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Abstract. This paper deals with the relation between lattice-equivalence
and some separation axioms.

We are concerned with two questions:
The first one is to characterize topological spaces X such that X

and F(X) are lattice equivalent for some covariant functors F from
TOP to itself.

In the second question, it is proved that T(0,2), T(S,D), T(S,1) and
T(0,3 1

2
) are lattice-invariant properties but S, T(0,1), T(0,S), T(1,2), T(1,S),

T(1,3 1

2
) and T(0,D) are not.

1. Introduction

Among the oldest separation axioms in topology there are some famous
ones, T0, T1, T2, TD, S and ρ = T3 1

2

(where S designates sober and ρ

Tychonoff) and we have the following implications.
• T3 1

2

=⇒ T2 =⇒ T1 =⇒ TD =⇒ T0.

• T3 1

2

=⇒ T2 =⇒ S =⇒ T0.

In [1] and [4] the authors have introduced some new separation axioms
namely T(0,1), T(0,2), T(0,S), T(0,3 1

2
), T(0,D), T(S,1), T(S,2), T(S,D), T(S,31

2
),

T(1,2), T(1,3 1

2
), T(1,S) and T(2,3 1

2
).

Recall that, for i ∈ {1, 3 1
2 , 2, D}, a topological space X is said to be a

T(0,i)-space (resp., T(S,i)-space ) if its T0-reflection (resp., Sober-reflection)
is a Ti-space.

Some of the “new” separation axioms which we have introduced here are
well-known. For example, what we have called T(0,1)-spaces are nothing but
R0-spaces, sometimes also called symmetric spaces. They were introduced
by N. A. Shanin in [9] and rediscovered by A. S. Davis in [2]. Since the
underlying topology of nearness spaces is always R0, they are widely used.
Similarly, what we have called T(0,2)-spaces are nothing but R1-spaces in
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the sense of Davis. The properties used to define T(0,1)-spaces (resp., T(0,2)-
spaces) are well-known characterizations of R0-spaces (resp., R1-spaces)
which can be found in [3].

The present paper is devoted to shedding some light on separation ax-
ioms and gives other characterizations using the notion of lattice equivalent
topological spaces.

Let us first recall some notions which were introduced by the
Grothendieck school [6, 7], such as quasihomeomorphisms and sober spaces.

Recall that a continuous map q : X −→ Y is said to be a quasihome-

omorphism if U 7−→ q−1(U) (resp., C 7−→ q−1(C)) defines a bijection
O(Y ) −→ O(X) (resp., F(Y ) −→ F(X)), where O(X) (resp., F(X)) is the
collection of all open sets (resp., closed sets) of X [7].

A set F of a topological space X is said to be irreducible if for each
open sets U and V of X such that F ∩ U 6= ∅ and F ∩ V 6= ∅, we have
F ∩ U ∩ V 6= ∅ (equivalently, if C1 and C2 are two closed sets of X such
that F ⊆ C1 ∪ C2, then F ⊆ C1 or F ⊆ C2).

A topological space X is called sober if each nonempty irreducible closed
set F of X has a unique generic point (i.e., there exists a unique x ∈ X

such that F = {x}).
A topological space X is called a TD-space if each point {x} in X is

locally closed (i.e., there exists an open set U of X such that {x} = {x}∩U).
A space X is said to be completely regular if every closed set F of X is

completely separated from any point x not in F (i.e, there exists a contin-
uous map f : X −→ R such that f(x) = 0 and f(F ) = {1}). Recall that
a topological space X is called a T1-space if each singleton of X is closed.
A completely regular T1-space is called a Tychonoff space [11]. We remark
here that a Tychonoff space is a Hausdorff space (T2-space).

This paper is composed of an introduction and three sections. The first
one deals with some remarks about separation axioms. The main result of
the second section is the characterizations of T(0,1), T(0,2) and T(0,3 1

2
) by

the notion of lattice equivalence (see Theorem 3.5). In Section three it is
proved that T(0,2), T(S,D), T(S,1) and T(0,3 1

2
) are lattice invariant properties

but S, T(0,1), T(0,S), T(1,2), T(1,S), T(1,3 1

2
) and T(0,D) are not.

