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Abstract. We consider a one-unit system under continuous moni-
toring, aided by an identical spare unit and serviced by a facility that
performs repair on a failed unit or preventive maintenance on a re-
called unit making it as good as new. We assume instantaneous com-
mencement of service and installation to operation. We find the dis-
tribution of the system up time and down time when life-, recall- and
service-times have arbitrary probability density functions. Hence, we
obtain the limiting availability of the system. Also, we compute the
servicing cost per unit time to determine whether preventive main-
tenance is preferable over a repair only model.

1. Introduction

We consider a one-unit repairable system that is supported by an iden-
tical spare unit and is always under continuous monitoring. In the begin-
ning, one unit is put on operation and the other spare unit remains on cold
standby. The operating unit may fail or be recalled for preventive mainte-
nance even though it has not failed. Immediately the spare unit is placed
on operation (called instantaneous installation to operation), while imme-
diately the failed/recalled unit undergoes repair/preventive maintenance
(PM) at the service facility (this is called instantaneous commencement of
service).

We assume that the operating unit functions for a random amount of
time, which is either the complete lifetime until failure or the censored
lifetime until recall, whichever happens first. We also assume that service
(repair or PM) takes a random amount of time, after which the unit is
restored to a level equivalent to a new unit (this is called the perfect service
policy) and becomes a viable spare. The operating unit may fail or be
recalled while the other unit is still being serviced, in which case the system
fails.
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To measure the performance of maintainable systems, often it suffices to
study the limiting availability A, which is the probability that the system
will be found functional at a distant future time. Under the assumption
of continuous life-, recall-, repair-, and PM times, the limiting availability
exists and, in view of the Key Renewal Theorem, it is given by

A =
MSUT

MSUT + MSDT
, (1.1)

where MSDT stands for mean system down time and is the mean duration
from the moment the system fails until it is revived through repair, and
MSUT stands for mean system up time and is the mean duration from
the epoch when the failed system is revived to the next system failure (see
Barlow and Proschan [1]).

In the literature, there have been several papers that allow recall and
PM. Osaki and Asakura [3] allow life-, recall-, repair- and PM time to be
arbitrary, but they do not allow recall of the operating unit while the other
unit undergoes repair or PM. Gopalan and D’Souza [2], on the other hand,
allow recall of a unit while the other unit is under service, but they restrict
repair- and PM times to be exponential. Both papers calculate the mean
time until the system goes down using the Laplace transformation tech-
nique. Zjilstra [6] allows the recall time to be the larger of the service time
of the other unit and a fixed horizon T . They minimize the expected cost
per unit time or the expected total discounted cost by choosing T . These
papers provide general recipes for the Laplace transform of the survival
function (SF) of time to system failure, but they do not provide either
the analytic expression or numerical computations for the mean time to
system failure, except for the case when all distributions are exponential.
Smith and Dekker [5] considers a 1-out-of-n (good) PM model in which
recall time T is fixed. They compute the approximate expected up time,
expected down time, and expected cost per unit time, and choose n and T
to maximize the long term economy.

Our model extends the Gopalan and D’Souza [2] model by allowing ar-
bitrary life-, recall-, repair- and PM times. In particular, our model allows
recall at any time, even at the risk of letting the system go down, because
it is preferable to carry out a PM rather than a repair after the system is
revived by completing service on the other unit. This is justified since the
recall distribution is completely at our discretion. Our paper provides an-
alytic expressions and discusses how to determine whether the preventive
maintenance is preferred, when the servicing cost per unit time is taken
into account.

The remainder of this paper is organized as follows: In Section 2, we
present the mathematical formulation of the preventive maintenance model,
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and highlight the steps involved in deriving the SF of the system up time
(SUT) and the system down time (SDT). Hence, in view of (1.1), we ob-
tain an expression for the limiting availability. Section 3 gives details of
obtaining the Laplace transform of the SF of the SUT. Section 4 gives an
example illustrating the numerical implementation. Section 5 discusses the
optimal choice of recall time distribution as well as the preference of a PM
model over a replacement only model in terms of cost per unit time.

