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Abstract. In this paper an elementary probability question is solved
and the procedure used is generalized to higher dimensions.

1. Introduction

In [1] Dı́az-Barrero posed the following question: Suppose we have a cube
with edge equal to n, built of n3 white cubes of edge one. The surface of the
cube is painted black. A blind man splits the cube. What is the probability
that he will be able to assemble a cube that looks like the original cube, in
the sense that the all the black faces are outside? The problem of assembling
the cube is in two parts: (1) for each position, pick a small hypercube with
the correct coloring; (2) having picked it, orient it correctly so that the
black faces are outside. The answer to the preceding question is that the
probability asked is very small. In this paper this probability is computed
and we generalize the procedure to general structures in higher dimensions.

2. Main Results

In what follows we compute explicitly the probability asked in [1] and
some generalizations of this problem are also given. We begin with the
following theorem.

Theorem 1. The surface of a cube with edge equal to n, built of n3 white

cubes of edge one is painted black. If a blind man splits the cube, then the

probability that he assembles a cube that looks like the original one is

P (3; n) =
8!

88
·
(12 (n − 2))!

1212(n−2)
·

(

6(n − 2)2
)

!

66(n−2)2
·
(n − 2)3!

n3!
.

Proof. We observe that the set of small cubes can be partitioned into some
subsets where the cubes are grouped according to the number of black
faces. For 0 ≤ i ≤ 3, let Ai be the set of small cubes having i painted
faces. It is clear that the Ai’s are nonempty sets pairwise disjoint and
they form a partition of the set of all small cubes with cardinal |A3| = 8,
|A2| = 12(n − 2), |A1| = 6(n − 2)2, and |A0| = (n − 2)3, respectively.
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Let us denote by P (3; n) the probability of the event that all the small
cubes be correctly oriented and let P (Ai) be the probability that Ai fits
correctly in the original position (0 ≤ i ≤ 3). Then, applying the multi-
plicative probability rule, we have

P (3; n) = P (A3) · P (A2|A3) · P (A1|A3 ∩ A2) · P (A0|A3 ∩ A2 ∩ A1).

Now we will compute the probabilities. We compute first P (A3). The
probability to take the first element from A3 is 8

n3 . We also have to count
the probability that this element of A3 fits into its original place. This small
cube has to have its three black colored faces placed in the corner of the
cube. So this probability is 1

8 because the element has eight corners, each
equally likely to be placed in the position where the black corner should go;
and the probability that the first element fits correctly is 1

8 · 8
n3 . For the

second one we have 1
8 · 7

n3−1 , and so on until the probability that the last

element of A3 to be taken is 1
8 · 1

n3−7 . Therefore,

P (A3) =
8!

n3(n3 − 1) · · · (n3 − 7)

(

1

8

)8

.

To compute P (A2|A3), we have to calculate the probability that all ele-
ments of A2 be correctly placed and that each element be correctly oriented.
Taking into account that a cube has 12 edges, the probability that a certain
element be correctly placed and correctly oriented is now 1

12 , because it has
to fit with the colored edge. Thus,

P (A2|A3) =
[12(n− 2)]!

(n3 − 8) · · · [n3 − 8 − 12(n − 2) + 1]

(

1

12

)12(n−2)

.

Likewise for P (A1|A3 ∩ A2), taking into account that the cube has 6
faces, we have

P (A1|A3 ∩ A2) =

[6(n − 2)2]!

[n3 − 8 − 12(n− 2)] · · · [n3 − 6(n − 2)2 − 12(n− 2) − 8 + 1]

(

1

6

)6(n−2)2

.

Finally,

P (A0|A3 ∩ A2 ∩ A1) =
(n − 2)3!

(n − 2)3!
= 1

and

P (3; n) =

8! [12(n − 2)]! · [6(n − 2)2]! (n − 2)3!

n3!

(

1

8

)8 (

1

12

)12(n−2) (

1

6

)6(n−2)2

,
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from which the statement immediately follows and the proof is complete.
�

Next, we state and prove a result that we will use later.

Theorem 2. Let fd,i be the number of faces with dimension i in a hypercube

in d-dimensions. Then fd,i =
(

d
i

)

2d−i.

Proof. Since the d–hypercube is obtained from the (d − 1)–hypercube,
adding the translation over ed, the vector of the canonical base, then we
have the relation

fd,i = 2fd−1,i + fd−1,i−1.

This is because in the d–hypercube we can obtain faces of dimension i in
two ways: (i) each face of dimension i from the (d − 1)–hypercube gets a
pair (the original face and its translate); (ii) each face of dimension i− 1 in
the (d − 1)–hypercube, adding the ed direction, increases its dimension by
one so it generates a face of dimension i in the d–hypercube.