2. T(0,1), T(0,2), and T(0,3 1

2
)-spaces

We denote by Top the category of topological spaces with continuous
maps as morphisms and by Topi, for i = 0, 1, 2, 3 1

2 , the full subcategory of
Top whose objects are Ti-spaces. Recall that Topi is a reflective subcategory
of Top (see for example [8] and [12]). In other words, there exists a universal
Ti-space for every topological space X ; we denote it by Ti(X). On the
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other side, the TD property is not reflective in Top (for more details see [1,
p. 3718]).

First, let us give some straightforward remarks about quasihomeomor-
phisms.

Remark 2.1. Let q : X −→ Y be a quasihomeomorphism. Then, accord-
ing to [1, Lemma 3.7], the following properties hold.

(a) If X is a T0-space, then q is one-one.
(b) If Y is a TD-space, then q is onto.
(c) If Y is a TD-space and X is a T0-space, then q is a homeomorphism.
(d) If X is sober and Y is a T0-space, then q is a homeomorphism.

Example 2.2. Let X be a topological space.

(1) The canonical surjection µ0 : X −→ T0(X) (resp., θX : X −→
S(X)) is a quasihomeomorphism.

(2) For i ∈ {1, 3 1
2 , 2}, the canonical surjection µi : X −→ Ti(X) is, in

general, not a quasihomeomorphism.

Proof.

(1) see [6].
(2) It is sufficient to consider a T0-space which is not Ti. Indeed, sup-

pose that µi : X −→ Ti(X) is a quasihomeomorphism. Then, by
Remarks 2.1 (c), µi is a homeomorphism which is impossible.

�

For a given i ∈ {1, 2, 3 1
2}, the following result characterizes topological

spaces such that the canonical surjection µi : X −→ Ti(X) is a quasihome-
omorphism.

Proposition 2.3. Let X be a topological space and i ∈ {1, 3 1
2 , 2}. Then

the following statements are equivalent:

(a) X is a T(0,i)-space;

(b) The canonical surjection µi : X −→ Ti(X) is a quasihomeomor-

phism.

Proof. (a) =⇒ (b). Since X is a T(0,i)-space, then T0(X) is a Ti-space and
consequently there exists a unique continuous map f : Ti(X) −→ T0(X)
making the following diagram commute

X
µi

// Ti(X)

f
zzuuuuuuuuu

T0(X)
""

µ0

EEEEEEEEE
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That is f ◦ µi = µ0. On the other hand since Ti(X) is a T0-space, there
is a unique continuous map g : T0(X) −→ Ti(X) such that g ◦ µ0 = µi.
Now combining the previous equalities we get easily f ◦ g = 1T0(X) and
g ◦ f = 1Ti(X) which means that f and g are homeomorphisms and finally
µi is a quasihomeomorphism.

(b) =⇒ (a). Consider the following commutative diagram

X
µi

// Ti(X)

1

T0(X)
��

µ0

T0(µi)
// T0(Ti(X)) = Ti(X)

Clearly, T0(µi) is a quasihomeomorphism between a T0-space and Ti-
space. Now, since for any i ∈ {1, 2, 3 1

2} Ti(X) is a TD-space, then according
to Remarks 2.1 (c) T0(µi) is a homeomorphism which implies that T0(X)
is a Ti-space. �

In [1] and [4] the authors give some characterizations of T(S,1), T(S,2),
T(S,D), and T(S,31

2
) without mentioning their relationships with T(0,1), T(0,2),

and T(0,3 1

2
). The following result does the job.

Theorem 2.4. Let i ∈ {1, 2, 3 1
2 , D}. The following properties hold.

(1) If i = 2 or 3 1
2 , then we have T(S,i) = T(0,i).

(2) If i = 1 or D, then we have T(S,i) = T(0,i) + T(0,S).

Proof. (1) Let X be a T(S,i)-space, where i = 2 or 3 1
2 . Then the following

diagram is commutative.

X
θX

// S(X)

1

T0(X)
��

µ0

T0(θX)
// T0(S(X)) = S(X)

Hence, T0(θX) : T0(X) −→ S(X) is a quasi-homeomorphism. Since
T0(X) is a T0-space and S(X) is a Ti-space and consequently a TD-space,
then according to Remarks 2.1 (c) T0(θX ) is a homeomorphism which im-
plies that T0(X) is a Ti-space.