2. Mathematical Formulation

Let the (complete) lifetime Xl of the operating unit have cumulative
distribution function (CDF) Fl, the censored lifetime Xc until recall of the
operating unit (henceforth called the recall time) have CDF Fc, the repair
time Yr of a failed unit have CDF Gr and the PM service time Yp of a
recalled unit have CDF Gp. Let the corresponding survival functions (SF)
be F̄l = 1 − Fl, F̄c, Ḡr, Ḡp. Also let these random variables be absolutely
continuous with probability density functions (PDF) fl, fc, gr, gp, respec-
tively. We allow the service time to possibly depend on the immediately
preceding operation time of the same unit. All other lifetimes, recall times,
repair times and PM times are assumed to be stochastically independent.

For the first operating unit, let the lifetime be Xl1, recall time Xc1, repair
time Yr1 and PM time Yp1. We assume that Xl1 and Xc1 are independent.
That is, the operation on the first unit is terminated as soon as one of two
independent causes for termination, failure and recall, takes effect. Thus,
we observe either Xl1 or Xc1, depending on whether the first unit fails or
is recalled, but we do not observe both. Similarly, we observe either Yr1 or
Yp1, depending on whether the first unit fails or is recalled, but not both.
Letting δ1 = 1 if the first unit fails and δ1 = 0 if it is recalled, our observable
data consists of (δ1, X1, Y1), where

(δ1, X1, Y1) =

{

(1, Xl1, Yrl) if Xl1 ≤ Xc1, i.e. if first unit fails

(0, Xc1, Ypl) if Xl1 > Xc1, i.e. if first unit is recalled.

Let Pr denote the probability that the operating unit fails before it is
recalled. Then

Pr := P{δ1 = 1} = P{Xl < Xc} =

∫

∞

0

fl(u) F̄c(u) du. (2.1)

Note that
{

X1 = min{Xl1, Xc1} = δ1 Xl1 + (1 − δ1) Xc1

Y1 = δ1 Yr1 + (1 − δ1) Yp1.

We call X1 the operation time and Y1 the service time of the first unit.
Clearly, X1 and Y1 are dependent variables. By the independence of lifetime
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Xl1 and recall time Xc1
, the SF of X1 is given by

F̄ (t) = F̄l(t) F̄c(t), for all t ≥ 0. (2.2)

Hence, the PDF of X1 is given by

f(t) = fl(t) F̄c(t) + fc(t) F̄l(t), for all t > 0. (2.3)

Likewise, we define (δ2, X2, Y2) for the second unit. Henceforth, the
units alternately take turns to operate, and yield successive observations
(δ3, X3, Y3), (δ4, X4, Y4), . . .. The observation vectors corresponding to odd
indices refer to successive information from the first unit, and those cor-
responding to even indices refer to successive information from the second
unit. In view of the perfect service policy, we assume that

{(δ1, X1, Y1), (δ2, X2, Y2), . . .}
form a sequence of independent and identically distributed (IID) random
vectors. To reinterate, Yi depends on Xi for all i ≥ 1.

The system breaks down when the operating unit fails or it is recalled
but the service on the other unit is not completed. To define the first system
breakdown time, let

N = min{n ≥ 1 : Xn+1 < Yn} (2.4)

denote the smallest index n for which the nth service time exceeds the
(n+1)st operation time. Then N +1 is a stopping time with respect to the
sequence of observation vectors {(δ1, X1, Y1), (δ2, X2, Y2), . . .}. We call the
epochs S1 = X1, S2 = S1 + X2, . . . , SN = SN−1 + XN installation times,
and classify Si as type r (type p) depending on whether δi = 1 (δi = 0),
because at epoch Si a new unit is put on operation while the other unit
goes on repair (PM). Si is of type r with probability Pr and of type p
with probability 1 − Pr, where Pr is defined in (2.1). Note that at epoch
SN +XN+1 the system breaks down and it is not an installation time. The
next installation time is SN+1 = SN + YN , and it is of type r or type p
depending on whether δN+1 = 1 or 0. SN+1 is also called the revival time of
a down system. Continuing from SN+1 onwards we define other installation
times and revival times in a similar manner.