Now we prove that the above recurrence leads us to the mentioned rela-
tion. We proceed by mathematical induction with respect to d. Clearly for
d = 1 (the line segment), f1,1 = 1 and f1,0 = 2, which correspond to our
formula. Clearly,

2fd−1,i + fd−1,i−1 = 2

(

d − 1

i

)

2d−1−i +

(

d − 1

i − 1

)

2d−i =

(

d

i

)

2d−i = fd,i.

In the preceding, we have used that
(

d
i

)

=
(

d−1
i

)

+
(

d−1
i−1

)

.
Notice that Euler’s identity for convex polytopes clearly holds for hyper-

cubes [2, 3]. Namely, if P is a nonempty polytope of dimension d having
f0 vertices, f1 edges, . . . , and fd−1 faces, then

f0 − f1 + · · · + (−1)
d−1

fd−1 = 1 − (−1)
d
. (2.1)

In our case fi =
(

d
i

)

2d−i and we have

d−1
∑

i=0

(−1)i

(

d

i

)

2d−i = (2 − 1)
d
− (−1)

d
,

so (2.1) holds. �

Later on in this paper, when the dimension d is fixed, we will use the
notation fi instead of fd,i. Note that, after Theorem 2, P (3; n) can also be
written in the most convenient form

P (3; n) =
|A3|! |A2|! |A1|! |A0|!

n3!

(

1

f0

)|A3| (

1

f1

)|A2| (

1

f2

)|A1| (

1

f3

)|A0|

,

where fi denote the number of elements of dimension i, (0 ≤ i ≤ 3). For
the cube, we have f0 = 8, f1 = 12, f2 = 6, and f3 = 1.
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We close this section generalizing the problem of the cube to hypercubes.

Theorem 3. Let d be a positive integer. Consider a hypercube of dimen-

sion d, with the edge equal to n, made up by nd white unit hypercubes of

dimension d. If we apply to it the same procedure as to the cube in Theorem

1, then |Ai| = fd−i (n − 2)
d−i

and

P (d; n) =
1

nd!

∏

0≤i≤d

|Ai|!
∏

0≤i≤d

(

1

fd−i

)|Ai|

,

where fi =
(

d
i

)

2d−i and |Ai| is the size of the set Ai.

Proof. We observe that the set of small hypercubes can be partitioned into
some subsets where the cubes are grouped according to the number of col-
ored faces. For 0 ≤ i ≤ d, let Ai be the set of small cubes having i painted
faces. It is clear that the Ai’s are nonempty sets pairwise disjoint and
they form a partition of the set of all small cubes. It is easy to observe
that a cube from Ai, is contained in a face of dimension (d − i) (contain-
ing the intersection of i (d − 1)–dimensional surfaces). This shows that

|Ai| = fd−i (n − 2)
d−i

, where as we have seen in the previous theorem,

fi =
(

d
i

)

2d−i.
Let us denote by P (d; n) the probability of the event that all the small

cubes fit correctly into their original place and let P (Ai) be the probability
that Ai be correctly oriented (0 ≤ i ≤ d). Then, applying the multiplicative
probability rule, we have

P (d; n) =

P (Ad) · P (Ad−1|Ad) · P (Ad−2|Ad ∩ Ad−1) · · ·P (A0|Ad ∩ Ad−1 . . . ∩ A1).

Now we will compute the probabilities. We compute first P (Ad). The

probability to take the first element from Ad is 2d

nd . We also have to count
the probability that this element of Ad is correctly oriented. This small
cube has to have its d black colored (d − 1)–faces (hyper-planes) placed
in the corner of the d–hypercube. So this probability is 1

2d because the

element has 2d corners, each equally likely to be placed in the position
where the black corner should go; and the probability that the first element

fits correctly is 1
2d · 2d

nd . For the second one we have 1
2d · 2d−1

nd−1
, and so on

until the probability that the last element of Ad to be taken is 1
2d

1
nd−2d+1

.
Therefore,

P (Ad) =
2d!

nd(nd − 1) · · · (nd − 2d + 1)

(

1

2d

)2d

.
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Observing that in this case we have |Ad| = f0 = 2d, we may write

P (Ad) =
Ad!

nd(nd − 1) · · · (nd − |Ad| + 1)

(

1

f0

)|Ad|

.

Now we compute P (Ad−1|Ad). We fit the elements of Ad−1 into their
previous positions, and taking into account that a cube has f1 1-dimensional
faces, the probability that a certain element of Ad−1 fits into its position is
now 1

f1

, because it has to fit with the colored (d − 1)–faces.

Thus,

P (Ad−1|Ad) =
|Ad−1|!

(nd − 2d) · · · [nd − |Ad| − |Ad−1| + 1]

(

1

f1

)Ad−1

.

Finally, we obtain the formula

P (d; n) =
1

nd!

∏

0≤i≤d

|Ai|!
∏

0≤i≤d

(

1

fd−i

)|Ai|

.