Conversely, let X be a T(0,i)-space. Since T0(X) is Ti, then it is sober
and S(T0(X)) is homeomorphic to T0(X). Hence the following diagram is
commutative.
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X
µ0

// T0(X)

1

S(X)
��

θX

S(µ0)
// S(T0(X)) = T0(X)

On the other hand, according to Remarks 2.1 (d), S(µ0) : S(X) −→
T0(X) is a homeomorphism. Therefore S(X) is a Ti-space and finally X is
a T(S,i)-space.

(2) Let X be a T(S,i)-space, where i = 1 or D. Then the following
diagram is commutative.

X
θX

// S(X)

1

T0(X)
��

µ0

T0(θX)
// T0(S(X)) = S(X)

Hence, T0(θX) : T0(X) −→ S(X) is a quasi-homeomorphism. Since
T0(X) is a T0-space and S(X) is a Ti-space which is a TD-space, then
according to Remarks 2.1 (c) T0(θX ) is a homeomorphism which implies
that T0(X) is a sober Ti-space.

Conversely, let X be a T(0,i) and T(0,S) space. Then the following diagram
is commutative.

X
µ0

// T0(X)

1

S(X)
��

θX

S(µ0)
// S(T0(X)) = T0(X)

Since X is a T(0,S)-space, then S(T0(X)) is homeomorphic to T0(X).
Now according to Remarks 2.1 (d), S(µ0) is an homeomorphism and so
that S(X) is homeomorphic to T0(X) which is a Ti-space (because X is a
T(0,i)-space). Finally X is a T(S,i)-space. �

3. Lattice Equivalent Spaces

For any topological space X , let us denote by Γ(X) the lattice of all
closed sets of X .

Two topological spaces X and Y are said to be lattice equivalent if there
exists a bijective map ϕ : Γ(X) −→ Γ(Y ) such that ϕ and ϕ−1 are order-
preserving maps. The map ϕ is called lattice equivalence.
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A lattice equivalence ϕ : Γ(X) −→ Γ(Y ) is said to be induced by a homeo-

morphism if there is a homeomorphism f : X −→ Y such that ϕ(C) = f(C),
for each C ∈ Γ(X).

In [10], Thron was concerned with lattice equivalence induced by a home-
omorphism, so let us recall some interesting results induced by Thron.

Proposition 3.1. [10, Theorem 2.1] Every lattice equivalence between two

TD-spaces is induced by a homeomorphism.

Proposition 3.2. [10, Corollary 2.1] Every lattice equivalence between a

T0-space and a T2-space is induced by a homeomorphism.

In this section we are interested in characterizing topological spaces X
such that X and F (X) are lattice equivalent for any covariant functor
F ∈ {T0, T1, T2, T3 1

2

, S}.

Remark 3.3. Let q : X −→ Y be a quasihomeomorphism. Then the map
ϕ : Γ(Y ) −→ Γ(X), which is defined by ϕ(C) = q−1(C), for any closed set
C of Y , is a lattice equivalence.

As an immediate consequence of Remark 3.3, we have the following re-
sult.

Proposition 3.4. Let X be a topological space.

(1) X and T0(X) are lattice equivalent.

(2) X and S(X) are lattice equivalent.

Now, we give the main result of this section.

Theorem 3.5. Let X be a topological space and i ∈ {1, 2, 3 1
2}. Then the

following statements are equivalent:

(1) X and Ti(X) are lattice equivalent;

(2) X is a T(0,i)-space.

Proof. (2) =⇒ (1). Suppose that X is a T(0,i)-space. Then, by Proposition
2.3, µi : X −→ Ti(X) is a quasihomeomorphism and consequently Remark
3.3 does the job.

(1) =⇒ (2).
• For i = 1, let X be a topological space such that X and T1(X) are

lattice equivalent. Then, by [3, Theorem 2 (f)], X is a T(0,1)-space.

• For i = 2, 3 1
2 , let X be a topological space such that X and Ti(X) are

lattice equivalent. Since X and T0(X) are lattice equivalent, then Ti(X)
and T0(X) are lattice equivalent. Now, since every Tychonoff space is
T2, then Proposition 3.2 shows that T0(X) and Ti(X) are homeomorphic,
which means that X is a T(0,i)-space. �

8 VOLUME 23, NUMBER 1



SEPARATION AXIOMS AND LATTICE EQUIVALENCE

4. Lattice Invariant Properties

Definition 4.1. A topological property P is said to be lattice invariant if a

topological space lattice-equivalent to a topological space having P has also

P .