In the sequel we make use of the property that the stochastic behavior
of the system after installation times of type r are identical. Similarly, the
stochastic behavior of the system after installation times of type p are also
identical, though not the same as that after installation times of type r.
In other words, the embedded discrete-time stochastic process obtained by
looking at the state of the system only at installation times is a two-state
Markov chain with state space {r, p} and transition probabilities given by

Prr = Ppr = Pr, Prp = Ppp = 1 − Pr. (2.5)

78 VOLUME 23, NUMBER 1



LIMITING AVAILABILITY OF A ONE-UNIT SYSTEM

This discrete-time Markov chain has a stationary distribution given by
(Pr, 1 − Pr) for the states r and p, respectively. In fact, the stationary
distribution is attained already at the first installation time X1.

Returning to the continuous time stochastic process, let T0 denote the
time until the system breaks down starting from t = 0 when one new unit
is put on operation and the other new unit is on cold stand by. Clearly,
T0 = X1 + X2 + · · ·+ XN+1. For j ≥ 1, let Trj (Tpj) denote the additional
time until the system breaks down starting from the jth installation and
whether the jth installation epoch is of type r (type p). For example,
if δj = 1 then Xj + · · · + XN+1 is denoted by Trj and if δj = 0 then
Xj + · · · + XN+1 is denoted by Tpj . We have the following relationships:

{T0 > t} = {X1 > t} ∪ {X1 ≤ t, δ1 = 1, Tr1 > t − X1}
∪{X1 ≤ t, δ1 = 0, Tp1 > t − X1}, (2.6)

{Tr1 > t} = {X2 > t} ∪ {Yr1 ≤ X2 ≤ t, δ2 = 1, Tr2 > t − X2}
∪{Yr1 ≤ X2 ≤ t, δ2 = 0, Tp2 > t − X2}, (2.7)

{Tp1 > t} = {X2 > t} ∪ {Yp1 ≤ X2 ≤ t, δ2 = 1, Tr2 > t − X2}
∪{Yp1 ≤ X2 ≤ t, δ2 = 0, Tp2 > t − X2}. (2.8)

Note that Tr1, Tr2, ... have the same probability distribution and so do
Tp1, Tp2, .... Therefore, we drop the second subscript hereafter. Using (2.6)-
(2.8), we determine the SF of T0, Tr, Tp, and hence their expected values.
The details are delegated to Section 3.

Having obtained the SF of Tr and Tp, we can get the SF of SUT and its
mean as follows. The duration between successive revival times is called
a cycle time. Each cycle either begins in state r with probability Pr, in
which case the system remains up for a duration Tr, or the cycle begins in
state p with probability 1 − Pr, in which case the system remains up for a
duration Tp. Hence, between any two successive revival times the SUT has
the same distribution as that of δ1 Tr + (1 − δ1) Tp with SF

P{SUT > t} = Pr P{Tr > t} + (1 − Pr) P{Tp > t}, (2.9)

and the mean SUT is

MSUT = Pr E[Tr] + (1 − Pr) E[Tp]. (2.10)

Next, we consider system down time. When the system breaks down with
a failure or recall of the operating unit while the service on the other unit
is still going on, the system remains in the down state until repair/PM is
completed. Thereafter, immediately the serviced unit commences operation
and the system enters the up state. For example, the first SDT is D =
YN − XN+1. Recall that by definition of N , we have YN > XN+1. Also
note that the installation time SN immediately prior to a revival time is
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of type r if δN = 1 (which happens with probability Pr) or of type p if
δN = 0. Hence, the stochastic behavior of an SDT is the same as that of
δN Dr + (1− δN ) Dp where Dr (Dp) denote the SDT if a repair (PM) was
going on when the system failed. Their SF are easily obtained by using the
independence of Yr = Yrj (Yp = Ypj) and X = Xj+1 = min{Xl,j+1, Xc,j+1}
as follows:

P{Dr > t} = P{Yr − X > t|Yr > X}

=

∫

∞

0

P{Yr − u > t|Yr > u} dF (u)

=

∫

∞

0

Ḡr(t + u)

Ḡr(u)
dF (u), (2.11)

P{Dp > t} =

∫

∞

0

Ḡp(t + u)

Ḡp(u)
dF (u).

