\right)\right| \leq \cdots$. (Thus $P_{1}=K_{2}, P_{2}$ is the path on three vertices, $P_{3}=K_{3}$, etc.) For each positive integer m, construct a map $\phi_{m}: \mathbb{Z}_{k}\left[x_{1}, x_{2}, \ldots, x_{m}\right] \rightarrow \mathscr{G}_{k}$ defined as $\phi_{m}\left(\sum a_{i_{1} i_{2} \cdots i_{m}} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{m}^{i_{m}}\right)=$ $\sum\left(a_{i_{1} i_{2} \cdots i_{m}} K_{1}\right) \mathbb{k} P_{1}^{i_{1}} \mathbb{k} P_{2}^{i_{2}} \mathbb{k} \cdots \mathbb{k} P_{m}^{i_{m}}$, where the sums are taken over all m tuples $\left(i_{1}, i_{2}, \ldots, i_{m}\right) \in \mathbb{N}^{m}$. This is easily seen to be a ring homomorphism. (Apply Theorem 4.3 of [1] with ϕ as defined in the previous paragraph.)

Observe that the homomorphism ϕ_{m} is injective. Suppose
$\phi_{m}\left(\sum a_{i_{1} i_{2} \cdots i_{m}} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{m}^{i_{m}}\right)=\sum\left(a_{i_{1} i_{2} \cdots i_{m}} K_{1}\right) \mathbb{k} P_{1}^{i_{1}} \mathbb{k} P_{2}^{i_{2}} \mathbb{k} \cdots \mathbb{k} P_{m}^{i_{m}}=$ O. Recall that $\mathbb{K}=\square$ for connected graphs, so by unique factorization of connected graphs $P_{1}^{i_{1}} \mathbb{k} P_{2}^{i_{2}} \mathbb{k} \cdots \mathbb{k} P_{m}^{i_{m}} \nsubseteq P_{1}^{j_{1}} \mathbb{k} P_{2}^{j_{2}} \mathbb{k} \cdots \mathbb{K} P_{m}^{j_{m}}$ for distinct m-tuples $\left(i_{1}, i_{2}, \ldots, i_{m}\right)$ and $\left(j_{1}, j_{2}, \ldots, j_{m}\right)$, and therefore all coefficients $a_{i_{1} i_{2} \cdots i_{m}}$ are zero.
Lemma 1. For any prime number k, the ring \mathscr{G}_{k} is an integral domain.
Proof. Suppose $G \mathbb{K} H=O$ for two elements $G, H \in \mathscr{G}_{k}$. Choose m large enough so that every component of both G and H has a prime factorization of form $P_{1}^{i_{1}} \square P_{2}^{i_{2}} \square \cdots \square P_{m}^{i_{m}}$. (The powers, of course, are allowed to be zero.) By letting $a_{i_{1} i_{2} \cdots i_{m}}$ be the number of components of G that are isomorphic to $P_{1}^{i_{1}} \square P_{2}^{i_{2}} \square \cdots \square P_{m}^{i_{m}}$, it follows that $G=\phi_{m}\left(\sum a_{i_{1} i_{2} \cdots i_{m}} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{m}^{i_{m}}\right)$. Similarly, H is also in the image of ϕ_{m}, so $G=\phi_{m}(g)$ and $H=\phi_{m}(h)$ for appropriate polynomials g and h. From $G \mathbb{K} H=O$, it follows that $\phi_{m}(g h)=\phi_{m}(g) \ltimes \phi_{m}(h)=O$. Then $g h=0$ since ϕ_{m} is injective, hence, $g=0$ or $h=0$ since $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ is an integral domain. Consequently, $G=O$ or $H=O$, hence \mathscr{G}_{k} is an integral domain.

It will be useful to examine the units in \mathscr{G}_{k}. If $G \mathbb{k} H=K_{1}$, then, as in the above proof, we may take m large enough so that $G=\phi_{m}(g)$ and $H=\phi_{m}(h)$. Then $\phi_{m}(g h)=\phi_{m}(g) \mathbb{K} \phi_{m}(h)=K_{1}$, so $g h=1$ by injectivity of ϕ_{m}. Consequently, g and h are constant polynomials, so G and H are of the form $\phi_{m}(n)=n K_{1}$ for some nonzero $n \in \mathbb{Z}_{k}$. Thus the units of \mathscr{G}_{k} are $K_{1}, 2 K_{1}, 3 K_{1}, \ldots,(k-1) K_{1}$.

Recall that an element a of a ring is irreducible if $a=b c$ implies either b or c is a unit (i.e. invertible). Element a is prime if $a \mid b c$ implies $a \mid b$ or $a \mid c$ for all b, c in the ring. Every prime is irreducible, but in general the converse is not true. We take the approach of Grove [1] in defining a unique factorization domain (UFD) to be an integral domain in which every nonunit is a product of irreducible elements, and every irreducible is prime. By Theorem 5.11 of [1], every nonzero non-unit element of a UFD has a unique prime factorization, that is if $a=b_{1} b_{2} \cdots b_{p}=c_{1} c_{2} \cdots c_{q}$ where each b_{i} and c_{i} is prime, then $p=q$ and (after relabeling if necessary) $b_{i}=u_{i} c_{i}$ for units $u_{i}, 1 \leq i \leq p$.