In [10] Thron has proved that regularity and normality are lattice-invariant
properties but T0 and T1 are not.

Subsequently, Wong has proved that complete regularity, compactness,
local compactness, Lindelöf, second countability and connectedness are
lattice-invariant properties but T2, complete normality, separability and
first countability are not [13].

In this section, we are interested in separation axioms studied in the
previous sections.

Theorem 4.2. T(0,2), T(S,D), T(S,1), and T(0,3 1

2
) are lattice invariant prop-

erties but S, T(0,1), T(0,S), T(1,2), T(1,S), T(1,3 1

2
), and T(0,D) are not.

Proof. • T(0,2) and T(0,3 1

2
) are lattice invariant properties.

Let ϕ : Γ(X) −→ Γ(Y ) be a lattice equivalence and suppose that X is a
T(0,2)-space (resp., T(0,3 1

2
)-space).

Since every topological space and its T0-reflection are lattice equivalent,
then we conclude that T0(X) and T0(Y ) are lattice equivalent.

Now, according to the fact that T0(X) is a T2-space (resp., T0(X) is a
Tychonoff space and consequently a T2-space) and T0(Y ) is a T0-space, then
Proposition 3.2 shows that T0(X) and T0(Y ) are homeomorphic, which
implies that T0(Y ) is a T2-space (resp., a Tychonoff space) and finally Y
is a T(0,2)-space (resp., T(0,3 1

2
)-space).

• T(S,D) and T(S,1) are lattice invariant properties.
Let ϕ : Γ(X) −→ Γ(Y ) be a lattice equivalence such that X is a T(S,D)-

space (resp., T(S,1)-space). Since every topological space and its Sober-
reflection are lattice equivalent, then we conclude that S(X) and S(Y ) are
lattice equivalent. Now according to [5, Corollary 3.11], S(X) and S(Y )
are homeomorphic, so S(Y ) is a TD-space (resp., T1-space ), therefore Y is
a T(S,D)-space (resp., T(S,1)-space).

• S, T(0,1), T(0,S), T(1,2), T(1,S), T(1,3 1

2
), and T(0,D) are not lattice invari-

ant properties.
To see this, consider the following example.
Let X be an infinite set equipped with the cofinite topology. Let α /∈ X ,

and Y = X ∪ {α}. We equip Y with the topology whose closed sets are
Y and the finite sets of X . Clearly the canonical embedding X ↪→ Y is a
quasihomeomorphism; thus it induces a lattice equivalence ϕ.

Clearly, we get the following properties.

(a) X is a T1-space which is not sober.
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(b) Y is a sober space which is not TD (note that {α} is not a locally
closed set of Y ).

(c) T1(Y ) is a one point space.

Now, we are in a position to conclude that:

(1) The property S is not a lattice invariant property.
(2) T0(X) = X is a T1-space, so X is a T(0,1)-space but T0(Y ) = Y is

not TD. Now, since every T1-space is a TD-space, then T(0,D) and
T(0,1) are not lattice invariant properties.

(3) T1(Y ) is a one point space, so it is Tychonoff and consequently
Y is a T(1,3 1

2
)-space but T1(X) = X is not sober. Now, since

T3 1

2

=⇒ T2 =⇒ S, then T(1,S), T(1,2), and T(1,3 1

2
) are not lattice

invariant properties.
(4) T0(X) = X is not sober, so X is not T(0,S), however T0(Y ) = Y

is sober then Y is T(0,S) and consequently T(0,S) is not a lattice
invariant property.

�

Questions 4.3. (1) Is T(2,3 1

2
) a lattice invariant property.

(2) In the second section, we have proved that X and F (X) are lattice

equivalent if and only if X is a T(0,F )-space for F ∈ {T0, T1, T2, T3 1

2

}
but not for F = S. Two immediate questions arise:

(a) Given a topological space X, characterize covariant functors

F such that X and F (X) are lattice equivalent.

(b) Given a covariant functor F , characterize topological spaces X
such that X and F (X) are lattice equivalent.
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