Thereafter, we obtain

E[Dr] =

∫

∞

0

P{Dr > t} dt, E[Dp] =

∫

∞

0

P{Dp > t} dt. (2.12)

Therefore, the SF of the SDT is given by

P{D > t} = Pr P{Dr > t} + (1 − Pr) P{Dp > t} (2.13)

= Pr

∫

∞

0

Ḡr(t + u)

Ḡr(u)
dF (u) + (1 − Pr)

∫

∞

0

Ḡp(t + u)

Ḡp(u)
dF (u),

and the mean SDT is given by

MSDT = Pr E[Dr] + (1 − Pr) E[Dp]. (2.14)

Finally, the limiting availability is obtained from (1.1), (2.10), and (2.14).

3. Distribution of SUT

We derive the SF H̄r(t) of Tr and H̄p(t) of Tp starting from (2.7)-(2.8).
The PDF of X1 is given already in (2.3). Hence,

P{δ1 = 1|X1 = u} = P{Xl1 ≤ Xc1|X1 = u} (3.1)

=
fl(u) F̄c(u)

fl(u) F̄c(u) + fc(u) F̄l(u)
.

Therefore, the following integral equations hold:


















H̄r(t) = F̄ (t) +
∫ t

0 Gr(u)
{

fl(u) F̄c(u) H̄r(t − u)

+fc(u) F̄l(u) H̄p(t − u)
}

du

H̄p(t) = F̄ (t) +
∫ t

0
Gp(u)

{

fl(u) F̄c(u) H̄r(t − u)

+fc(u) F̄l(u) H̄p(t − u)
}

du.

(3.2)
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Taking Laplace transform (and suppressing the argument s), the system of
equations (3.2) becomes

{

H̄∗

r = F̄ ∗ + (GrflF̄c)
∗ H̄∗

r + (GrfcF̄l)
∗ H̄∗

p

H̄∗

p = F̄ ∗ + (GpflF̄c)
∗ H̄∗

r + (GpfcF̄l)
∗ H̄∗

p .

Or equivalently,

[

1 − (GrflF̄c)
∗ −(GrfcF̄l)

∗

−(GpflF̄c)
∗ 1 − (GpfcF̄l)

∗

] (

H̄∗

r

H̄∗

p

)

= F̄ ∗

(

1
1

)

(3.3)

solving which we get expressions for H̄∗

r (s) and H̄∗

p (s). In particular, eval-
uating (3.3) at s = 0 and solving, we obtain

(

E[Tr]
E[Tp]

)

= E[X1]

[

1 − (GrflF̄c)
∗(0) −(GrfcF̄l)

∗(0)
−(GpflF̄c)

∗(0) 1 − (GpfcF̄l)
∗(0)

]

−1 (

1
1

)

.

(3.4)
Next, combining (2.9) and (3.3), the Laplace transform of the SF of the

SUT between successive revival times is given by

H̄∗(s) = Pr H̄∗

r (s) + (1 − Pr) H̄∗

p (s) =

F̄ ∗(s) (Pr, 1 − Pr)

[

1 − (GrflF̄c)
∗(s) −(GrfcF̄l)

∗(s)
−(GpflF̄c)

∗(s) 1 − (GpfcF̄l)
∗(s)

]

−1 (

1
1

)

,

which may be inverted to obtain the SF of the SUT. Also, combining (2.10)
and (3.4), we obtain the MSUT between successive revival times as

MSUT = Pr E[Tr] + (1 − Pr) E[Tp] = (3.5)

E[X1] (Pr, 1 − Pr)

[

1 − (GrflF̄c)
∗(0) −(GrfcF̄l)

∗(0)
−(GpflF̄c)

∗(0) 1 − (GpfcF̄l)
∗(0)

]

−1 (

1
1

)

.

Finally, the distribution of T0, the time until the first system failure, is
obtained from the relation T0 = X1 + δ1 Tr + (1 − δ1) Tp, hence we also
have E[T0] = E[X1] + MSUT .