We just have to compute fi and |Ai|, 0 ≤ i ≤ d, for a hypercube of dimen-
sion d. �

Remark 1. One can easily check that

d
∑

i=0

|Ai| =

d
∑

i=0

(

d

i

)

2i(n − 2)d−i = nd.

Remark 2. It is clear that in Theorem 1 and in Theorem 3 there is no

problem if n = 2, because then (n− 2)! = 1, and the results still hold in the

same form. Clearly, if n = 1 the probability is 1.

3. Related Results

A more general problem is to consider from the beginning a structure
in two dimensions having the sides built of m, n squares and in three di-
mensions having the sides made of m, n, p cubes or, in general, in higher
dimensions. We begin with the following theorem.

Theorem 4. Suppose we have a box built with cubes of face 1, having the

sides of length m, n, and p, respectively. If after painting the faces someone

splits the box, then the probability that a blind person assembles a structure

that looks like the original one is

P (3; m, n, p) =

|A3|! · |A2|! · |A1|! · |A0|!

(mnp)!

(

1

f0

)|A3| (

1

f1

)|A2| (

1

f2

)|A1| (

1

f3

)|A0|

,

where fi, (0 ≤ i ≤ 3) denotes, as usual, the number of i-faces.
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Proof. First we split the small cubes into some sets, after the number of
colored faces. We also have to take into account the different lengths that
the edges have. Let Ai, (0 ≤ i ≤ 3) be the sets

Ai = {the small cubes have i painted faces}.

We have

|A3| = 8,

|A2| = 4 [(m − 2) + (n − 2) + (p − 2)] ,

|A1| = 2 [(m − 2)(n − 2) + (n − 2)(p − 2) + (p − 2)(m − 2)] ,

and |A0| = (m − 2)(n − 2)(p − 2).

Proceeding in the same way as we have done previously, we get

P (3; m, n, p) = P (A3) · P (A2|A3) · P (A1|A3 ∩ A2) · P (A0|A3 ∩ A2 ∩ A1).

Carrying out the same procedure as in Theorem 1 we obtain the same final
formula

P (3; m, n, p) =

|A3|! · |A2|! · |A1|! · |A0|!

(mnp)!

(

1

f0

)|A3| (

1

f1

)|A2| (

1

f2

)|A1| (

1

f3

)|A0|

,

where fi, (0 ≤ i ≤ 3) denote, as usual, the number of i-faces. Notice that
the only modification is in the expression of |Ai|. �

Now we state and prove a result for a general hyperrectangle.

Theorem 5. Consider a hyperrectangle of dimension d, with the edges

equal to m1, · · · , mn, made up of m1, · · · , mn white unit hypercubes of di-

mension d. If the same treatment as to the hypercube in Theorem 3 is

applied, then

|Ai| = 2i





∑

1≤j1<j2<···<jd−i≤d

(mj1 − 2) . . . (mjd−i
− 2)



 , and

P (d; m1, . . . , md) =

∏

0≤i≤d |Ai|!

(m1 · · ·md)!

∏

0≤i≤d

(

1

fd−i

)|Ai|

,

where fi =
(

d
i

)

2d−i.

Proof. The proof is based on the fact that the structure of this kind of
hyperrectangle is similar to the usual one, so the number of i-faces is also
fi.
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Using the experience we have gained in the previous proof, we deduce
easily that the only modifications appear for the |Ai|. These formulas reflect
the asymmetry of the considered structure. We have,

|Ad| = 2d,

|Ad−1| = 2d−1





d
∑

j=1

(mj − 2)



 ,

|Ad−i| = 2d−i





∑

1≤j1<j2<···<ji≤d

(mj1 − 2) . . . (mji
− 2)



 ,

|A0| = (m1 − 2) . . . (md − 2).

Using the same argument as in Theorem 3 we finally obtain

P (d; m1, . . . , md) =

∏

0≤i≤d |Ai|!

(m1 . . . md)!

∏

0≤i≤d

(

1

fd−i

)|Ai|

.

This allows us to end the proof. �

A particular case of the preceding result is the following corollary.

Corollary 1. Suppose we have a rectangle made of squares of face 1, having

the sides of length m and n, respectively. If after painting the faces someone

splits the rectangle, the probability that a blind person assembles a rectangle

that looks like the original one is

P (2; m, n) =

4! (mn − 2(m + n) + 4)! (2(m + n) − 8)!

(mn)!

(

1

f2

)(m−2)(n−2)

×

(

1

f1

)2(m+n)−8 (

1

f0

)4

,

where fi =
(

2
i

)

22−i, 0 ≤ i ≤ 2.

Proof. The probability of the case presented in the preceding corollary can
be easily obtained directly putting in the general formula |A2| = 4, |A1| =
2 [(m − 2) + (n − 2)], and |A0| = (m − 2)(n − 2). �
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