Proposition 2. For any prime number k, the ring \mathscr{G}_{k} is a UFD.
Proof. By Lemma 1, \mathscr{G}_{k} is an integral domain. By the above remarks, showing it is a UFD entails showing any $G \in \mathscr{G}_{k}$ is a product of irreducibles, and if G is irreducible then $G \mid(H \mathbb{K} K)$ implies $G \mid H$ or $G \mid K$ for all $H, K \in$ \mathscr{G}_{k}.

Suppose $G \in \mathscr{G}_{k}$. Observe G is a product of irreducibles: If G is irreducible, we are done. Otherwise suppose $G=H \leqslant K$ for non-units H and K. As before, take m large enough so $G=\phi_{m}(g), H=\phi_{m}(h)$ and $K=\phi_{m}(\kappa)$, and argue $g=h \kappa$. Since H and K are non-units, h and κ are nonconstant polynomials and their degrees must be strictly lower than the degree of g. This process may be continued to decompose H and K into products of non-units, and in turn the factors of H and K may be similarly decomposed. But since each iteration yields factors that are images of polynomials of lower degree than those of the previous iteration, the process must eventually terminate. Consequently G is a product of irreducibles.

Now suppose G is irreducible and $G \mid(H ⿴ 囗)$, that is $G \mathbb{k} F=H K K$ for some graph F. Take m large enough so $G=\phi_{m}(g), F=\phi_{m}(f)$, $H=\phi_{m}(h)$ and $K=\phi_{m}(\kappa)$. Then $\phi_{m}(g f)=\phi_{m}(h \kappa)$, so $g f=h \kappa$ because ϕ_{m} is injective, and hence $g \mid h \kappa$. Now, g is irreducible in $\mathbb{Z}_{k}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$, for any factorization $g=g_{1} g_{2}$ into non-units would produce a factorization $G=\phi_{m}\left(g_{1}\right) \mathbb{k} \phi_{m}\left(g_{2}\right)$ into non-units. Then, since $\mathbb{Z}_{k}\left[x_{1}, x_{2}, \ldots, x_{m}\right]$ is a UFD ([1], Theorem 5.16), the relation $g \mid h \kappa$ means $g \mid h$ or $g \mid \kappa$, that is $g h_{1}=h$ or $g \kappa_{1}=\kappa$. Applying ϕ_{m}, either $G \mathbb{K} \phi_{m}\left(h_{1}\right)=H$ or $G \mathbb{K} \phi_{m}\left(\kappa_{1}\right)=K$, so $G \mid H$ or $G \mid K$.

The proposition implies that if a graph in \mathscr{G}_{k} factors into irreducibles as B_{1} 级 $B_{2} \mathbb{k} \cdots \mathbb{K}_{p}$ and $C_{1} \mathbb{k} C_{2} \mathbb{k} \cdots \mathbb{k} C_{q}$, then $p=q$ and (after relabeling) $B_{i}=\left(u_{i} K_{1}\right) \mathbb{K} C_{i}$ for nonzero elements $u_{i} \in \mathbb{Z}_{k}$. Because \mathbb{k} and \square agree as operators on connected graphs, the usual prime factorization of a connected graph G will be a prime factorization over k. However, a prime factorization of G in \mathscr{G}_{k} may differ from the usual one by unit multiples of the factors. For example $K_{2} 5 K_{3} 5 K_{3}$ and $3 K_{2} 53 K_{3} 54 K_{3}$ are two factorizations of the same graph in \mathscr{G}_{5}. Observe that $3 K_{2} 53 K_{3} 54 K_{3}=$ $\left(\left(3 K_{1}\right) 5 K_{2}\right) 5\left(\left(3 K_{1}\right) 5 K_{3}\right) 5\left(\left(4 K_{1}\right) 5 K_{3}\right)$, and it is evident that these two factorizations differ only by unit multiples of the factors.

References

[1] L. Grove, Algebra, Academic Press Series in Pure and Applied Mathematics, New York, 1983.
[2] W. Imrich and S. Klavžar, Product Graphs; Structure and Recognition, Wiley Interscience Series in Discrete Mathematics and Optimization, New York, 2000.
[3] G. Sabidussi, Graph Multiplication, Math. Z., 72 (1960), 446-457.
[4] G. V. Vizing, The Cartesian Product of Graphs (Russian), Vyčisl Sistemy, 9 (1963), 30-43.

AMS Classification Numbers: 05C99
Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA

E-mail address: rhammack@vcu.edu