How does the availability of the PM model compare with that of the
simpler repair only model, in which recall for PM is not allowed (hence, Gp

is irrelevant)? Note that the results for this simpler model follow immedi-
ately from those of the PM model if we simply let the support of fc escape
to infinity. Then (3.5) becomes

MSUT0 = E[Xl] [1 − (Gr fl)
∗(0)]−1 (3.6)

= E[Xl]

[

1 −
∫

∞

0

Gr(u) fl(u) du

]

−1

= E[Xl] [1 − P{Yr ≤ Xl}]−1 = E[Xl] / P{Yr > Xl}.
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Likewise, (2.14) becomes

MSDT0 = E[Dr] = E[Yr − Xl|Yr > Xl]. (3.7)

Combining (3.6) and (3.7), the limiting availability, when recall is not al-
lowed, is

A0 =
E[Xl]/P{Yr > Xl}

E[Xl]/P{Yr > Xl} + E[Yr − Xl|Yr > Xl]

=
E[Xl]

E[Xl] + P{Yr > Xl} E[Yr − Xl|Yr > Xl]

=
E[Xl]

E[max{Xl, Yr}]
, (3.8)

which agrees with (1.8) in Sen and Bhattacharjee [4]. In the preventive
maintenance model we have the opportunity to attain a limiting availability
A, no smaller than A0 and possibly larger, by choosing the recall time
distribution appropriately.

4. Examples

In this Section we evaluate the limiting availability A in the preven-
tive maintenance model when the lifetime and recall time distributions are
Weibull and repair time and PM time distributions are exponential. In a
similar fashion, we also obtained the numerical results for other arbitrary
life-, recall-, repair and PM times such as lognormal and gamma. For the
sake of brevity, these results are not presented in this paper.

To clarify the convention used in this paper, we mention that the SF of
exponential(µ) is taken to be e−µ t and that of Weibull(ν, λ) to be e−λ tν

.
Also ν is called the shape parameter and µ and λ the scale parameters.

Example 4.1. Suppose that Xl, Xc have Weibull distributions with scale
parameters λl, λc, respectively, but with the same shape parameter ν. As-
sume Yr and Yp have exponential distributions with scale parameters µr

and µp, respectively. Define λ = λl + λc. Note that in this case, X =
min{Xl, Xc} follows a Weibull distribution with scale λ and shape ν; and
that (2.1) yields

Pr = P{Xl < Xc} =

∫

∞

0

λl ν uν−1 e−(λl+λc)uν

du =
λl

λ
. (4.1)

Let κr = P{Yr ≤ X} = E[Gr(X)] = E[F̄ (Yr)] and κp = P{Yp ≤ X} =
E[Gp(X)] = E[F̄ (Yp)], which can be evaluated numerically. In particular,
in the special case when ν = 1; i.e. when Xl1 and Xc1

are exponential, we
have κr,ν=1 = µr/(λ + µr) and κp,ν=1 = µp/(λ + µp). Also, in the special
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case, ν = 2; that is, when Xl and Xc have Rayleigh distribution, we are
able to write closed form expressions for κr and κp as follows:

κr,ν=2 =

√

π

λ
µr e

µ2
r

4λ

(

1 − Φ

(

µr√
2λ

))

κp,ν=2 =

√

π

λ
µp e

µ2
p

4λ

(

1 − Φ

(

µp√
2λ

))

, (4.2)

where Φ(t) is the CDF of the standard Normal distribution.
In this example, (3.4) becomes

(

E[Tr]
E[Tp]

)

=
Γ(1 + 1/ν)

λ1/ν

[

1 − λl

λ κr −λc

λ κr

−λl

λ κp 1 − λc

λ κp

]−1 (

1
1

)

=
Γ(1 + 1/ν)

λ1/ν

(

1 − λc

λ (κp − κr)

1 + λl

λ (κp − κr)

)

1 − λl

λ κr − λc

λ κp

. (4.3)

Hence, we obtain MSUT from (2.10), (3.4)-(4.1) as

MSUT =
Γ(1 + 1/ν)

λ1/ν

(

1 − λl

λ
κr −

λc

λ
κp

)

−1

. (4.4)

By the lack of memory property of the exponential distribution, Dr is
exponential(µr) and Dp is exponential(µp). Hence, MSDT is given by

MSDT =

∫

∞

0

P{D > t} dt =
1

λ

(

λl

µr
+

λc

µp

)

; (4.5)

and (1.1) simplifies to

A =

[

1 +
1

λ

(

λl

µr
+

λc

µp

)

λ1/ν

Γ(1 + 1/ν)

(

λl

λ
(1 − κr) +

λc

λ
(1 − κp)

)]−1

.

(4.6)
Specializing to the model in which recall for PM is not allowed, (4.6)

simplifies to

A0 =

[

1 +
(1 − κr) λ

1/ν
l

µr Γ(1 + 1/ν)

]

−1

, (4.7)

which agrees with (3.8), as E [Xl] = λ
−1/ν
l Γ

(

1 + 1
ν

)

and

E [max {Xl, Yr}]
= E[Xl] + P{Yr > Xl} E[Yr − Xl|Yr > Xl]

= E[Xl] +
(1 − κr)

µr
.
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Table 1 gives some numerical values.
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5. Optimal Choice of Fc and Preference of a PM Model via

Cost Analysis

Notice that the choice of the recall time distribution Fc is entirely at
the discretion of the reliability engineer, all other distributions being dic-
tated by prevailing technology and environmental conditions. What can
we say about the optimal choice of Fc that would maximize A in the PM
model? We cannot give a comprehensive answer using the tools developed
in this paper. The optimal choice of Fc necessitates allowing its support
to be a (strict) subset of (0,∞) or even a discrete set of points. Since our
model assumes continuity of Fc from the outset, we delegate the optimal
choice problem to a future work. Nonetheless, should we choose Fc to be
continuous, we can inquire about the optimal choice of the parameter(s) of
Fc. For instance, in Example 4.1 with ν = 1, the optimal value of λc may
be obtained by maximizing A in (4.6) with respect to λc ≥ 0, given the
values of λl, µr, µp. For the top twelve values of λl, µr, µp in Table 1 when
ν = 1, the optimal choice is λ∗

c = 0; that is, it is best not to exercise the
option to recall. For the last four values of λl, µr, µp, the optimal values
of λ∗

c are given in Table 2 below. Note that when the lifetime and repair
time distributions remain the same, as the mean time for PM decreases,
the optimal recall time distribution becomes stochastically smaller; that is,
an earlier recall leads to an increase in limiting availability.

Table 2: The optimal choice of λ∗

c , given λl, µr, µp, and
associated values of Pr, MSUT, MSDT and limiting avail-
ability A∗, in the special case of Example 4.1 with ν = 1.

λl λ∗

c µr µp Pr MSUT MSDT A∗ A0

1 0.9442 1 10 .5144 1.2284 0.3138 .6858 .6667
1 1.7013 1 15 .3702 1.0106 0.4122 .7103 .6667
1 0.7059 2 20 .5862 1.9386 0.3355 .8607 .8571
1 1.2452 2 25 .4454 1.5835 0.2449 .8661 .8571

The PM model is also preferable in situations where the cost M of each
PM task is substantially lower than the cost R of each repair, even if A may
be slightly smaller than A0. The (long run) servicing cost per unit time
is the ratio of expected total servicing cost within a cycle to the expected
length of a cycle. The servicing cost per unit time for the PM model is

E[N ] {Pr R + (1 − Pr) M}
MSUT + MSDT

, (5.1)

while for the model without PM it is

E[N0] R

E[N0] E[Xl] + E[Yr − Xl|Yr > Xl]
, (5.2)
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where N and N0 are the number of units that operate between successive
system failures in the two models. Since N + 1 is a stopping time, Wald’s
First Identity and (3.5) yield

E[N ] = (Pr, 1 − Pr)

[

1 − (GrflF̄c)
∗(0) −(GrfcF̄l)

∗(0)
−(GpflF̄c)

∗(0) 1 − (GpfcF̄l)
∗(0)

]

−1 (

1
1

)

.

(5.3)

Letting fc = 0 in (5.3), we have

E[N0] =
1

P{Yr > Xl}
, (5.4)

which can be seen also from the fact that N0 is a geometric random variable
with success probability P{Yr > Xl}. Substituting (5.3) in (5.1) and (5.4)
in (5.2) we evaluate the servicing cost per unit time in the two models. The
PM model is preferable if (5.1) is smaller than (5.2).

Thus, a practitioner can decide to recall equipment for preventive main-
tenance if that would increase the system limiting availability and also
decrease the servicing cost per unit time. In case these desirable features
are at odds with each other, the practitioner can make a judgment call
based on their priorities.
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